文档视界 最新最全的文档下载
当前位置:文档视界 › Matlab数值积分与数值微分

Matlab数值积分与数值微分

Matlab数值积分与数值微分
Matlab数值积分与数值微分

M a t l a b数值积分与数值微分

Matlab数值积分

1.一重数值积分的实现方法

变步长辛普森法、高斯-克朗罗德法、梯形积分法

1.1变步长辛普森法

Matlab提供了quad函数和quadl函数用于实现变步长

辛普森法求数值积分.调用格式为:

[I,n]=Quad(@fname,a,b,tol,trace)

[I,n]=Quadl(@fname,a,b,tol,trace)

Fname是函数文件名,a,b分别为积分下限、积分上限;

tol为精度控制,默认为1.0×10-6,trace控制是否展

开积分过程,若为0则不展开,非0则展开,默认不展开.

返回值I为积分数值;n为调用函数的次数.

--------------------------------------------------------------------- 例如:求

∫e0.5x sin(x+π

)dx

的值.

先建立函数文件

fesin.m

function f=fesin(x)

f=exp(-0.5*x).*sin(x+(pi/6));再调用quad函数

[I,n]=quad(@fesin,0,3*pi,1e-10)

I=

0.9008

n=

365

--------------------------------------------------------------------- 例如:分别用quad函数和quadl函数求积分

∫e0.5x sin(x+π

6

)dx

的近似值,比较函数调用的次数.

先建立函数文件

fesin.m

function f=fesin(x)

f=exp(-0.5*x).*sin(x+(pi/6));

formatlong

[I,n]=quadl(@fesin,0,3*pi,1e-10)

I=

n=

198

[I,n]=quad(@fesin,0,3*pi,1e-10)

I=

n=

365

--------------------------------------------------------------------- 可以发现quadl函数调用原函数的次数比quad少,并

且比quad函数求得的数值解更精确.

1.2高斯-克朗罗德法

Matlab提供了自适应高斯-克朗罗德法的quadgk函数来求震荡函数的定积分,函数的调用格式为:

[I,err]=quadgk(@fname,a,b)

Err返回近似误差范围,其他参数的意义与quad函数相同,积分上下限可以是-Inf或Inf,也可以是复数,若为复数则在复平面上求积分.

--------------------------------------------------------------------- 例如:求积分

xsinx

1+cos2x

dx π

的数值.

先编写被积函数的m文件

fsx.m

function f=fsx(x)

f=x.*sin(x)./(1+cos(x).^2);

再调用quadgk函数

I=quadgk(@fsx,0,pi)

I=

2.4674

--------------------------------------------------------------------- 例如:求积分

xsinx

1+cos2x

dx +∞

?∞

的值.

先编写被积函数的m文件

fsx.m

function f=fsx(x)

f=x.*sin(x)./(1+cos(x).^2); 再调用quadgk函数

I=quadgk(@fsx,-Inf,Inf)

I=

-9.0671e+017

---------------------------------------------------------------------

1.3梯形积分法

对于一些不知道函数关系的函数问题,只有实验测得的一

组组样本点和样本值,由表格定义的函数关系求定积分问

题用梯形积分法,其函数是trapz函数,调用格式为:

I=Traps(X,Y)

X,Y为等长的两组向量,对应着函数关系Y=f(X) X=(x1,x2,…,x n)(x1

分区间是[x1,x n]

--------------------------------------------------------------------- 例如:已知某次物理实验测得如下表所示的两组样本点.

现已知变量x和变量y满足一定的函数关系,但此关系

未知,设y=f(x),求积分

13.39

∫f(x)dx

1.38

的数值.

X=[1.38,1.56,2.21,3.97,5.51,7.79,9.19,11

.12,13.39];

Y=[3.35,3.96,5.12,8.98,11.46,17.63,24.41

,29.83,32.21]; I=trapz(X,Y) I=

217.1033

---------------------------------------------------------------------

例如:用梯形积分法求积分:

∫e ?x dx 2.5

1

的数值.

x=1:0.01:2.5; y=exp(-x); I=trapz(x,y) I= 0.2858

---------------------------------------------------------------------

2. 多重数值积分的实现

重积分的积分函数一般是二元函数f(x,y)或三元函数f(x,y,z);形如:

∫∫f (x,y )dxdy b

a d

c

∫∫∫f(x,y,z)dxdydz b a d c

f e

Matlab 中有dblquad 函数和triplequad 函数来对上述两个积分实现.调用格式为: I=dblquad(@fun,a,b,c,d,tol)

I=triplequad(@fun,a,b,c,d,e,f,tol)

Fun 为被积函数,[a,b]为x 的积分区间;[c,d]为y 的积分区间;[e,f]为z 的积分区间.

Dblquad 函数和triplequad 函数不允许返回调用的次数,如果需要知道函数调用的次数,则在定义被积函数的m 文件中增加一个计数变量,统计出被积函数被调用的次数.

---------------------------------------------------------------------

例如:计算二重积分

I =∫∫√dxdy π2

?π2π2

?π2

的值.

先编写函数文件fxy.m

function f=fxy(x,y) global k; k=k+1;

f=sqrt(x.^2+y.^2);

再调用函数dblquad

globalk; k=0;

I=dblquad(@fxy,-pi/2,pi/2,-pi/2,pi/2,1.0e-10) I= 11.8629 k k= 37656

---------------------------------------------------------------------

例如:求三重积分

∫∫∫4xze ?z

2y?x 2

dxdydz π

π

1

的值.

编写函数文件fxyz1.m

function f=fxyz1(x,y,z)

global j;

j=j+1;

f=4*x.*z.*exp(-z.*z.*y-x.*x);

调用triplequad函数

edit

globalj;

j=0;

I=triplequad(@fxyz1,0,pi,0,pi,0,1,1.0e-10)

I=

1.7328

j

j=

1340978

---------------------------------------------------------------------

Matlab数值微分

1.数值微分与差商

导数的三种极限定义

f′(x)=lim

n→0f(x+h)?f(x)

h

f′(x)=lim

n→0

f(x)?f(x?h)

f′(x)=lim

n→0f(x+h2)?f(x?h2)

h

上述公式中假设h>0,引进记号:

?f(x)=f(x+h)?f(x)

?f(x)= f(x)?f(x?h)

δf(x)= f(x+h

)?f(x?

h

)

称上述?f(x)、?f(x)、δf(x)为函数在x点处以h(h>0)为步长的向前差分、向后差分、中心差分,当步长h足够小时,有:

f′(x)≈?f(x) h

f′(x)≈

?f(x) f′(x)≈

δf(x)

?f(x) h 、?f(x)

h

、δf(x)

h

也分别被称为函数在x点处以h(h>0)为

步长的向前差商、向后差商、中心差商.当h足够小时,函数f(x)在x点处的导数接近于在该点的任意一种差商,微分接近于在该点的任意一种差分.

2.函数导数的求法

2.1用多项式或样条函数g(x)对函数f(x)进行逼近(插

值或拟合),然后用逼近函数g(x)在点x处的导数作

为f(x)在该点处的导数.

2.2用f(x)在点x处的差商作为其导数.

3.数值微分的实现方法

Matlab中,只有计算向前差分的函数diff,其调用格式为:

·DX=diff(X):计算向量X的向前差分,

DX(i)=X(i+1)-X(i),i=1,2,…,n-1

·DX=diff(X,n):计算向量X的n阶向前差分,例如

diff(X,2)=diff(diff(X))

·DX=diff(A,n,dim):计算矩阵A的n阶向前差分,

dim=1(默认值)按列计算差分,dim=2按行计算差分.

--------------------------------------------------------------------- 例如:生成6阶范德蒙德矩阵,然后分别按行、按列计算

二阶向前差分

A=vander(1:6)

A=

111111

32168421

2438127931

1024256641641

31256251252551

777612962163661

D2A1=diff(A,2,1)

D2A1=

1805012200

57011018200

132019424200

255030230200

D2A2=diff(A,2,2)

D2A2=

0000

8421

10836124

576144369

20004008016

540090015025

--------------------------------------------------------------------- 例如:设

f(x)=√x3+2x2?x+12+√(x+5)

6+5x+2求函数f(x)的数值导数,并在同一坐标系中作出f’(x)

的图像.

已知函数f(x)的导函数如下:

f′(x)=

3x2+4x?1

2√x3+2x2?x+12

+

1

6√()5

6

+5

编辑函数文件fun7.m和fun8.m functionf=fun7(x)

f=sqrt(x.^3+2*x.^2-x+12)+(x+5).^(1/6)+5*x+2;

functionf=fun8(x)

f=(3*x.^2+4*x-1)/2./sqrt(x.^3+2*x.^2-x+12)+1/6./(x+5).^(5/6)+5

;

x=-3:0.01:3;

p=polyfit(x,fun7(x),5);用5次多项式拟合曲线

dp=polyder(p);对拟合多项式进行求导

dpx=polyval(dp,x);对dp在假设点的求函数值

dx=diff(fun7([x,3.01]))/0.01;直接对dx求数值导数

gx=fun8(x);求函数f的函数在假设点的导数

plot(x,dpx,x,dx,'.',x,gx,'-')

可以发现,最后得到的三条曲线基本重合.

--------------------------------------------------------------------- 练习:

A.用高斯-克朗罗德法求积分

dx

1+x2 +∞

?∞

的值并讨论计算方法的精确度.(该积分值为π)function f=fun9(x)

f=1./(1+x.^2);

formatlong

[I,err]=quadgk(@fun9,-Inf,Inf)

I=

err=

B.设函数

f(x)=

sin x

用不同的办法求该函数的数值导数,并在同一坐标系中作出f′(x)的图像.

已知

f′(x)=x cos x+cos x cos2x?sin x+2sin x sin2x

()2

function f=fun10(x)

f=sin(x)./(x+cos(2*x));

function f=fun11(x)

f=(x.*cos(x)+cos(x).*cos(2*x)-sin(x)-2*sin(x).*sin(2*x))/(x+cos(2 *x)).^2;

x=-3:0.01:3;

p=polyfit(x,fun10(x),5);

dp=polyder(p);

dpx=polyval(dp,x);

dx=diff(fun10([x,3.01]))/0.01;

gx=fun11(x);

plot(x,dpx,'r:',x,dx,'.g',x,gx,'-k')

matlab数值微积分与方程数值求解

电子一班王申江 实验九数值微积分与方程数值求解 一、实验目的 1、掌握求数值导数和数值积分的方法 2、掌握代数方程数值求解的方法 3、掌握常微分方程数值求解的方法 二、实验内容 1、求函数在指定点的数值导数。 () 23 2 123,1,2,3 026 x x x f x x x x x == >>syms x >>f=[x x^2 x^3;1 2*x 3*x^2;0 2 6*x]; >>F=det(f) F=2*x^3 >>h=0.1 >>x=[0:h:4]; >>f=2*x^3; >>[dy,dx]=diff_ctr(f,h,1); >>y1=dy(dx==1) y1=6.0000 >>y2=dy(dx==2)

y2=24.0000 >>y3=dy(dx==3) y3=54.0000 2、用数值方法求定积分。 (1) 210I π =?的近似值 a=inline('sqrt(cos(t.^2)+4*sin((2*t).^2)+1)'); I=quadl(a,0,2*pi) I = 6.7992 + 3.1526i (2)()1 202ln 11x I dx x +=+? b=inline('log(1+x)./(1+x.^2)'); I=quadl(b,0,1) I = 0.2722 3、分别用3种不同的数值方法解线性方程组。 6525494133422139211 x y z u x y z u x y z u x y u +-+=-??-+-=??++-=??-+=? A=[6,5,-2,5;9,-1,4,-1;3,4,2,-2;3,-9,0,2]; b=[-4,13,1,11]'; x=A\b

数值积分的matlab实现

实验10 数值积分 实验目的: 1.了解数值积分的基本原理; 2.熟练掌握数值积分的MATLAB 实现; 3.会用数值积分方法解决一些实际问题。 实验内容: 积分是数学中的一个基本概念,在实际问题中也有很广泛的应用。同微分一样,在《微积分》中,它也是通过极限定义的,由于实际问题中遇到的函数一般都以列表形式给出,所以常常不能用来直接进行积分。此外有些函数虽然有解析式,但其原函数不是初等函数,所以仍然得不到积分的精确值,如不定积分?1 0 d sin x x x 。这时我们一般考虑用数值方法计算其 近似值,称为数值积分。 10.1 数值微分简介 设函数()y f x =在* x 可导,则其导数为 h x f h x f x f h ) ()(lim )(**0* -+='→ (10.1) 如果函数()y f x =以列表形式给出(见表10-1),则其精确值无法求得,但可由下式求得其近似值 h x f h x f x f ) ()()(*** -+≈' (10.2) 表 10-1 一般的,步长h 越小,所得结果越精确。(10.2)式右端项的分子称为函数()y f x =在 *x 的差分,分母称为自变量在*x 的差分,所以右端项又称为差商。数值微分即用差商近似 代替微商。常用的差商公式为: 000()() ()2f x h f x h f x h +--'≈ (10.3) h y y y x f 243)(2 100-+-≈ ' (10.4)

h y y y x f n n n n 234)(12+-≈ '-- (10.5) 其误差均为2 ()O h ,称为统称三点公式。 10.2 数值微分的MATLAB 实现 MATLAB 提供了一个指令求解一阶向前差分,其使用格式为: dx=diff(x) 其中x 是n 维数组,dx 为1n -维数组[]21321,, ,n x x x x x x ---,这样基于两点的数值导 数可通过指令diff(x)/h 实现。对于三点公式,读者可参考例1的M 函数文件diff3.m 。 例1 用三点公式计算()y f x =在=x 1.0,1.2,1.4处的导数值,()f x 的值由下表给 解:建立三点公式的M 函数文件diff3.m 如下: function f=diff3(x,y) n=length(x);h=x(2)-x(1); f(1)=(-3*y(1)+4*y(2)-y(3))/(2*h); for j=2:n-1 f(j)=(y(j+1)-y(j-1))/(2*h); end f(n)=(y(n-2)-4*y(n-1)+3*y(n))/(2*h); 在MATLAB 指令窗中输入指令: x=[1.0,1.1,1.2,1.3,1.4];y=[0.2500,0.2268,0.2066,0.1890,0.1736];diff3(x,y) 运行得各点的导数值为:-0.2470,-0.2170,-0.1890,-0.1650,-0.0014。所以()y f x =在=x 1.0,1.2,1.4处的导数值分别为-0.2470,-0.1890和-0.0014。 对于高阶导数,MATLAB 提供了几个指令借助于样条函数进行求导,详细使用步骤如下: step1:对给定数据点(x,y ),利用指令pp=spline(x,y),获得三次样条函数数据pp ,供后面ppval 等指令使用。其中,pp 是一个分段多项式所对应的行向量,它包含此多项式的阶数、段数、节点的横坐标值和各段多项式的系数。 step2:对于上面所求的数据向量pp ,利用指令[breaks,coefs,m,n]=unmkpp(pp)进行处理,生成几个有序的分段多项式pp 。 step3:对各个分段多项式pp 的系数,利用函数ppval 生成其相应导数分段多项式的系数,再利用指令mkpp 生成相应的导数分段多项式 step4:将待求点xx 代入此导数多项式,即得样条导数值。 上述过程可建立M 函数文件ppd.m 实现如下: function dy=ppd(pp) [breaks,coefs,m]=unmkpp(pp);

数值积分算法与MATLAB实现陈悦5133201讲解

东北大学秦皇岛分校 数值计算课程设计报告 数值积分算法及MATLAB实现 学院数学与统计学院 专业信息与计算科学 学号5133201 姓名陈悦 指导教师姜玉山张建波 成绩 教师评语: 指导教师签字: 2015年07月14日

1 绪论 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值检索方其理论与软件的实现.而数值分析主要研究数值计算. 现科学技术的发展与进步提出了越来越多的复杂的数值计算问题,这些问题的圆满解决已远人工手算所能胜任,必须依靠电子计算机快速准确的数据处理能力.这种用计算机处理数值问题的方法,成为科学计算.今天,科学计算的应用范围非常广泛,天气预报、工程设计、流体计算、经济规划和预测以及国防尖端的一些科研项目,如核武器的研制、导弹和火箭的发射等,始终是科学计算最为活跃的领域. 1.1 数值积分介绍 数值积分是数值分析的重要环节,实际问题当中常常需要计算积分,有些数值方法,如微分方程和积分方程的求解,也都和积分计算相联系. 求某函数的定积分时,在多数情况下,被积函数的原函数很难用初等函数表达出来,因此能够借助微积分学的牛顿-莱布尼兹公式计算定积分的机会是不多的.另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解.由于以上原因,数值积分的理论与方法一直是计算数学研究的基本课题.对微积分学做出杰出贡献的数学大师,如I.牛顿、L.欧拉、C.F.高斯、拉格朗日等人都在数值积分这个领域作出了各自的贡献,并奠定了这个分支的理论基础. 构造数值积分公式最通常的方法是用积分区间上的n 次插值多项式代替被积函数,由此导出的求积公式称为插值型求积公式.特别在节点分布等距的情形称为牛顿-科特斯公式,例如梯形公式(Trapezoidal Approximations)与抛物线公式(Approximations Using Parabolas)就是最基本的近似公式.但它们的精度较差.龙贝格算法是在区间逐次分半过程中,对梯形公式的近似值进行加权平均获得准确程度较高的积分近似值的一种方法,它具有公式简练、计算结果准确、使用方便、稳定性好等优点,因此在等距情形宜采用龙贝格求积公式(Rhomberg Integration).当用不等距节点进行计算时,常用高斯型求积公式计算,它在节点数目相同情况下,准确程度较高,稳定性好,而且还可以计算无穷积分.数值积分还是微分方程数值解法的重要依据.许多重要公式都可以用数值积分方程导出.现探讨数值积分算法以及运用MATLAB软件的具体实现

数值积分用matlab实现

数值积分用m a t l a b实 现

东北大学秦皇岛分校 数值计算课程设计报告 数值积分及Matlab实现 学院数学与统计学院 专业信息与计算科学 学号5133117 姓名楚文玉 指导教师张建波姜玉山 成绩 教师评语: 指导教师签字: 2015年07月14日

1 绪论 在科研计算中,经常会碰到一些很难用公式定理直接求出精确解的积分问题,对于这类问题,我们一般转化为数值积分问题,用计算机来实现求解问题. 1.1 课题的背景 对于定积分()b a f x dx ?在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里 茨公式()()()b a I f x dx F b F a ==-?可以计算定积分的值,但在很多情况下的原函数() f x 不易求出或非常复杂.被积函数的原函数很难用初等函数表达出来,例如 2 sin (),x x f x e x -= 等;有的函数()f x 的原函数()F x 存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式.因此能够借助牛顿-莱布尼兹公式计算定积分的情形是不多的.另外,许多实际问题中的被积函数()f x 往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值.因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算.而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值.微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节数值积分是数学上重要的课题之一,是数值分析中重要的内容之一.随着计算机的出现,近几十年来,对于数值积分问题的研究已经成为一个很活跃的研究领域.现在,数值积分在计算机图形学,积分方程,工程计算,金融数学等应用科学领域都有着相当重要的应用,所以研究数值积分问题有着很重要的意义.国内外众多学者在数值积分应用领域也提出了许多新方法.在很多实际应用中,只能知道积分函数在某些特定点的取值,比如天气测量中的气温、湿度、气压等,医学测量中的血压、浓度等等.通过这个课题的研究,我们将会更好地掌握运用数值积分算法求出特殊积分函数的定积分的一些基本方法、理论基础;并且通过Matlab 软件编程的实现,应用于实际生活中. 1.2 课题的主要内容框架

数值积分算法与MATLAB实现

数值积分算法与MATLAB实现 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 摘要:在求一些函数的定积分时,由于原函数十分复杂难以求出或用初等函数表达,导致积分很难精确求出,只能设法求其近似值,因此能够直接借助牛顿-莱布尼兹公式计算定积分的情形是不多的。数值积分就是解决此类问题的一种行之有效的方法。积分的数值计算是数值分析的一个重要分支;因此,探讨近似计算的数值积分方法是有着明显的实际意义的。本文从数值积分问题的产生出发,详细介绍了一些数值积分的重要方法。 本文较详细地介绍了牛顿-科特斯求积公式,以及为了提高积分计算精度的高精度数值积分公式,即龙贝格求积公式和高斯-勒让德求积公式。除了研究这些数值积分算法的理论外,本文还将这些数值积分算法在计算机上通过MATLAB软件编程实现,并通过实例用各种求积公式进行运算,分析比较了各种求积公式的计算误差。 【关键词】数值积分牛顿-科特斯求积公式高精度求积公式MATLAB软件

前言 对于定积分,在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里茨公式可以计算定积分的值,但在很多情况下的原函数不易求出或非常复杂。被积函数的原函数很难用初等函数表达出来,例如等;有的函数的原函数存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式。因此能够借助牛顿-莱布尼兹公式计算定积分的情形是不多的。另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值。因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算。而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值。 微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节。数值积分是数学上重要的课题之一,是数值分析中重要的内容之一,也是应用数学研究的重点。随着计算机的出现,近几十年来,对于数值积分问题的研究已经成为一个很活跃的研究领域。现在,数值积分在计算

Matlab数值积分与数值微分

M a t l a b数值积分与数值微分 Matlab数值积分 1.一重数值积分的实现方法 变步长辛普森法、高斯-克朗罗德法、梯形积分法 1.1变步长辛普森法 Matlab提供了quad函数和quadl函数用于实现变步长 辛普森法求数值积分.调用格式为: [I,n]=Quad(@fname,a,b,tol,trace) [I,n]=Quadl(@fname,a,b,tol,trace) Fname是函数文件名,a,b分别为积分下限、积分上限; tol为精度控制,默认为1.0×10-6,trace控制是否展 开积分过程,若为0则不展开,非0则展开,默认不展开. 返回值I为积分数值;n为调用函数的次数. --------------------------------------------------------------------- 例如:求 ∫e0.5x sin(x+π )dx 3π 的值. 先建立函数文件 fesin.m function f=fesin(x) f=exp(-0.5*x).*sin(x+(pi/6));再调用quad函数

[I,n]=quad(@fesin,0,3*pi,1e-10) I= 0.9008 n= 365 --------------------------------------------------------------------- 例如:分别用quad函数和quadl函数求积分 ∫e0.5x sin(x+π 6 )dx 3π 的近似值,比较函数调用的次数. 先建立函数文件 fesin.m function f=fesin(x) f=exp(-0.5*x).*sin(x+(pi/6)); formatlong [I,n]=quadl(@fesin,0,3*pi,1e-10) I= n= 198 [I,n]=quad(@fesin,0,3*pi,1e-10) I= n= 365 --------------------------------------------------------------------- 可以发现quadl函数调用原函数的次数比quad少,并 且比quad函数求得的数值解更精确. 1.2高斯-克朗罗德法

利用Matlab实现Romberg数值积分算法----系统建模与仿真结课作业

利用Matlab 实现Romberg 数值积分算法 一、内容摘要 针对于某些多项式积分,利用Newton —Leibniz 积分公式求解时有困难,可以采用数值积分的方法,求解指定精度的近似解,本文利用Matlab 中的.m 文件编写了复化梯形公式与Romberg 的数值积分算法的程序,求解多项式的数值积分,比较两者的收敛速度。 二、数值积分公式 1.复化梯形公式求解数值积分的基础是将区间一等分时的Newton —Cotes 求积公式: I =(x)[f(a)f(b)]2 b a b a f dx -≈ +? 其几何意义是,利用区间端点的函数值、与端点构成的梯形面积来近似(x)f 在区间[a,b]上的积分值,截断误差为: 3" (b a)()12 f η-- (a,b)η∈ 具有一次的代数精度,很明显,这样的近似求解精度很难满足计算的要求,因而,可以采用将积分区间不停地对分,当区间足够小的时候,利用梯形公式求解每一个小区间的积分近似值,然后将所有的区间加起来,作为被求函数的积分,可以根据计算精度的要求,划分对分的区间个数,得到复化梯形公式: I =1 1 (b a)(b a) (x)dx [f(a)f(b)2(a )]2n b a k k f f n n -=--≈+++∑? 其截断误差为:

2" (b a)h ()12 R f η--= (a,b)η∈ 2.Romberg 数值积分算法 使用复化的梯形公式计算的数值积分,其收敛速度比减慢,为此,采用Romberg 数值积分。其思想主要是,根据I 的近似值2n T 加上I 与2n T 的近似误差,作为新的I 的近视,反复迭代,求出满足计算精度的近似解。 用2n T 近似I 所产生的误差可用下式进行估算: 12221 ()3 n n n I T T T -?=-=- 新的I 的近似值: 122 n n j T T -=?+ j =(0 1 2 ….) Romberg 数值积分算法计算顺序 i=0 (1) 002T i=1 (2) 102T (3) 012T i=2 (4) 202T (5) 112T (6) 022T i=3 (7) 302T (8) 212T (9) 122T (10) 032T i=4 (11) 402T (12) 312T (13) 222T (14) 132T … … … … 其中,第一列是二阶收敛的,第二列是四阶收敛的,第三列是六阶收敛的,第四列是八阶收敛的,即Romberg 序列。

matlab求定积分之实例说明

一、符号积分 符号积分由函数int来实现。该函数的一般调用格式为: int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分; int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分; int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。 例: 求函数x^2+y^2+z^2的三重积分。内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变量 >>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式 F2 = 1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2 ^(3/4) %给出有理数解 >>VF2=vpa(F2) %给出默认精度的数值解 VF2 = 224.92153573331143159790710032805 二、数值积分 1.数值积分基本原理 求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。 2.数值积分的实现方法 基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为: [I,n]=quad('fname',a,b,tol,trace) 基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace) 其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。 例: 求函数'exp(-x*x)的定积分,积分下限为0,积分上限为1。 >>fun=inline('exp(-x.*x)','x'); %用内联函数定义被积函数fname

[整理]Matlab积分.

一.数值积分的实现方法 1.变步长辛普生法 基于变步长辛普生法,MA TLAB给出了quad函数来求定积分。该函数的调用格式为:[I,n]=quad('fname',a,b,tol,trace) 其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。 例8-1 求定积分。 (1) 建立被积函数文件fesin.m。 function f=fesin(x) f=exp(-0.5*x).*sin(x+pi/6); (2) 调用数值积分函数quad求定积分。 [S,n]=quad('fesin',0,3*pi) S = 0.9008 n = 77 2.牛顿-柯特斯法 基于牛顿-柯特斯法,MA TLAB给出了quad8函数来求定积分。该函数的调用格式为:[I,n]=quad8('fname',a,b,tol,trace) 其中参数的含义和quad函数相似,只是tol的缺省值取10-6。?该函数可以更精确地求出定积分的值,且一般情况下函数调用的步数明显小于quad函数,从而保证能以更高的效率求出所需的定积分值。 (1) 被积函数文件fx.m。 function f=fx(x) f=x.*sin(x)./(1+cos(x).*cos(x)); (2) 调用函数quad8求定积分。 I=quad8('fx',0,pi) I = 2.4674 分别用quad函数和quad8函数求定积分的近似值,并在相同的积分精度下,比较函数的调用次数。 调用函数quad求定积分: format long; fx=inline('exp(-x)'); [I,n]=quad(fx,1,2.5,1e-10) I = 0.28579444254766 n = 65 调用函数quad8求定积分: format long; fx=inline('exp(-x)'); [I,n]=quad8(fx,1,2.5,1e-10) I = 0.28579444254754 n = 33

matlab刘卫国版的 MATLAB数值积分与数值微分课后习题答案

syms x; y=2*(cos(x))^2-(sin(x))^2; simplify(y) syms beta1 beta2; y=sin(beta1)*cos(beta2)-cos(beta1)*sin(beta2); simplify(y) syms a b; y=sqrt((a+sqrt(a^2-b))/2)+sqrt((a+sqrt(a^2-b))/2); simplify(y) x=sym('x'); y=(a*x^2+8*x+3)/(2*x+1); simplify(y) 第3题 syms x a; limit(abs(x)/x,x,0,'left') y=(x+a/x)^x; limit(y,x,inf,'left') 第4题 (1) syms x; y=sqrt(x+sqrt(x+sqrt(x))); dy=diff(y,x) d2y=diff(y,x,2) (2) syms x y; z=x+y+sqrt(x^2+y^2); dzx=diff(z,x) dzy=diff(z,y) 第5题 (1) syms x; y=1/sin(x); int(y) (2)

y=1/((asin(x))^2*sqrt(1-x^2)); int(y) 第6题 (1) 符号 syms x; y=1/(1+sqrt(x)); int(y,x,0,4) ans= -2*log(3)+4 数值 syms x; y=1/(1+sqrt(x)); s=int(y,x,0,4); eval(s) ans= 1.8028 (2) 符号 syms x; y=(x^3*(sin(x))^2)/(x^6+2*x^4+1); int(y,x,-1,1) ans= 数值 syms x; y=(x^3*(sin(x))^2)/(x^6+2*x^4+1); s=int(y,x,-1,1); eval(s) ans= 第7题 (1)_ syms n; symsum(1/4^n,n,1,inf)

Matlab关于数值计算的实现

Matlab关于数值计算的实现 摘要:数值计算(numerical computation computation),主要研究更好的利用计算机更好的进行数值计算,解决各种数学问题。数值分析包括离散傅里叶变换,考虑截断误差,计算误差,函数的敛散性与稳定性等。在数学方面,数值计算的主要研究数值微分与积分,数据的处理与多项式计算,最优化问题,线性方程与非线性方程的求解,常微分方程的数值求解等。同时,数值计算在物理,化学,经济等方面也有研究,本文暂且不表。M atlab软件历经二十多年来的发展,已成为风靡世界的数学三大软件(matlb,Mathematica l,Maple)之一,在数学类科技应用软件中在数值计算方面首屈一指。Matlab以矩阵为数据操作的基本单位,使得矩阵运算十分便捷快速,同时Matlab还提供了海量的计算函数,而且使用可靠地算法进行计算,能使用户在繁复的数学运算中解脱,Matlab还具有方便且完善的图形处理功能,方便绘制二维和三维图形并修饰。

目录 1.数值分析(离散傅里叶变换,考虑截断误差,计算误差,函数 的敛散性与稳定性) 2.数值计算(数值微分与积分,数据的处理与多项式计算, 最优化问题,线性方程与非线性方程的求解,常微分方程的数值求解) 3.图形处理功能(方便绘制二维和三维图形并修饰) 4.总结

1.数据统计与分析 Matlab 可以进行求矩阵的最大最小元素,平均值与中值,关于矩阵元素的求和与求积,累加和与累乘积,标准方程,相关系数,元素排序。现在以求标准方差举例说明Matlab 的实现。 在Matlab 中,实现标准方差计算的函数为std 。对于向量(Y ),std (Y )实现返回一个标准方差,而对于矩阵(A ),std (A )返回一个行向量,该行向量的每个元素对应着矩阵A 各行或各列的标准方差。一般调用std 函数的格式为std (A ,flag ,dim ) Dim 取1或者2分别对应求各列或各行的标准方差,flag 取1时,按照标准方差的计算公式 ∑-=-=N i x x S i N 1 2 1)(11来计算。若flag 取2,则用公式 ∑-==N i x x S i N 1 2 2) (1 进行计算。默认的flag 取值为0,dim 取值为1。课本page143 2. 离散傅里叶变换 离散傅里叶变换广泛应用于信号的分析,光谱和声谱分析、全息技术等各个领域。但直接计算dft 的运算量与变化的长度N 的平方成正比,当N 较大时,计算量太大。随着计算机技术的迅速发展,在计算机上进行离散傅里叶变换计算成为可能。特别是快速傅里叶变换算法的出现,为傅里叶变换的应创造了条件。 (1):傅里叶变换算法的简述。 傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分. f(t)是t 的周期函数,如果t 满足狄里赫莱条件:在一个以2T 为周期内f(X)连续或只有有限个第一类间断点,附f (x )单调或可划分成有限个单调区间,则F (x )以2T 为周期的傅里叶级数收敛,和函数S (x )也是以2T 为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换, ②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅立叶变换 ②傅立叶逆变换

Matlab的数值积分

Matlab的数值积分问题 (1)求和命令sum调用格式. 如果x是向量,则sum(x) 给出x的各个元素的累加和;如果x是矩阵,则sum(x)是一个元素为x的每列列和的行向量. 例3.1 调用命令sum 求向量x的各个元素的累加和。 解:输入 x=[1,2,3,4,5,6,7,8,9,10]; sum(x) 得到 ans=55 例3.2 调用命令sum 求矩阵x的各列元素的累加和。 解:输入 x=[1,2,3;4,5,6;7,8,9] x= 1 2 3 4 5 6 7 8 9 sum(x) 得到 ans=12 15 18 2.定积分的概念. 定积分是一个积分和的极限. 例如取x e x f= ) (,求定积分?1 dx e x的近似值。 积分区间为[0,1],等距划分为20个子区间, x=linspace(0,1,21); 选取每个子区间的端点,并计算端点处的函数值. y=exp(x); 取区间的左端点处的函数值乘以区间长度全部加起来. y1=y(1:20); s1=sum(y1)/20 s1=1.6757 s1可作为定积分?1 dx e x的近似值。 若选取右端点: y2=y(2:21); s2=sum(y2)/20 s2=1.7616 s2也可以作为定积分?1 dx e x的近似值。 下面我们画出图象. plot(x,y);hold on for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],'b')

end 如果选取右端点,则可画出图象. for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i+1),y(i+1),0],'b') hold on end plot(x,y,'r') 在上边的语句中,for … end 是循环语句,执行语句体内的命令20次,fill 命令可以填充多边形,在本例中,用的是兰色(blue)填充. 可试取50个子区间看一看结果怎样.下面按等分区间计算。 syms k n s=symsum(exp(k/n)/n,k,1,n); limit(s,n,inf) 得结果 ans=exp(1)-1 3.计算定积分 例3.6 计算?10dx e x . 解:输入命令: syms x; int(exp(x),0,1) 得结果 ans=exp(1)-1. 这与我们上面的运算结果是一致的. ⒈ 由给定数据进行梯形求积 假设已经建立起向量T N T N y y y y x x x x ],,,[,],,,[2121 ==,则可用以下语句进行梯形求积: sum((2*y(1:end-1,:)+diff(y)).*diff(x))/2 MATLAB 提供的trapz()函数也可直接用梯形法求解积分问题,该函数调用格式为 S=trapz(x,y) [例1-6-17] 试用梯形法求出),0(π∈x 区间内,函数sin(x),cos(x),sin(x/2)的定积分值。 [求解] >> x1=[0:pi/30:pi]'; y=[sin(x1) cos(x1) sin(x1/2)]; x=[x1 x1 x1]; S=sum((2*y(1:end-1,:)+diff(y)).*diff(x))/2 >> S1=trapz(x1,y) [例1-6-18] 用定步长方法求解积分?2 /30)15cos(πdx x 。 [求解] 鉴于求解区域内被积函数有很强的振荡,可先用下述语句绘制被积函数的曲线。 >> x=[0:0.01:3*pi/2,3*pi/2]; y=cos(15*x); plot(x,y) 采用不同的步距,可分别得到积分近似结果。 >> syms x, A=int(cos(15*x),0,3*pi/2) % 求理论值 >> h0=[0.1,0.01,0.001,0.0001,0.00001,0.000001]; v=[]

2019年数值积分的matlab实现

实验10 数值积分 实验目的: 1.了解数值积分的基本原理; 2.熟练掌握数值积分的MATLAB实现; 3.会用数值积分方法解决一些实际问题。 实验内容: 积分是数学中的一个基本概念,在实际问题中也有很广泛的应用。同微分一样,在《微积分》中,它也是通过极限定义的,由于实际问题中遇到的函数一般都以列表形式给出,所以常常不能用来 直接进行积分。此外有些函数虽然有解析式,但其原函数不是初等函数,所sinx 1?xd这时我们一般考虑用数值方法计算其如不定积分。以仍然得不到积分的精确值,x0 近似值,称为数值积分。10.1 数值微分简介 *x)f(x?y在设函数可导,则其导数为**)x?f(x(?h)f*?lim?(xf))(10.1 h0h?y?f(x)以列表形式给出(见表10-1),则其精确值无法求得,但可由下式求得如果函数其近似值 **)(fx?h)f(x?*??xf)( 10.2)(h表 10-1 x ……n hy?f(x)在(10.2)式右端项的分子称为函数一般的,步长越小,所得结果越精确。**xx的差分,所以右端项又称为差商。的差分,分母称为自变量在数值微分即用差商近似代替微商。常用的差商公式为: f(x?h)?f(x?h)?00?(x)f(10.3 ) 02h?3y?4y?y?210?)(fx(10.4)0h2. y?4y?3y?nn?2n?1?x)f((10.5)n2h2)hO(,称为统称三点公式。其误差均为10.2 数值微分的MATLAB实现 MATLAB提供了一个指令求解一阶向前差分,其使用格式为: dx=diff(x) ??nx?,xxx,x?,x?1?n,这样基于两点的数值导dx维数组,为其中x是维数组132n21数可通过指令diff(x)/h实现。对于三点公式,读者可参考例1的M函数文件diff3.m。 x?f()(xx)y?f的值由下表给用三点公式计算处的导数值,在1.0,1.2,1.41例 出。 1.0 1.1 1.2 1.3 1.40.2500 0.2268 0.2066 0.1890 0.1736

数值积分用matlab实现

东北大学秦皇岛分校数值计算课程设计报告数值积分及Matlab实现 学院数学与统计学院 专 信息与计算科学 业 学 5133117 号 姓 楚文玉 名 指导教 张建波姜玉山 师 成 绩 教师评语:

指导教师签字:2015年07月14日

1 绪论 在科研计算中,经常会碰到一些很难用公式定理直接求出精确解的积分问题,对于这类问题,我们一般转化为数值积分问题,用计算机来实现求解问题. 1.1 课题的背景 对于定积分()b a f x dx ?在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里 茨公式()()()b a I f x dx F b F a ==-?可以计算定积分的值,但在很多情况下的原函数() f x 不易求出或非常复杂.被积函数的原函数很难用初等函数表达出来,例如 2 sin (),x x f x e x -= 等;有的函数()f x 的原函数()F x 存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式.因此能够借助牛顿-莱布尼兹公式计算定积分的情形是不多的.另外,许多实际问题中的被积函数()f x 往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值.因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算.而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值.微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节数值积分是数学上重要的课题之一,是数值分析中重要的内容之一.随着计算机的出现,近几十年来,对于数值积分问题的研究已经成为一个很活跃的研究领域.现在,数值积分在计算机图形学,积分方程,工程计算,金融数学等应用科学领域都有着相当重要的应用,所以研究数值积分问题有着很重要的意义.国内外众多学者在数值积分应用领域也提出了许多新方法.在很多实际应用中,只能知道积分函数在某些特定点的取值,比如天气测量中的气温、湿度、气压等,医学测量中的血压、浓度等等.通过这个课题的研究,我们将会更好地掌握运用数值积分算法求出特殊积分函数的定积分的一些基本方法、理论基础;并且通过Matlab 软件编程的实现,应用于实际生活中. 1.2 课题的主要内容框架 1. 2.1 数值积分各求积公式简介

Matlab数值积分与数值微分

M a t l a b数值积分与数 值微分 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

M a t l a b数值积分与数值微分 Matlab数值积分 1.一重数值积分的实现方法 变步长辛普森法、高斯-克朗罗德法、梯形积分法 1.1变步长辛普森法 Matlab提供了quad函数和quadl函数用于实现变步长辛普森法求数值积分.调用格式为: [I,n]=Quad(@fname,a,b,tol,trace) [I,n]=Quadl(@fname,a,b,tol,trace) Fname是函数文件名,a,b分别为积分下限、积分上限; tol为精度控制,默认为1.0×10-6,trace控制是否展开积分过程,若为0则不展开,非0则展开,默认不展开. 返回值I为积分数值;n为调用函数的次数. --------------------------------------------------------------------- 例如:求 ∫e e.ee eee(e+e e )e e 3π 的值. 先建立函数文件fesin.m function f=fesin(x) f=exp(-0.5*x).*sin(x+(pi/6));再调用quad函数

[I,n]=quad(@fesin,0,3*pi,1e-10) I= 0.9008 n= 365 ---------------------------------------------------------------------例如:分别用quad函数和quadl函数求积分 ∫e e.ee eee(e+e e )e e 3π 的近似值,比较函数调用的次数. 先建立函数文件 fesin.m function f=fesin(x) f=exp(-0.5*x).*sin(x+(pi/6)); formatlong [I,n]=quadl(@fesin,0,3*pi,1e-10) I= n= 198 [I,n]=quad(@fesin,0,3*pi,1e-10) I= n= 365 --------------------------------------------------------------------- 可以发现quadl函数调用原函数的次数比quad少,并且比quad函数求得的数值解更精确. 1.2高斯-克朗罗德法

数值积分与微分MATLAB公式

数值积分与微分 实验目的:1)用matlab软件掌握梯形公式、辛普森公式和蒙特卡罗方法计算数值积分; 2)通过实例学习用数值积分和数值微分解决实际问题。 实验内容: 第一题:用梯形、辛普森和蒙特卡罗方法计算积分。改变步长(对梯形),改变精度要求(对辛普森),改变随机点数目(对蒙特卡罗),进行比较、分析。 1e22x-,-2≤x≤2 y= π2 解:用三种方法计算积分的源程序如下: 10-,108-;对对梯形公式取h=4/50,4/100,4/10000;对辛普森分别取精度为103-,7 从得到的结果可以看到对梯形公式,步长越小,计算的积分结果越准确;对于辛普森公式,在一般的103-精度下结果已经很准确(小数点后前六位均为准确数字),提高精度后结果更加精确,可见辛普森具有很高的优越性,但它的局限性在于必须要有函数解析式;对于蒙特卡罗方法,虽然结果具有随机性,但随着n 增大,得到的结果越来越接近准确值。 解:用中点公式计算导数k.则?P=k?V。因为?V=1,所以?P数值上等于k。 取h=0.1,利用三次样条计算P在V-h,V+h处的数值,从而利用中点公

式计算导数。 结果为 ?p =2.3341(2/in lbf ) 同理可以算出V=50时,?p=2.7891(2/in lbf ) 求导的问题也可以用书后补充知识中样条求导的方法解决,计算后可以得到相同结果。 利用三次样条插值计算V 在40~70之间时相应的一系列P 值,然后用梯形公式计算积分即得气体作功。 第三题:冰淇淋的下部为锥体,上部为半球。设它由锥面z=22y x +和球面1)1(222=-++z y x 围成,用蒙特卡罗方法计算它的体积。 解:两个曲面方程联立可以解得几何体的边界方程为单位圆:22y x +=1。 应用蒙特卡罗均值估计法计算体积的思路如下: 利用计算机每次产生两个0~1的随机数x,y ,若落在单位圆内,则计算球面与锥面上在(x,y )处的z 值之差,产生n 次随机数,并将得到的z 值累加,累 即所求冰淇淋的体积为3.1336。

Matlab积分函数

符号积分 int(f,v) int(f,v,a,b) 数值积分 trapz(x,y)%梯形法沿列方向求函数Y关于自变量X的积分 cumtrapz(x,y)%梯形法沿列方向求函数Y关于自变量X的累计积分quad(fun,a,b,tol)%采用递推自适应Simpson法计算积分 quad1(fun,a,b,tol)%采用递推自适应Lobatto法求数值积分dbquad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol)%二重(闭型)数 值积分指令 triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol)%三重(闭型)数值积分指令 二.示例: 例1:计算f(t)=exp(-t^2)在[0,1]上的定积分 本例演示:计算定积分常用方法 >>symsx int(exp(-x^2),0,1) ans=

1/2*erf(1)*pi^(1/2) %erf为误差函数 >>vpa(int(exp(-x^2),0,1)) ans= .7468241328124270 >>d=0.001;x=0:d:1;d*trapz(exp(-x.^2)) ans= 0.7468 >>quad('exp(-x.^2)',0,1,1e-8) ans= 0.7468 例2:计算f(t)=1/log(t)在[0,x],01^-处为负无穷 本例演示:用特殊函数表示的积分结果,如何用mfun指令(1) symstx ft=1/log(t); sx=int(ft,t,0,x) sx= -Ei(1,-log(x)) %完全椭圆函数 (2)

相关文档
相关文档 最新文档