文档视界 最新最全的文档下载
当前位置:文档视界 › 金属粉末制取方法概述

金属粉末制取方法概述

金属粉末制取方法概述
金属粉末制取方法概述

金属粉末制取方法概述

来源:粉体圈日期:2016年06月01日

金属粉末制取方法(粉体技术),通常按转变的作用原理分为机械法和物理化学法两类,既可从固、液、气态金属直接细化获得,又可从其不同状态下的金属化合物经还原、热解、电解而转变制取。难熔金属的碳化物、氮化物、硼化物、硅化物一般可直接用化合或还原-化合方法制取。因制取方法不同,同一种粉末的形状、结构和粒度等特性常常差别很大。粉末的制取方法列表如下,其中应用最广的是还原法、雾化法、电解法。

金属粉末制取方法还原法:

利用还原剂夺取金属氧化物粉末中的氧,而使金属被还原成粉状。气体还原剂有氢、氨、煤气、转化天然气等。固体还原剂有碳和钠、钙、镁等金属。氢或氨还原,常用来生产钨、钼、铁、铜、镍、钴等金属粉末。碳还原常用来生产铁粉。用金属强还原剂钠、镁、钙等,可以生产钽、铌、钛、锆、钒、铍、钍、铀等金属粉末(见金属热还原)。用高压氢气还原金属盐类水溶液,可制得镍、铜、钴及其合金或包覆粉末(见湿法冶金)。还原法制成的粉末颗粒大多为海绵结构的不规则形状。粉末粒度主要取决于还原温度、时间和原料的粒度等因素。还原法可制取大多数金属的粉末,是一种广泛应用的方法。

雾化法:

雾化法将熔融金属雾化成细小液滴,在冷却介质中凝固成粉末。雾化法是用高压空气、氮气、氩气等(气体雾化)和高压水(水雾化)作喷射介质来击碎金属液体流。也有利用旋转盘粉碎和熔体自身(自耗电极和坩埚)旋转的离心雾化法,以及其他雾化方法如溶氢真空雾化、超声波雾化等。由于液滴细小和热交换条件好,液滴的冷凝速度一般可达到100~10000K/s,比铸锭时高几个数量级。因此合金的成分均匀,组织细小,用它制成的合金材料无宏观偏析,性能优异。气雾化粉末一般近球形,水雾化可制得不规则形状。粉末的特性如粒度、形状和结晶组织等主要取决于熔体的性能(粘度、表面张力、过热度)和雾化工艺参数(如熔体流直径、喷嘴结构、喷射介质的压力、流速等)。几乎所有可被熔化的金属都可用雾化法生产,尤其适宜生产合金粉末。此法生产效率高,并易于扩大工业规模。目前不仅用于大量生产工业用铁、铜、铝粉和各种合金粉末,还用来生产高纯净度(O2<100ppm)的高温合金、高速钢、不锈钢和钛合金粉末。此外,用激冷技术制取快速冷凝粉末(冷凝速度>100,000K/s)日益受到重视。用它可以制出高性能的微晶材料。

电解法:

在金属盐水溶液中通以直流电、金属离子即在阴极上放电析出,形成易于破碎成粉末的沉积层。金属离子一般来源于同种金属阳极的溶解,并在电流作用下自阳极向阴极迁移。影响粉末粒度的因素主要是电解液的组成和电解条件。一般电解粉末多呈树枝状,纯度较高,但此法耗电大,成本较高。电解法的应用也很广泛,常用来生产铜、镍、铁、银、锡、铅、铬、锰等多种金属粉末;在一定条件下也可制取合金粉末。对于钽、铌、钛、锆、铍、钍、铀等稀有难熔金属,常采用复合熔盐作为电解质以制取粉末。

机械粉碎法:

主要是通过压碎、击碎和磨削等作用将固态金属碎化成粉末。设备分粗碎和细碎两类。主要起压碎作用的有碾碎机、辊轧机、颚式破碎机等粗碎设备。主要起击碎和磨削作用的有锤碎机、棒磨机、球磨机、振动球磨机、搅动球磨机等粉碎设备。机械粉碎法主要适用于粉碎脆性的和易加工硬化的金属和合金,如锡、锰、铬、高碳铁、铁合金等,也用来破碎还原法制得的海绵状金属、电解法制取的阴极沉积物;还用于破碎氢化后发脆的钛,然后再脱氢制取细钛粉。机械粉碎法效率低,能耗大,多作为其他制粉法的补充手段,或用于混合不同性质的粉末。此外,机械粉碎法还包括旋涡研磨机,它靠两个叶轮造成涡流,使被气流所夹裹的颗粒相互高速碰撞而粉碎,可用于塑性金属的碎化。冷流破碎法是用高速高压

惰性气体流载带粗粉喷射到一金属靶上。由于在喷嘴出口处气流产生绝热膨胀,温度骤降至0℃以下,使具有低温脆性的金属和合金粗粉粉碎成细粉。机械合金化法是用高能球磨机将不同的金属和高熔点化合物研磨成为固溶或精细弥散的合金状态。

羰基法:

将某些金属(铁、镍等)与一氧化碳合成为金属羰基化合物,再热分解为金属粉末和一氧化碳。这样制得的粉末很细(粒度为几百埃至几个微米),纯度很高,但成本也高。工业上主要用来生产镍和铁的细粉和超细粉,以及Fe-Ni、F e-Co、Ni-Co等合金粉末。

直接化合法:

在高温下使碳、氮、硼、硅直接与难熔金属化合。还原-化合法则是用碳、氮、碳化硼、硅与难熔金属氧化物作用。这两种方法都是常用的生产碳化物、氮化物、硼化物和硅化物粉末的方法。

其他方法:

小于10μm 的微细粉末和超细粉末由于成分均匀、晶粒细小、活性大,在制造材料(如弥散强化合金、超微孔金属、金属磁带)和直接应用(如火箭的固体燃料和磁流体密封、磁性墨水等)方面有着特殊的地位。制造这类粉末除应用羰基法、电解法外,还应用真空蒸发冷凝法和电弧喷雾、共沉淀复盐分解、气相还原等方法。

包覆粉末在热喷涂、原子能工程材料等特殊用途方面日益显示出优异性。采用气相和液相沉积两类化学制粉方法,如氢还原热离解、高压氢还原、置换、电沉积等方法,可以制取金属和金属、金属和非金属混合的各种包覆粉末。

金属粉末制取方法概述

金属粉末制取方法概述 来源:粉体圈日期:2016年06月01日 金属粉末制取方法(粉体技术),通常按转变的作用原理分为机械法和物理化学法两类,既可从固、液、气态金属直接细化获得,又可从其不同状态下的金属化合物经还原、热解、电解而转变制取。难熔金属的碳化物、氮化物、硼化物、硅化物一般可直接用化合或还原-化合方法制取。因制取方法不同,同一种粉末的形状、结构和粒度等特性常常差别很大。粉末的制取方法列表如下,其中应用最广的是还原法、雾化法、电解法。 金属粉末制取方法还原法: 利用还原剂夺取金属氧化物粉末中的氧,而使金属被还原成粉状。气体还原剂有氢、氨、煤气、转化天然气等。固体还原剂有碳和钠、钙、镁等金属。氢或氨还原,常用来生产钨、钼、铁、铜、镍、钴等金属粉末。碳还原常用来生产铁粉。用金属强还原剂钠、镁、钙等,可以生产钽、铌、钛、锆、钒、铍、钍、铀等金属粉末(见金属热还原)。用高压氢气还原金属盐类水溶液,可制得镍、铜、钴及其合金或包覆粉末(见湿法冶金)。还原法制成的粉末颗粒大多为海绵结构的不规则形状。粉末粒度主要取决于还原温度、时间和原料的粒度等因素。还原法可制取大多数金属的粉末,是一种广泛应用的方法。

雾化法: 雾化法将熔融金属雾化成细小液滴,在冷却介质中凝固成粉末。雾化法是用高压空气、氮气、氩气等(气体雾化)和高压水(水雾化)作喷射介质来击碎金属液体流。也有利用旋转盘粉碎和熔体自身(自耗电极和坩埚)旋转的离心雾化法,以及其他雾化方法如溶氢真空雾化、超声波雾化等。由于液滴细小和热交换条件好,液滴的冷凝速度一般可达到100~10000K/s,比铸锭时高几个数量级。因此合金的成分均匀,组织细小,用它制成的合金材料无宏观偏析,性能优异。气雾化粉末一般近球形,水雾化可制得不规则形状。粉末的特性如粒度、形状和结晶组织等主要取决于熔体的性能(粘度、表面张力、过热度)和雾化工艺参数(如熔体流直径、喷嘴结构、喷射介质的压力、流速等)。几乎所有可被熔化的金属都可用雾化法生产,尤其适宜生产合金粉末。此法生产效率高,并易于扩大工业规模。目前不仅用于大量生产工业用铁、铜、铝粉和各种合金粉末,还用来生产高纯净度(O2<100ppm)的高温合金、高速钢、不锈钢和钛合金粉末。此外,用激冷技术制取快速冷凝粉末(冷凝速度>100,000K/s)日益受到重视。用它可以制出高性能的微晶材料。 电解法: 在金属盐水溶液中通以直流电、金属离子即在阴极上放电析出,形成易于破碎成粉末的沉积层。金属离子一般来源于同种金属阳极的溶解,并在电流作用下自阳极向阴极迁移。影响粉末粒度的因素主要是电解液的组成和电解条件。一般电解粉末多呈树枝状,纯度较高,但此法耗电大,成本较高。电解法的应用也很广泛,常用来生产铜、镍、铁、银、锡、铅、铬、锰等多种金属粉末;在一定条件下也可制取合金粉末。对于钽、铌、钛、锆、铍、钍、铀等稀有难熔金属,常采用复合熔盐作为电解质以制取粉末。 机械粉碎法: 主要是通过压碎、击碎和磨削等作用将固态金属碎化成粉末。设备分粗碎和细碎两类。主要起压碎作用的有碾碎机、辊轧机、颚式破碎机等粗碎设备。主要起击碎和磨削作用的有锤碎机、棒磨机、球磨机、振动球磨机、搅动球磨机等粉碎设备。机械粉碎法主要适用于粉碎脆性的和易加工硬化的金属和合金,如锡、锰、铬、高碳铁、铁合金等,也用来破碎还原法制得的海绵状金属、电解法制取的阴极沉积物;还用于破碎氢化后发脆的钛,然后再脱氢制取细钛粉。机械粉碎法效率低,能耗大,多作为其他制粉法的补充手段,或用于混合不同性质的粉末。此外,机械粉碎法还包括旋涡研磨机,它靠两个叶轮造成涡流,使被气流所夹裹的颗粒相互高速碰撞而粉碎,可用于塑性金属的碎化。冷流破碎法是用高速高压

几种常见快速成型工艺的比较

几种快速成型方式的比较 几种常见快速成型工艺的比较 在快速领域里一直站主导地位快速成型工艺主要包括:FDM, SLA, SLS, LOM等工艺,而这几种工艺又各有千秋,下面我们在主 要看一下这几种工艺的优缺点比较: FDM(fused deposition Modeling)丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料、聚碳酸酯)加热熔化进而堆积成型方法,简称丝状材料选择性熔覆. 原理如下:加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作平面运动,热塑性丝状材料由供丝机构送至热熔喷头,并在喷头中加热和熔化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层画出截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料可供选用,如工程塑料;聚碳酸酯、工程塑料PPSF: 以及ABS 与PC的混合料等。这种工艺干净,易于操作,不产生垃圾,并可安全地用于办公环境,没有产生毒气和化学污染的危险。适合于产品设计的概念建模以及产品的形状及功能测试。专门开发的针对医用的材料ABS-i: 因为其具有良好的化学稳定性,可采用伽码射线及其他医用方式消毒,特别适合于医用。 FDM快速原型技术的优点是: 制造系统可用于办公环境,没有毒气或化学物质的污染;1次成型、易于操作且不产生垃圾;独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件; 原材料以材料卷的形式提供,易于搬运和快速更换。 可选用多种材料,如各种色彩的工程塑料以及医用ABS等 快速原型技术的缺点是:成型精度相对国外先进的SLA工艺较低,最高精度、成型表面光洁度不如国外 SLA:成型速度相对较慢光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺的简称,是最早出现的一种快速成型技术。在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。然后,工作台下降一层

MIM金属粉末注射成形工艺介绍与对比

1 一、MIM 概念及工艺流程 金属粉末注射成形是传统粉末冶金技术与塑料注射成形技术相结合的高新技术,是小型复杂零部件成形工艺的一场革命。它将适用的技术粉末与粘合剂均匀混合成具有流变性的喂料,在注射机上注射成形,获得的毛坯经脱脂处理后烧结致密化为成品,必要时还可以进行后处理 生产工艺流程如下 配料→混炼→造粒→注射成形→化学萃取→高温脱粘→烧结→后处理→成品 二、MIM 技术特点 金属粉末注射成形结合了粉末冶金与塑料注射成形两大技术的优点,突破了传统金属粉末模压成形工艺在产品形状上的限制,同时利用塑料注射成形技术能大批量、高效率生产具有复杂形状的零件:如各种外部切槽、外螺纹、锥形外表面、交叉通孔、盲孔、凹台、键销、加强筋板,表面滚花等 ·MIM 技术的优点 a.直接成形几何形状复杂的零件,通常重量0.1~200g b.表面光洁度好、精度高,典型公差为±0.05mm c.合金化灵活性好,材料适用范围广,制品致密度达95%~99%,内部组织均匀,无内应力和偏析 d.生产自动化程度高,无污染,可实现连续大批量清洁生产 ·MIM 与精密铸造成形能力的比较 ·MIM 与其他成形工艺的比较

三、MIM常用材质 四、几种MIM材料的基本性能 五、MIM产品典型应用领域 航空航天业:机翼铰链、火箭喷嘴、导弹尾翼、涡轮叶片芯子等 汽车业:安全气囊组件、点火控制锁部件、涡轮增压器转子、座椅部件、刹车装置部件等 电子业:磁盘驱动器部件、电缆连接器、电子封装件、手机振子、计算机打印头等 军工业:地雷转子、枪扳机、穿甲弹心、准星座、集束箭弹小弹等 日用品:表壳、表带、表扣、高尔夫球头和球座、缝纫机零件、电动玩具零件等 机械行业:异形铣刀、切削工具、电动工具部件、微型齿轮、铰链等 医疗器械:牙矫形架、剪刀、镊子、手术刀等 六、适合材质 不锈钢Fe合金Fe-Ni-Co合金钨钛合金工具钢高速钢硬质合金氧化铝氧化锆 2

粉末冶金制粉技术 全

粉末冶金制粉技术(一) 粉末冶金新技术、新工艺的应用,不但使传统的粉末冶金材料性能得到根本的改善,而且使得一批高性能和具有特殊性能的新一代材料相继产生。例如:高性能摩擦材料、固体自润滑材料、粉末高温合金、高性能粉末冶金铁基复合和组合零件、粉末高速钢、快速冷凝铝合金、氧化物弥散强化合金、颗粒增强复合材料,高性能难熔金属及合金、超细晶粒及涂层硬质合金、新型金属陶瓷、特种陶瓷、超硬材料、高性能永磁材料、电池材料、复合核燃料、中子可燃毒物、粉末微晶材料和纳米材料、快速冷凝非晶和准晶材料、隐身材料等。这些新材料都需要以粉末冶金作为其主要的或惟一的制造手段。 本章将简要介绍粉末冶金的基本工艺原理和方法,重点介绍近年米粉末冶金新技术和新工艺的发展和应用状况。 1.雾化制粉技术 粉末冶金材料和制品不断增多,其质量不断提高,要求提供的粉末的种类也愈来愈多。例如,从材质范围来看,不仅使用金属粉末,也要使用合金粉末、金属化合物粉末等;从粉末形貌来看,要求使用各种形状的粉末,如生产过滤器时,就要求球形粉末;从粉末粒度来看,从粒度为500~1000m的粗粉末到粒度小于0.1m的超细粉末。 近几十年来,粉末制造技术得到了很大发展。作为粉末制备新技术,第一个引人注目的就是快速凝固雾化制粉技术。快速凝固雾化制粉技术是直接击碎液体金属或合金并快速冷凝而制得粉末的片法。快速凝固雾化制粉技术最大的优点是可以有效地减少合金成分的偏析,获得成分均匀的合金粉末。此外,通过控制冷凝速率可以获得具有非晶、准晶、微晶或过饱和固溶体等非平衡组织的粉末。它的出现无论对粉末合金成分的设计还是对粉末合金的微观结构以及宏观特性都产生了深刻影响,它给高性能粉末冶金材料制备开辟了一条崭新道路,有力地推动了粉末冶金的发展。 雾化法最初生产的是像锡、铅、锌、铝等低熔点金属粉末,进一步发展能生产熔点在1600~1700℃以下的铁粉及其他粉末,如纯铜、黄铜、青铜、合金钢、不锈钢等金属和合金粉末。近些年,随着人们对雾化制粉技术快速冷凝特性的认识,其应用领域不断地拓宽,如高温合金、Al-Li合金、耐热铝合金、非晶软磁合金、稀土永磁合金、Cu-Pb和Cu-Cr假合金等。 借助高压液流(通常是水或油)或高压气流(空气、惰性气体)的冲击破碎金属液流来制备粉末的方法,称为气雾化或水(油)雾化法,统称二流雾化法;用离心力破碎金属液 流称为离心雾化;利用超声波能量来实现液流的破碎称为超声雾化。雾化制粉的冷凝速率一般为103~106℃/s。 2二流雾化 根据雾化介质(气体、水或油)对金属液流作用的方式不同,二流雾化法具有多种形式: (1)垂直喷嘴。雾化介质与金属液流互呈垂直方向。这样喷制的粉末一般较粗,常用来喷制铝、锌等粉末。 (2)V形喷嘴。两股板状雾化介质射流呈V形,金属液流在交叉处被击碎。这种喷嘴是在垂直喷嘴的基础上改进而成的,其特点是不易发生堵嘴。瑞典霍格纳斯公司最早用此法以水喷制不锈钢粉。

几种常见快速成型工艺优缺点比较

几种常见快速成型工艺优缺点比较 FDM 丝状材料选择性熔覆(FusedDepositionModeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FDM快速原型技术的优点是: 1、制造系统可用于办公环境,没有毒气或化学物质的危险。 2、工艺干净、简单、易于材作且不产生垃圾。 3、可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、原材料费用低,一般零件均低于20美元。 6、可选用多种材料,如可染色的ABS和医用ABS、浇铸用蜡和人造橡胶。

FDM快速原型技术的缺点是: 1、精度较低,难以构建结构复杂的零件。 2、垂直方向强度小。 3、速度较慢,不适合构建大型零件。 SLA 敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA快速原型技术的优点是: 1、系统工作稳定。系统一旦开始工作,构建零件的全过程完全自动运行,无需专人看管,直到整个工艺过程结束。 2、尺寸精度较高,可确保工件的尺寸精度在0.1mm以内。 3、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。

金属粉末的制备方法及基本原理.

金属粉末的制备方法及基本原理 1引言 金属粉末尺寸小,比表面积大,用其制得的金属零部件具有许多不同于常规材料 的性质,如优良的力学性能、特殊的磁性能、高的电导率和扩散率、高的反应活性和催化活性等。这些特殊性质使得金属粉末材料在航空航天、舰船、汽车、冶金、化工等领域得到越来越广泛的应用。 2金属粉末的制备方法 2.1机械法 机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。按照 机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产 量大,可以制备一些常规方法难以得到的高熔点金属和合金的纳米粉末。 2.1.1球磨法 球磨法主要分为滚动球法和振动球磨法。该方法利用了金属颗粒在不同的应变速 率下因产生变形而破碎细化的机理。其优点是对物料的选择性不强,可连续操作, 生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。缺点是在粉末制备过程中分级比较困难[3]。 2.1.2气流磨粉碎法 气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区从而带动研磨区内的物料互相碰撞,使 粉末粉碎变细;气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到 粒度的物料,其余粗粉返回研磨区继续研磨,直至达到要求的粒度被分出为止。整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在

3~8 ym气流磨粉碎法适于大批量工业化生产,工艺成熟。缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源,耗气量较大;只适合脆性金属及合金的破碎制粉。 2.2物理法 物理法一般是通过高温、高压将块状金属材料熔化,并破碎成细小的液滴,并在 收集器内冷凝而得到金属粉末,该过程不发生化学变化。目前研究和使用最多的物理法主要有等离子旋转电极法和气体雾化法。 2.2.1等离子旋转电极法 等离子旋转电极法的原理是将金属或合金制成特定规格的棒料,然后装入旋转模腔,再将等离子枪移至棒料前,在等离子束的作用下,棒料端部开始熔化,形成的液体受到离心力和液体表面张力的双重作用,被破碎成液滴飞离电极棒,最终冷凝成球形金属粉末[4]。该方法根据电极转速和等离子弧电流的大小调节控制粉末粒径。优点是所得粉末球形度好,氧含量低;缺点是粉末不易制取,每批次的材料利用率不高。 2.2.2气体雾化法 气体雾化法是生产金属及合金粉末的主要方法之一。气体雾化的基本原理是用高速气流将液态金属流破碎成小液滴并凝固成粉末的过程。雾化粉末具有球形度高、粉末粒度可控、氧含量低、生产成本 低以及适应多种金属粉末的生产等优点,已成为高性能及特种合金 粉末制备技术的主要发展方向。喷嘴是气体雾化的关键技术,其结构和性能决定了雾化粉末的性能和生产效率。因此,喷嘴结构设计与性能的不断提高决定着气体雾化技术的进步。从雾化喷嘴结构设计的改进历程可以将雾化技术分为传统雾化技术和新型雾化技术。 2.221传统雾化技术 传统雾化技术主要包括超声雾化技术、紧耦合雾化技术和高压气体雾化技术。超

金属粉末注射成型工艺讲解

新疆农业大学机械交通学院 2015-2016 学年一学期 《金属工艺学》课程论文 2015 年 12 月 班级机制136 学号220150038 姓名侯文娜 开课学院机械交通学院任课教师高泽斌成绩__________

金属粉末注射成型工艺概论 作者:侯文娜指导老师:高泽斌 摘要:金属注射成形时一种从塑料注射成形行业中引申出来的新型粉末冶金近净成型技术,这种新的粉末冶金成型方法称作金属注射成型。 关键词:金属粉末注射成型 一:金属粉末注射成型的概念和原理、 粉末冶金不仅是一种材料制造技术,而且其本身包含着材料的加工和处理,它以少无切削的特点越来越受到重视,并逐步形成了自身的材料制备工艺理论和材料性能理论的完整体系。现代粉末冶金技术不仅保持和大大发展了其原有的传统特点(如少无切削、少无偏析、均匀细晶、低耗、节能、节材、金属非金属及金属高分子复合等),而且已发展成为支取各种高性能结构材料、特种功能材料和极限条件工作材料、各种形状复异型件的有效途径。近年来,粉末冶金技术最引人注目的发展,莫过于粉末注射成型(MIN)迅速实现产业化,并取得突破性进展。 金属注射成型(Metal injection Molding),简称MIM,是传统的粉末冶金工艺与塑料成型工艺相结合的新工艺,是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉的产物,是粉末冶金和精密陶瓷成型加工领域中的新技术,利用磨具可注射成型,快速制造高密度、高精度、复杂形状的结构零件,能够快速准确的将设计思想转变为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。 其注射机理为:通过注射将金属粉末与粘结剂的混合物以一定的温度,速度和压力注入充满模腔,经冷却定型出模得到一定形状、尺寸的预制件,再脱出预制件中的粘结剂并进行烧结,可得到具有一定机械性能的制件。其成型工艺工艺流程如下:金属粉末,有机粘接剂—混料—成型—脱脂—烧结—后处理—成品。 二:金属粉末注射成型工艺流程 2.1金属粉末的选择:首先根据产品的技术要求和使用条件选择粉末的种类,然后决定粉末颗粒尺寸。金属粉末注射成型所用的粉末颗粒尺寸一般在 0.5-20μm;从理论上讲,粉末颗粒越细,比表面积也越大,颗粒之间的内聚力也越大,易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm的较粗粉末。粉末的选择要有利于混炼、注射形成、脱脂和烧结,而这往往是互相矛盾的,对于MIM的原料粉末要求很细,MIM原料粉末价格一般较高,有的升值达到传统PM 粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM用原料粉末的方法主要有超高压水雾化法、高压气体雾化法等。 2.2粘接剂;粘接剂是MIM技术的核心,在MIM中粘接剂具有增强流动性

【CN109676147A】金属合金粉末制备装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910161526.0 (22)申请日 2019.03.04 (71)申请人 孟召阳 地址 071400 河北省保定市蠡县辛兴镇北 沙口村 (72)发明人 王书杰 孟静 孟召阳  (51)Int.Cl. B22F 9/10(2006.01) (54)发明名称金属合金粉末制备装置(57)摘要本发明公开了一种金属合金粉末制备装置,涉及增材制造或者粉末冶金技术领域。所述装置包括从上到下设置的吸气熔炼室、制粉室、粉体暂存室以及二次粉碎球化室。本发明所述装置采用高压活性气氛环境下熔炼高温金属合金,来降低其熔点和界面张力,并提高金属合金熔体的流动性。通过高压活性气氛触发高压喷射,并经过离心雾化制备金属合金粉末。然后经过初次射频等离子加热,在活性元素析出动力作用下使高温金属合金粉末再次破碎,最后在经过二次射频等离子加热使得破碎的粉末熔化并球化,同时除去活性元素。所述装置具有产率高、粉体颗粒成分均匀、球形度高、 颗粒尺寸小且流动性好的特点。权利要求书1页 说明书4页 附图1页CN 109676147 A 2019.04.26 C N 109676147 A

权 利 要 求 书1/1页CN 109676147 A 1.一种金属合金粉末制备装置,其特征在于:包括从上到下设置的吸气熔炼室(1)、制粉室(2)、粉体暂存室(3)以及二次粉碎球化室(4),所述吸气熔炼室(1)内设置有所述水冷铜坩埚(8),所述水冷铜坩埚(8)的外周设置有主加热感应线圈(7),所述吸气熔炼室(1)的底部设置有与所述制粉室(2)相连通的熔体喷嘴(12),所述熔体喷嘴(12)内设置有熔体喷嘴加热器(11),固态储气室(5)通过注气管(5-1)与所述吸气熔炼室(1)相连通,所述固态储气室(5)内设置有固态储气原料(6),且所述固态储气室(5)上设置有储气室加热器(5-2);所述熔体喷嘴(12)的下侧的制粉室(3)内设置有离心雾化转盘(13),所述离心雾化转盘(13)的下方设置有等离子电极(14),用于对所述离心雾化转盘(13)进行加热,所述制粉室(2)的外侧设置有转盘驱动装置,用于驱动所述转盘转动;所述制粉室(2)的下端通过第一连通管与所述粉体暂存室(3)相连通,且所述第一连通管上设置有第一阀门(16),所述粉体暂存室(3)的下端通过第二连通管与所述二次粉碎球化室(4)的上端相连通,且所述第二连通管上设置有第二阀门(17),所述二次粉碎球化室(4)内从上到下设置有第一射频线圈(19)和第二射频线圈(20),所述第一射频线圈(19)和第二射频线圈(20)分别产生第一射频等离子体(18)以及第二射频等离子体(21),所述第一等离子体(18)和第二等离子体(21)依次对降落的金属合金粉末进行作用,抽真空系统(24)通过管路与所述二次粉碎球化室(4)相连通。 2.如权利要求1所述的金属合金粉末制备装置,其特征在于:所述吸气熔炼室(1)内设置有红外测温仪(26),用于对所述水冷铜坩埚(8)内的熔体进行测温。 3.如权利要求1所述的金属合金粉末的制备装置,其特征在于:所述熔体喷嘴(12)的内孔与离心雾化转盘(13)的边缘相内切。 4.如权利要求1所述的金属合金粉末制备装置,其特征在于:所述制粉室(2)上设置有与外侧相连通的第三连通管,所述第三连通管上设置有第三阀门(25)。 5.如权利要求1所述的金属合金粉末制备装置,其特征在于:所述固态储气原料(6)为通过加热易于释放出活性气体的材料。 6.如权利要求5所述的金属合金粉末制备装置,其特征在于:所述固态储气原料(6)为氢化钛、氢化铝、氢化锂和/或氢化铝锂。 7.如权利要求1所述的金属合金粉末制备装置,其特征在于:所述的金属合金为钛合金和/或镍合金。 8.如权利要求1所述的金属合金粉末制备装置,其特征在于:所述第一射频线圈 (19)与第二射频线圈 (20)之间存在二次粉碎约束罩(22),用于防止初次雾化粉(15)破碎到处飞溅。 2

常用快速成型基本方法简介

1前言 快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CA D技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。 与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。 2 快速成型的基本原理 快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底至顶完成零件的制作过程。快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。

快速成型的基本原理图 快速成型的工艺过程原理如下: (1)三维模型的构造:在三维CAD设计软件中获得描述该零件的CAD文件。一般快速成型支持的文件输出格式为STL模型,即对实体曲面做近似的所谓面型化(Tessellation)处理,是用平面三角形面片近似模型表面。以简化CAD模型的数据格式。便于后续的分层处理。由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。即三个顶点坐标和一个法向矢量,整个CAD模型就是这样一个矢量的集合。在一般的软件系统中可以通过调整输出精度控制参数,减小曲面近似处理误差。如Pre/1E软件是通过选定弦高值(ch-chordheight)作为逼近的精度参数。 (2)三维模型的离散处理:在选定了制作(堆积)方向后,通过专用的分层程序将三维实体模型(一般为STL模型)进行一维离散,即沿制作方向分层切片处理,获取每一薄层片截面轮廓及实体信息。分层的厚度就是成型时堆积的单层厚度。由于分层破坏了切片方向CAD模型表面的连续性,不可避免地丢失了模型的一些信息,导致零件尺寸及形状误差的产生。切片层的厚度直接影响零件的表面粗糙度和整个零件的型面精度,每一层面的轮廓信息都是由一系列交点顺序连成的折线段构成。所以,分层后所得到的模型轮廓已经是近似的,层与层之间的轮廓信息已经丢失,层厚越大丢失的信息越多,导致在成型过程中产生了型面误差。

纳米金属粉末制备方法综述

摘要纳米粉末具有特殊性质, 并在各个领域得到广泛应用。本文详细介绍了制备纳米粉末的方法, 如机械法、物理法和化学法,和这些方法的原理、技术特点、研究进展和局限性。最后提出目前仍需解决的一些问题并对纳米金属粉末新的制备方法做出展望。 关键词纳米粉末;制备方法;机械法;物理法;化学法 一.绪论 超细粉末的概念于20世纪60年代提出,粉末的粒度一般要求小0.1um( 100nm),即在1~ 100nm间,故超细粉末又称作纳米粉末。由于纳米微粒本身的结构与常规材料不同,所以具有许多新奇的特性。比如纳米金属粉末就具有不同普通材料的光、电、磁、热力学和化学反应等方面的奇异性能, 是一种重要的功能材料,具有广泛的应用前景。现已在国防、化工、轻工、航天、冶金等领域得到重要应用,因而引起了人们的注意。80年代以来, 纳米粉末作为一种新型材料,已引起了各国政府及科学家的极大重视,美国、日本、西欧等发达国家都将其列入发展高技术的计划中,投入了相当的人力和物力,例如美国的“星球大战”计划、西欧各国的“尤里卡”计划、日本 1981 年开始实施的“高技术探索研究”计划以及我国的“863”计划,都列入了纳米材料的研究和开发。目前一些纳米粉末,如钛酸钡、氮化硅、氧化锆等已经实现了商品化。我国在纳米粉末研究方面起步较晚,80年代后期才开始比较系统的研制开发。近年来取得一些成效,特别是一些大学和研究所在理论研究和实验室规模中试水平上有了较大的发展。但总的说来,我国在这一领域与世界先进水平相比, 仍有一定差距。本文将重点介绍目前已研究的纳米粉末的制备方法。 二.方法综述 2.1机械法 机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的超细纳米粉末。 2. 1. 1球磨法 球磨法主要分为滚动球法和振动球磨法。该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。其优点是对物料的选择性不强,可连续操作,生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。缺点是在粉末制备过程中分级比较困难。 2. 1. 2气流磨粉碎法 气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区,从而带动研磨区内的物料互相碰撞,使粉末粉碎变细;气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到粒度的物料,其余粗粉返回研磨区继续研磨, 直至达到要求的粒度被分出为止。整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在3~ 8 μ m)。气流磨粉碎法适于大批量工业化生产,工艺成熟。缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源,耗气量较大;只适合脆性金属及合金的破碎制粉。

粉末冶金常识

粉末冶金常识 1、粉末冶金常识之什么是粉末冶金? 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形 和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称“金属粉末“)。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为“粉末冶金材料“)或制品(称为“粉末冶金制品“)。 2、粉末冶金常识之粉末冶金最突岀的优点是什么? 粉末冶金最突岀的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和 制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造岀合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高 达95%X上,它还能在一些制品中以铁代铜,做到了“省材、节能“。 粉末冶金件 3、粉末冶金常识之什么是"铁基"?什么是铁基粉末冶金? 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类? 粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事? 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂? 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么? 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3 )消除颗粒的加工硬化。 粉末冶金工艺流程图 8、粉末冶金常识之用于粉末冶金的粉末性能测定一般有哪几项? 用于粉末冶金的粉末性能测定一般有三项:化学成分、物理性能和工艺性能。9、用于粉末冶金的粉末物 理性能主要包括那几项? 用于粉末冶金的粉末物理性能主要包括以下三项:( 1)粉末的颗粒形状;( 2)粉末的粒度和粒度组成;(3)粉末的比表面。

金属粉末选择性激光烧结快速成型技术介绍

金属粉末选择性激光烧结快速成型技术介绍 介绍了选择性激光烧结技术的工作原理。简述了选择性激光烧结的三种典型金属粉末成型工艺。指出了选择性激光烧结技术成型金属零件所存在的一些问题和选择性烧结技术的发展前景。 1 引言 选择性激光烧结(以下简称SLS)技术最初是由美国德克萨斯大学奥斯汀分校的Carl Deckard于1989年在其硕士论文中提出的。后美国DTM公司于1992年推出了该工艺的商业化生产设备Sinter Sation。几十年来,奥斯汀分校和DTM公司在SLS领域做了大量的研究工作,在设备研制和工艺、材料开发上取得了丰硕成果。德国的EOS公司在这一领域也做了很多研究工作,并开发了相应的系列成型设备。 国内也有多家单位进行SLS的相关研究工作,如华中科技大学、南京航空航天大学、西北工业大学、中北大学和北京隆源自动成型有限公司等,也取得了许多重大成果,如南京航空航天大学研制的RAP-I型激光烧结快速成型系统、北京隆源自动成型有限公司开发的AFS 一300激光快速成型的商品化设备。 2 SLS技术的工作原理 选择性激光烧结是采用激光有选择地分层烧结固体粉末,并使烧结成型的固化层层层叠加生成所需形状的零件。其整个工艺过程包括CAD模型的建立及数据处理、铺粉、烧结以及后处理等。SLS技术的快速成型系统工作原理见图1。 整个工艺装置由粉末缸和成型缸组成,工作时粉末缸活塞(送粉活塞)上升,由铺粉辊将粉末在成型缸活塞(工作活塞)上均匀铺上一层,计算机根据原型的切片模型控制激光束的二维扫描轨迹,有选择地烧结固体粉末材料以形成零件的一个层面。粉末完成一层后,工作活塞下降一个层厚,铺粉系统铺上新粉.控制激光束再扫描烧结新层。如此循环往复,层层叠

金属粉末的制备方法及基本原理(2)

金属粉末的制备方法及基本原理 1 引言金属粉末尺寸小 ,比表面积大 ,用其制得的金属零部件具有许多不同于常规材料的性质 , 如优良的力学性能、特殊的磁性能、高的电导率和扩散率、高的反应活性和催化活性等。这些特殊性质使得金属粉末材料在航空航天、舰船、汽车、冶金、化工等领域得到越来越广泛的应用。 2 金属粉末的制备方法 2.1机械法机械法就是借助于机械力将大块金属破碎成所需粒 径粉末的一 种加工方法。按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。目前普遍使用的方法还是球磨法和气流磨粉碎法 ,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的纳米粉末。 2.1.1球磨法 球磨法主要分为滚动球法和振动球磨法。该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。其优点是对物料的选择性不强 ,可连续操作 ,生产效率高 ,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。缺点是在粉末制备过程中分级比较困难 [3] 。 2.1.2气流磨粉碎法 气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。具体的工艺过程为 : 压缩气体经过特殊设计的喷嘴后 , 被加速为超音速气流 , 喷射到研磨机的中心研磨区 , 从而带动研磨区内的物料互相碰撞 , 使粉末粉碎变细 ; 气流膨胀后随

物料上升进入分级区 , 由涡轮式分级器分选出达到粒度的物料 , 其余粗粉返回研磨区继续研磨 , 直至达到要求的粒度被分出为止。整个生产过程可以连续自动运行 , 并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在 3~ 8 μm)。气流磨粉碎法适于大批量工业化生产 , 工艺成熟。缺点是在金属粉末的生产过程中 , 必须使用连续不断的惰性气体或氮气作为压缩气源 , 耗气量较大; 只适合脆性金属及合金的破碎制粉。 2.2物理法 物理法一般是通过高温、高压将块状金属材料熔化 , 并破碎成细小的液滴, 并在收集器内冷凝而得到金属粉末 , 该过程不发生化学变化。目前研究和使用最多的物理法主要有等离子旋转电极法和气体雾化法。 2.2.1 等离子旋转电极法等离子旋转电极法的原理是将金属或合金制成特定规格的棒料 , 然后装入旋转模腔 ,再将等离子枪移至棒料前 , 在等离子束的作用下 , 棒料端部开始熔化 , 形成的液体受到离心力和液体表面张力的双重作用,被破碎成液滴飞离电极棒 ,最终冷凝成球形金属粉末 [4] 。该方法根据电极转速和等离子弧电流的大小调节控制粉末粒径。优点是所得粉末球形度好 , 氧含量低 ; 缺点是粉末不易制取 , 每批次的材料利用率不高。 2.2.2气体雾化法气体雾化法是生产金属及合金粉末的主要方法之一。气体雾化的基本原理是用高速气流将液态金属流破

金属粉末的制备方法及基本原理

金属粉末的制备方法及基本原理 金属粉末的制备方法及基本原理摘要制取粉末是粉末冶金的第一步。为了满足对粉末的各种要求,也就要有各种各样生产粉末的方法,机械法、物理法、物理化学法等超细金属粉末的制备方法,还原和机械法是制备金属粉末的基本方法关键词金属粉末的制备,机械研磨法,雾化法,还原法,电解法制取粉末是粉末冶金的第一步。为了满足对粉末的各种要求,也就要有各种各样生产粉末的方法,这些方法不外乎使金属、合金或者金属化合物从固态、液态或气态转变成粉末状态。在冶金制品生产时,其选择主要取决于以下两个因素:粉末的性能和最低的成本。是为能否制取一定物理机械性能和其它特殊性能的制品。主要取决于金属粉末的性能。从过程的实质来看,现有制粉方法大体上可归纳为两大类,即机械法和物理化学法。机械法是将原材料机械地粉碎,而化学成分基本上不发生变化;物理化学法是借助化学的或物理的作用,改变原材料的化学成分或聚集状态而获得粉末的。粉末的生产方法很多,从工业规模而言,应用最广泛的是还原法、雾化法和电解法;而气相沉积法和液相沉淀法在特殊应用时亦很重要。 一机械研磨法固态金属的机械粉碎既是一种独立的制粉方法,又常作为某些制粉方法不可缺少的补充工序。因此,机械粉碎法在粉末生产中占有重要的地位机械研磨主要用来:粉碎脆性金属和合金,如锑、锰、铬、高碳铁、铁合金等以及研磨还原海绵状金属块或电解阴极沉积物;可以研磨经特殊处理后具有脆性的金属和合金,例如,研磨冷却处理后的铅以及加热处理后的锡;如钛经氢化处理后,进行研磨,最后脱氢可以制取细粒度的高纯钛粉下面主要以球磨为例讨论机械研磨的规律。1 球磨机转速慢时,球和物料沿筒体上升至自然坡度角,然后滚下,称为泻落。这时物料的粉碎主要靠球的摩擦作用2 球磨机转速较高时,球在离心力的作用下,随着筒体上升至比第一种情况更高的点平衡,这时物料不仅靠球与球之间的摩擦作用,而主要靠球落下时的冲击作用而被粉碎,其效果最好继续增加球磨机的转速,当离心力超过球体的重力时,紧靠衬板的球不脱离筒壁而与筒体一起回转,此时物料的粉碎作用将停止。影响球磨的因素:1 球磨筒的转速;2 装球量在一定范围内增加装球量能提高研磨效率。在转速固定时,装球量过少,球在倾斜面上主要是滑动,使研磨效率降低;3 球料比,在研磨中还要注意球与料的比例。料太少,则球与球间碰撞加多,磨损太大;料过多,则磨削面积不够,不能很好磨细粉末,需要延长研磨时间,能量消耗增大。4 球的大小,球的大小对物料的粉碎有很大影响。如果球的直径小,球的质量轻,则对物料的冲击力弱;但球的直径太大,则装球的个数太少,因而撞击次数减少,磨削面积减小,也使球磨效率降低。 5 研磨介质,物料除了在空气介质中干磨外,还可在液体介质中进行湿磨,后者在硬质合金、金属陶瓷及特殊材料的研磨工艺中常被采用。 二雾化法雾化法属于机械制粉法,直接击碎液体金属或合金而制得粉末的方法,应用较广泛,生产规模仅次于还原法。雾化法又称喷雾法,可以制取铅、锡、铝、锌、铜、镍、铁等金属粉末,也可制取黄铜、合金钢、高速钢、不锈钢等预合金粉末。制造过滤器用的青铜、不锈钢、镍的球形粉末目前几乎全是采用雾化法生产。雾化法包括:二流雾化法,水雾化;离心雾化法,分旋转圆盘;其他雾化法,如真空雾化、油雾化等。下面主要讨论气体雾化和水雾化,并简要介绍离心雾化法二流雾化法雾化过程原理:二流雾化法是用高速气流或高压水击碎金属液流的,而机械粉碎法是借机械作用破坏固体金属原子间的结合,所以雾化法只要克服液体金属原子间的键合力就能使之分散成粉末,因而雾化过程所需消耗的外力比机械粉碎法小得多。从能量消耗这一点来说,雾化法是一种简便的经济的粉末生产方法。根据雾化介质(气体、水)对金属液流作用的方式不同,雾化具有多种形式:平行喷射,气流与金属液流平行;垂直喷射,气流或水流与金属液流互呈垂直方向,这样喷制的粉末较粗,常用

3d打印金属粉末

3D打印粉末烧结成型材料——金属粉末 来源:中国3D打印网作者:2014-01-08 10:40:26 金属粉末 用SLS 制造金属功能件的方法有间接法和直接法,其中间接法速度较快,精度较高,技术最成熟,应用最广泛。 1 间接烧结成型: (1)间接烧结成型的原理。用高分子聚合物作为粘结剂。由于聚合物软化温度较低,热塑性较好及粘度低,采用包覆制作工艺,将聚合物包覆在金属粉末表面,或者将其与金属粉末材料以某种形式混在一起,在用SLS成型时,激光加热使聚合物成为熔融态,流入金属粉粒间,将金属粉末粘结在一起而成型。在成型的坯件(green part) 中,既有金属成分,又有聚合物成分。坯件还需要进行热降解、二次烧结和渗金属后处理,才能成为纯金属件。 间接法使用的材料中,结构材料是金属,主要是不锈钢和镍粉,聚合物主要是热塑性材料。 热塑性聚合物材料有两类,一类是无定型,另一类是结晶型。无定型材料分子链上分子的排列是无序的,如PC材料;结晶型材料分子链上分子的排列是有序的,如尼龙(nylon) 材料。这两种热塑性聚合物都可以用来作SLS材料中的粘结剂。 由于无定型材料和结晶型材料各有不同的热特性,因此也决定了SLS工艺参数的不同。

聚合物在成型材料中主要以两种形式存在,一种是聚合物粉末与金属粉末的机械混合物,另一种是聚合物均匀地覆在金属粉粒的表面。将聚合物覆盖在金属粉末表面的方法有多种,如可将热塑性材料制成溶液,稀释后与粉末混合,搅拌,然后干燥;还可将聚合物加热熔化,以雾状喷出,覆在粉粒表面。 在聚合物和金属粉末质量分数相同的情况下,覆层粉末烧结后的强度要高于机械混合的材料。 目前,应用最多的成型材料主要是覆层金属粉末。 (2)间接法烧结成型工艺 激光烧结。 工艺参数:激光功率、扫描速度、扫描间距、粉末预热温度。 后处理工艺。 成型坯件必须进行后处理才能成为密实的金属功能件。后处理一般有三步:降解聚合物、二次烧结和渗金属。这三个阶段可以在同一个加热炉中进行,保护气氛为30%的氢气,70%的氮气。 降解聚合物 降解加热在两个不同温度的保温阶段完成,先将坯件加热到350℃,保温5h,然后再升温到450℃,保温4h。在这两个温度段,聚合物都发生分解,其产物是多种气体,通过加热炉上的抽风系统将其去除。通过降解,98 %以上的聚合物被去除。

相关文档