文档视界 最新最全的文档下载
当前位置:文档视界 › 《金属材料的物理特性》金属

《金属材料的物理特性》金属

有关高分子、复合、金属、陶瓷材料.doc

有关高分子、复合、金属、陶瓷材料 专业: 学生姓名: 学号: 指导教师: 完成时间:2015年1月3日

有关金属、陶瓷、高分子、复合材料 高分子材料 特点:高分子材料是以高分子化合物为基础的材料,是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。高分子材料有很高的分子量,质轻,密度小,有优良的力学性能,绝缘性能,隔热性能.由于高分子结构的不同,其特点也不尽相同。比如说:橡胶一类线型柔性高分子聚合物,其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状;高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料,它综合了原有材料的性能特点,并可根据需要进行材料设计。功能高分子材料除还具有物质、能量和信息的转换、传递和储存等特殊功能。 应用:浙江大学的科研人员得到一种不仅坚硬、富有韧性,而且可连续化制备的高分子材料。用它织成的衣服可以防辐射和静电,由于新型纤维质量轻,还可做成更轻便的防弹衣。目前,课题组已能制成比头发丝还细的仿贝壳纤维。“我们这项技术的应用面很广,例如可制成功能性的织物。大家穿上了用仿贝壳纤维材料做的衣服后,不仅能防静电,还可以防辐射,同时又耐化学腐蚀。”该课题组博士生许震说。也许在未来,人们真的可以像蜘蛛侠那样,喷出液体迅速凝结成强韧的新型纤维,飘荡在城市大楼之间。 复合材料: 特点:由异质、异性、异形的有机聚合物、无机非金属、金属等材料作为基体或增强体,通过复合工艺组合而成的材料。除具备原材料的性能外,同时能产生新的性能。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。一般复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点。 应用:在建筑工业发展中使用树脂基复合材料对减轻建筑物自重,提高建筑物的使用功能等十分有利,是实现建筑工业现代化的必要条件。有可设计性,力

金属陶瓷复合材料的应用

金属陶瓷复合材料的应用 我公司提供以下热喷涂技术服务:修复各类设备主轴、曲轴以及所有轴的轴颈、轴承档、油封档、键槽的磨损、拉伤等缺陷。“锅炉四管”(水冷壁管、过热器管、预热器管和省煤器管)喷涂防护、循环硫化床锅炉、膜式壁热喷涂防护、风机叶片、拉丝塔轮、拨丝缸、水轮机的导风叶、水轮机叶片的迷宫环等部件的防汽蚀、防磨处理。大型液压油缸的陶瓷涂覆活塞杆和液压缸以及位置测量成套系统、化工泵中往复泵柱塞陶瓷涂层、机械密封环和轴套表面喷涂、陶瓷蝶阀密封面喷涂代替镶圈结构、高参数球阀喷涂陶瓷、在石油、天然气勘测和钻采过程中所用设备的关键部件如钻头、轴、轴套、灌浆泵等表面热喷涂防护。 在塑料工业设备中,塑料挤出机螺杆、塑料切碎机喷嘴、塑料薄膜生产辊。冶金工业中,连续退火炉辊、张紧辊和偏转器辊自清理炉辊、热浸镀锌用沉没辊、稳定辊等先进涂层。热轧无缝管顶头的表面强化涂层、铜合金热挤压模具强化涂层。在化纤工业中,各种槽辊、锭杯、牵伸辊、导丝辊、表面陶瓷涂层、造纸烘缸表面防腐防磨防护、上光砑光棍、纸浆真空吸水箱板、印刷工业中铸铁印刷滚表面喷涂防护、陶瓷网纹辊、电晕辊。 在玻璃工业中,铜电板的抗高温氧化保护涂层、喂料柱塞和喂料管、内燃机燃烧室的热障陶瓷涂层(汽缸盖底面、活塞底面、活塞顶面、汽门全部底面缸套、活塞环、水泵动密封环、气门顶杆、增压器涡轮) 热喷涂涂层工业应用介绍 随着涂层新材料和新工艺的不断涌现,热喷涂涂层已在国民经济各个工业部门广泛地应用。加之现代计算机技术、传感测试技术、自动化及机器人技术、真空技术与热喷泉涂技术的结合和渗透,使得热喷涂技术的深入发展和工业规模化生产均有大幅度的进步和提高。对未来热喷涂发展的方向以及市场与工业规模的预测为:技术附加值高、效益好的如生物工程,航空航天,工、模具,电子工业等,但规模相对较小;要求成本低的大规模产业如汽车工业和钢结构,但技术附加值低;应用面最广的仍是机械工业,包括石油化工、轻纺、能源、冶金、航空、汽车等也均属此范畴。 热喷涂技术能赋予各类机械产品,特别是关键零部件许多特种功能涂层,形成复合材料结构具有的综合作用,真正做到了“ 好钢用在刀刃上” ,是材料科学表面技术发展的一个方向。但热喷涂技术仅通过涂层在机械产品基体表面获得一定的特殊功能,而不能代替基材或提高产品的结构性能。 钢铁长效防腐蚀涂层 由于锌、铝、锌铝、铝镁涂层的电极电位均负于钢铁,故对钢铁结构能起到阴极保护作用。从20世纪40年代起,国外已将它们喷涂于钢铁构件上作为长效抗腐涂层。国内自70年代起开始推广应用,迄今成功的实例不胜枚举。目前大面积钢结构喷涂锌、铝涂层一般采用电弧喷涂工艺,局部辅助以氧乙炔火焰线材喷涂补遗。现在国内每年采用热喷涂大面积施工工程均在数百万平方米以上。

陶瓷基复合材料综述

浅论陶瓷复合材料的研究现状及应用前景 董超2009107219金属材料工程 摘要 本文主要对陶瓷复合材料的研究现状及应用前景进行了研究,并对当今陶瓷复合材料发展面临的问题进行了概括,希望对陶瓷复合材料的进一步发展起到一定的作用。 本文首先对Al2O3陶瓷复合材料和玻璃陶瓷复合材料的研究进展及发展前景进行了详细的研究。然后对整个陶瓷复合材料的发展趋势及存在的问题进行了分析,得出了在新的时期陶瓷复合材料主要向功能、多功能、机敏、智能复合材料、纳米复合材料、仿生复合材料方向发展;目前复合材料面临的主要问题是基础理论研究问题和新的设计和制备方法问题。 关键词:Al2O3陶瓷复合材料玻璃陶瓷复合材料研究现状应用前景 1. 前言 以粉体为原料,通过成型和烧结等所制得的无机非金属材料制品统称为陶瓷。陶瓷的种类繁多,根据陶瓷的化学组成、性能特点、用途等不同,可将陶瓷分为普通陶瓷和特殊陶瓷两大类。而在许多重要的应用及研究领域,特殊陶瓷是主要研究对象。 陶瓷复合材料是特殊陶瓷的一种。在高技术领域内,对结构材料要求具有轻质高强、耐高温、抗氧化、耐腐蚀和高韧性的特点。陶瓷具有优良的综合机械性能,耐磨性好、硬度高、以及耐热性和耐腐蚀性好等特点。但是它的最大缺点是脆性大。近年来,通过往陶瓷中加入或生成颗粒、晶须、纤维等增强材料,使陶瓷的韧性大大地改善,而且强度及模量也有一定提高。因此引起各国科学家的重视。本文主要介绍了各种陶瓷复合材料的研究现状及其应用前景,并对陶瓷复合材料近年来的发展进行综述。 2.研究现状 随着现代科学技术快速发展,新型陶瓷材料的开发与生产发展异常迅速,新理论、新工艺、新技术和新装备不断出现,形成了新兴的先进无机材料领域和新兴产业。科学技术的发展对材料的要求日益苛刻,先进复合材料已成为现代科学技术发展的关键,它的发展水平是衡量一个国家科学技术水平的一个重要指标,因此世界各国都高度重视其研究和发展。 复合材料的可设计性大,能满足某些对材料的特殊要求,特别是在航空航天技术领域的应用得到迅速发展。陶瓷复合材料的研究,根本目的在于提高陶瓷材料的韧性,提高其可靠性,发挥陶瓷材料的优势,扩大应用领域。本文就几类典型的陶瓷复合材料介绍其研究现状。 2.1Al2O3陶瓷复合材料的研究进展及发展前景 Al2O3陶瓷作为常见陶瓷材料,既具有普通陶瓷耐高温、耐磨损、耐腐蚀、

金属陶瓷复合材料

金属陶瓷复合材料(学习型) 摘要:大家都知道,金属材料具有抗热震性、韧性好等特点,因而可以在许多领域中都得到广泛应用,但是它又因易氧化和高温强度不高等缺点限制了发展。而陶瓷材料具有硬度高,耐热性好,耐腐蚀等特点,如果通过一定的工艺方法将他们结合起来制成金属陶瓷,则可兼有二者的优点。使制成的新材料具有硬度大、高温强度高、高温蠕变性好,抗热震性好、抗氧化、耐腐蚀、耐磨损等众多优异的性能,得到更加广泛的应用。 关键词:金属陶瓷;复合原理;润湿性;热力学共存性 引言:属陶瓷是由金属粘结相和陶瓷主相组成。但并不是说,任意一种金属相和陶瓷相的结合就有优良的性金能。所以如何选择材料并且如何使材料能够完美的结合在一起将是本文重点研究的一个问题。 1、金属陶瓷材料体系的选择原则 对于金属陶瓷来说,要使其具有理想的性能,需要考虑的主要问题是如何把两个以上的相结合起来,获得理想的结构。而相界面的润湿性、化学反应以及组分的溶解对相界面的结合都有着重要的影响。为此,在材料体系的选择中,一般应遵循以下几个原则: 第一,熔融金属与陶瓷相的润湿性要良好,这是决定金属陶瓷性能优劣的主要条件之一。第二,金属相与陶瓷相之间不发生剧烈的化学反应,如果反应太剧烈,纯金属相就会变成金属化合物,而无法达到用金属来改善陶瓷脆性的目的。第三,金属相和陶瓷相的热膨胀系数相差不可过大,对于单一材料来说膨胀系数愈小,抗热震性愈好。但对金属陶瓷来说,除考虑整体膨胀系数外,还要考虑组元材料热膨胀系数的差别,这种差别如果太大,便会使材料在急冷、急热条件下产生巨大的热应力,甚至使材料产生裂纹或断裂。 另外,为了获得良好的显微结构,金属相和陶瓷相的量要有适当的要求,最理想的结构应该是细颗粒的陶瓷相均匀分布于金属相中,金属相以连续使薄膜状态存在,将陶瓷颗粒包裹,根据这一要求,陶瓷的量一般为 15%~80%。 2、金属陶瓷复合原理 2.1 金属相与陶瓷相间的润湿性问题 由于陶瓷和金属的晶体类型及物理化学特性的差异,两者的相容性很差,绝大部分液金属都不能润湿陶瓷,因而如何改善金属对陶瓷的润湿性,从而改善材

金属/陶瓷复合材料润湿性的研究

金属/陶瓷复合材料润湿性的研究 摘要:研究金属对陶瓷的润湿性对开发新型金属/陶瓷体系,探寻和发展材料的制备技术有重大的意义。制备高性能金属/陶瓷复合材料有着重要的现实意义。本文从陶瓷/金属的润湿现象、机理及其分类出发,介绍了润湿性研究的实验研究方法,并探讨改善润湿性的途径。 关键词:金属/陶瓷复合材料;润湿性;接触角;粘附功 一.润湿现象 润湿是固体表面的气体被液体取代的过程。在复合材料的制备过程中,只要涉及液相与固相的相互作用,必然就有液相与固相的润湿问题。在制备金属基复合材料时,液态金属对增强材料的润湿性如何直接影响到界面黏结强度。润湿性表示液体在固体表面上的铺展程度。优良的润湿性意味着液体在固体表面上铺展开来覆盖整个增强材料的表面。按热力学的条件,只有体系自由能减少时,液体才能铺展开来,即 因此,铺展系数SC[1]被定义为 当铺展系数SC>0时,才会润湿,根据力学平衡,可得: 式中,θ为接触角。 由θ可以知道润湿程度。θ=0°时,金属熔液会在基体上完全的铺展开;θ=180°时,熔滴呈圆球状,只与基体表面形成点接触,称其为完全不润湿;0°90°时则称为不润湿,液相对固体的粘着性较差。对于一个特定的系统,接触角θ会随温度、保温时间、吸附气体等而变化。润湿过程可按顺序分为沾湿、浸湿、铺展三个阶段。对于一个固定的系统,沾湿过程的铺展力最大,最容易进行,属于最低层次的润湿;铺展过程的铺展力最小,属于最高层次的润湿。润湿性好的液体将尽力覆盖更多的固-气界面,直至完全平铺固体表面,润湿性差的液体的润湿过程将终止于较大的平衡接触角。金属/陶瓷的润湿性对金属基复合材料的生产有重要的意义。

陶瓷基复合材料的研究现状与发展前景

——碳化物陶瓷基复合材料课程名称:复合材料 学生姓名:舒顺启 学号:200910204123 班级:材料091班 日期:2012年12月22日

——碳化物陶瓷基复合材料 摘要:本文综述了陶瓷基复合材料的发展历史,介绍了陶瓷基复合材料的制备工艺,详细阐述了陶瓷基复合材料的性能与应用,分析了陶瓷基复合材料存在的问题,并展望了陶瓷基复合材料未来发展趋势。 关键词:陶瓷基复合材料、制备工艺、性能、应用 Ceramic matrix composites research present situation and the development prospect --Carbide ceramic matrix composites Abstract:This paper reviews the ceramic base composite material, the development history of ceramic matrix composites is introduced the preparation process, elaborated the ceramic matrix composites, the properties and the application of the analysis of the ceramic base composite material existing problems, and prospects the ceramic matrix composites future development trend. Key words:Ceramic matrix composites, preparation process, performance and application 1 引言 陶瓷基复合材料是近二十年来发展起来的新型材料,由于该类材料具有良好的高温性能。因此它作为耐高温结构材料在航空航天工业和能源工业等领域的应用具有巨大的潜力。如航空发动机的推重比为lO时,涡轮前进口温度达1650℃,在这样高的温度下,传统的高温合金材料已经无法满足要求【1】,因此国内外的材料研究者纷纷把研究的重点转向陶瓷基复合材料。研究者通过大量的实验发现,陶瓷基复合材料不仅具有良好的高温稳定性和高温抗氧化能力,而且材料在断裂

金属陶瓷复合材料

金属陶瓷复合材料 何洋 ( 材料科学与工程一班 200911102016 ) 摘要本文从复合材料入手介绍Al/Al2O3陶瓷基复合材料,定向金属氧化法制备Al/Al2O3陶瓷基复合材料,Al/Al2O3陶瓷基复合材料的低温烧结,金属陶瓷材料的应用以及研究现状、前景。 Abstract The article introduces composite material of Al/Al2O3 ceramic matrix composites, directional metal oxidation method for Al/Al2O3 ceramic matrix composites, Al/Al2O3ceramic matrix composites, low temperature sintering, metal,ceramic materials application and research status, prospects。 关键词复合材料;Al/Al2O3 ;定向金属氧化法;低温烧结;应用;前景 Key words composite materials; Al/Al2O3; directed metal oxidation; low temperature sintering; application; prospects 复合材料(Composite materials) 由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 氧化铝(Al2O3 ) 陶瓷 先进陶瓷材料中应用最广泛的是素有“陶瓷王”之称的Al2O3陶瓷。氧化铝陶瓷原料分布广、产品性能优良、价格低。由于具有耐高温、硬度大、强度高、

陶瓷基复合材料(CMC).

第四节 陶瓷基复合材料(CMC) 1.1概述 工程中陶瓷以特种陶瓷应用为主,特种陶瓷由于具有优良的综合机械性能、耐磨性好、硬度高以及耐腐蚀件好等特点,已广泛用于制做剪刀、网球拍及工业上的切削刀具、耐磨件、 发动机部件、热交换器、轴承等。陶瓷最大的缺点是脆性大、抗热震性能差。与金属基和聚合物基复合材料有有所不同的,是制备陶瓷基复合材料的主要目的之一就是提高陶瓷的韧性。特别是纤维增强陶瓷复合材料在断裂前吸收了大量的断裂能量,使韧性得以大幅度提高。表6—1列出了由颗粒、纤维及晶须增强陶瓷复合材料的断裂韧性和临界裂纹尺寸大小的比较。很明显连续纤维的增韧效果最佳,其次为品须、相变增韧和颗粒增韧。无论是纤维、晶须还是颗粒增韧均使断裂韧性较整体陶瓷的有较大提高,而且也使临界裂纹尺寸增大。

陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物纳构远比金属与合金复杂得多。使用最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。陶瓷材料中的化学键往注是介于离子键与共价键之间的混合键。 陶瓷基复合材料中的增强体通常也称为增韧体。从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。碳纤维是用来制造陶瓷基复合材料最常用的纤

维之一。碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件,在1500霓的温度下,碳纤维仍能保持其性能不变,但对碳纤维必须进行有效的保护以防止它在空气中或氧化性气氛中被腐蚀,只有这样才能充分发挥它的优良性能。其它常用纤维是玻璃纤维和硼纤维。陶瓷材料中另一种增强体为晶须。晶须为具有一定长径比(直径o 3。1ym,长30—lMy”)的小单晶体。从结构上看,晶须的特点是没有微裂纹、位偌、孔洞和表面损伤等一类缺陷,而这些缺陷正是大块晶体中大量存在且促使强度下降的主要原因。在某些情况下,晶须的拉伸强度可达o.1Z(Z为杨氏模量),这已非常接近十理论上的理想拉伸强度o.2Z。而相比之下.多晶的金属纤维和块状金属的拉伸强度只有o.025和o.o01f。在陶瓷基复合材料使用得较为普遍的是SiC、Al2O3、以及Si3N4N晶须。颗粒也是陶瓷材料中常用的一种增强体,从几何尺寸上看、它在各个方向上的长度是大致相同的,—般为几个微米。通常用得较多的颗粒也是SiC、Al2O3、以及Si3N4N。颗粒的增韧效果虽不如纤维和晶须,但如恰当选择颗粒种类、粒径、含量及基体材料,仍可获得一定的韧化效果,同时还会带来高温强度,高温蠕变性能的改善。所以,颗粒增韧复合材料同样受到重视并对其进行了一定的研究。 在陶瓷材料中加入第二相纤维制成的复合材料是纤维增强陶瓷基复合材料,这是改善陶瓷材料韧性酌重要手段,按纤维排布方式的不同,又可将其分为单向排布长纤维复合材料和多向排布纤维复合材料。单向排布纤维增韧陶瓷基复合材料的显著特点是它具有各向异性,即沿纤维长度方向上的纵向性能要大大高于其横向性能。在这种材料中,当裂纹扩展遇到纤维时会受阻.这样要使裂纹进一步扩展就必须提高外加应力。图7—15为这一过程的示意图。当外加应力进一步提高时.由于基体与纤维间的界面的离解,同时又由于纤维的强度高于基体的强

金属基、陶瓷基、树脂基复合材料性能对比

复合材料学作业—— 不同基体的复合材料性能对比 姓名: 学院:材料学院 班级:0919001 学号:1091900101 2012年3月18日

不同基体的复合材料性能对比 摘要:本文主要介绍了不同基体的复合材料(金属基、陶瓷基、树脂基)之间的性能对比,以及它们的应用。 关键词:复合材料,金属基,陶瓷基,树脂基,性能对比 正文:复合材料按基体分,可以分为金属基复合材料、陶瓷基复合材料、树脂基复合材料。下面将对这三种基体的复合材料各举一例进行性能、成型工艺及应用上的对比。分别是碳化钛增强基复合材料、(C/SiC)陶瓷基复合材料、环氧树脂(EP)/碳纤维(CF)树脂基复合材料。 一、性能对比 碳化钛增强铝基复合材料:新型的优质耐磨、耐热材料,具有优良的综合性能。室温力学性能:抗拉强度σ_b=300-500MPa;屈服强度σ=250-400MPa;延伸率δ=5-15% ;硬度HB80-HB160。抗磨损性能:该种材料在性能上最突出的优势是抗磨损。在等同条件下,复合材料的抗磨损性能比铜基耐磨合金高5-10倍。密度(比重)ρ=2.8g/cm^3,是铜(ρ=8.9)的三分之一。摩擦系数:在油润滑条件下,摩擦系数(摩擦副为中碳钢) 和铜合金相仿;膨胀系数:2.2×10^(-6)/℃,略大于铜基耐磨合金(2.0×0^(-6)/℃)。 (C/SiC)陶瓷基复合材料:具有高比强、高比模、耐高温、抗烧蚀、抗氧化和低密度等特点,其密度为2~2.5 g/cm3,仅是高温合金和铌合金的1/3~1/4,钨合金的1/9~1/10。碳纤维增韧碳化硅(C/SiC)的应用可覆盖瞬时寿命(数十秒~数百秒)、有限寿命(数十分钟~数十小时)和长寿命(数百小时~上千小时)3类服役环境的需求。用于瞬时寿命的固体火箭发动机,C/SiC的使用温度可达2 800~3 000 ℃;用于有限寿命的液体火箭发动机,C/SiC的使用温度可达2 000~2 200 ℃;用于长寿命航空发动机,C/SiC的使用温度为1 650℃。 EP/CF复合材料:材料特性主要取决于CF、EP及EP与CF之间的粘结特性。EP/CF 复合材料具有优异的性能,与钢相比,EP/CF复合材料的比强度为钢的4.8~7.2倍,比模量为钢的3.1~4.2倍,疲劳强度约为钢的2.5倍、铝的3.3倍,而且高温性能好,工作温度达400℃时其强度与模量基本保持不变。此外还具有密度和线膨胀系数小、耐腐蚀、抗蠕变、整体性好、抗分层、抗冲击等,在现有结构材料中,其比强度、比模量综合指标最高。在加工成型过程中EP/CF复合材料具有易大面积整体成型、成型稳定等独特的优点。 二、成型工艺对比 碳化钛增强铝基复合材料:原位自生法,成型工艺简单。 (C/SiC)陶瓷基复合材料:制造方法有反应烧结(RB),热压烧结(HP),前驱体浸渍热解(PIP),反应性熔体渗透(RMI)以及CVI,CVI-PIP,CVI-RMI和PIP-HP等。 EP/CF陶瓷基复合材料:成型方法多种多样,主要有:手糊成型、树脂传递成型、真空袋法成型、树脂膜熔浸成型、预浸料成型、低温固化预浸料成型、拉挤成型。 三、应用对比 碳化钛增强铝基复合材料:可以替代铜基耐磨合金作为机械、汽车等工业产品或设备中的轴瓦、衬套、汽车变速器同步环等零件的原材料,从而提高零件的使用寿命,低零件的成

金属基复合材料

金属基复合材料及其主要制备工艺简介 复合材料简介 本文介绍复合材料中的金属基复合材料的制备。复合材料是指采用物理或化学的方法,使两种或两种以上的材料在相态(如连续相:基体;不连续体:增强相)以性能相互独立的形式下共存于一体之中,以达到提高材料的某些性能,或互补其缺点,或获得新的性能(或功能)的一种新型材料。 与常规材料相比较,金属材料有优良的延展性和可加工性,但其强度相对低,耐热、耐磨、耐蚀性差;陶瓷材料的强度高、耐热、耐磨、耐蚀性好,但很脆,加工性能差,复合后利用两者的优势互补,提高性能。 复合材料按用途分为结构材料和功能材料;按复合材料各成分在材料集散情况,分为三类:分散强化型复合材料、层状复合材料、梯度复合材料;按基体材料类型分:金属基复合材料,聚合物基复合材料,陶瓷基复合材料;按增强原理分为弥散增强型复合材料、晶须增强型复合材料、纤维增强型复合材料。 金属基复合材料简介 复合材料中的金属基复合材料是以金属为基体,以高强度的第二相为增强体而制得的复合材料。其中,基体主要是由Al,Mg,Ti及其合金制成,增强体是有硼纤维,SiC纤维,高强度石墨纤

维,Al2O3 等制成。具有高强度、高模量、低膨胀系数,能耐300-500℃或更高的温度等优点。但造价高、密度大、制备工艺复杂,存在界面反应等缺点。其分类可以按照基体或增强体的不同分类。 金属基复合材料的制备工艺 接下来介绍重点部分,就是金属基复合材料的制备及加工。根据制备特点等,我们可以把金属基复合材料的制备方法分成以下四大类:(下面将一一介绍) 1)固态法:粉末冶金法、真空热压扩散结合、热等静压、模压成型、超塑性成型 / 扩散结合。 2)液态法:真空压铸、半固态铸造、无压渗透等。 3)喷射成型法:喷射共沉积、等离子喷涂成型。 4)原位生长法(原位复合法)。 第一类:固态法 下面介绍第一种方法,即真空热压扩散结合法,这种方法是在一定的温度和压力下,把表面新鲜清洁的相同或不相同的金属,通过表面原子的互相扩散而连接在一起因而,扩散结合也成为一种制造连续纤维增强金属基复合材料的传统工艺方法。 特点: 1)工艺相对复杂,工艺参数控制要求严格,纤维排布、叠合以 及封装手工操作多,成本高。 2)扩散结合是连续纤维增强并能按照铺层要求排布的惟一可行

金属基陶瓷复合材料制备技术研究发展与应用

·8· 材料导报网刊 2009年12月第4卷第4期 *973计划前期研究专项(2008CB617613) 付鹏:男,1981年生,硕士生,从事复合材料研究 金属基陶瓷复合材料制备技术研究进展与应用* 付 鹏,郝旭暖,高亚红,谷玉丹,陈焕铭 (宁夏大学物理电气信息工程学院,银川 750021) 摘要 综述了国内外在金属基陶瓷复合材料制备技术方面的最新研究进展与应用现状,展望了国内金属基陶瓷复合材料的未来发展。 关键词 金属基陶瓷复合材料 制备技术 应用 Development and Future Applications of Metal Matrix Composites Fabrication Technique FU Peng , HAO Xunuan, GAO Yahong, GU Y udan, CHEN Huanming (School of Physics & Electrical Information Engineering, Ningxia University, Yinchuan 750021) Abstract Recent development and future applications of metal matrix composites fabrication technique are reviewed and some prospects of the development in metal matrix composites at home are put forward. Key words metal-based ceramic composites, fabrication technique, applications 0 引言 现代高技术的发展对材料性能的要求日益提高,单一材料已很难满足对性能的综合要求,材料的复合化是材料发展的必然趋势之一。陶瓷的高强度、高硬度、高弹性模量以及热化学性稳定等优异性能是其主要特点,但陶瓷所固有的脆性限制着其应用范围及使用可靠性[1—3]。因此,改善陶瓷的室温韧性与断裂韧性,提高其在实际应用中的可靠性一直是现代陶瓷研究的热点。与陶瓷基复合材料相比,通常金属基复合材料兼有陶瓷的高强度、耐高温、抗氧化特性,又具有金属的塑性和抗冲击性能,应用范围更广,诸如摩擦磨损类材料、航空航天结构件、耐高温结构件、汽车构件、抗弹防护材料等。 1 金属基陶瓷复合材料的制备 金属基陶瓷复合材料是20世纪60年代末发展起来的,目前金属基陶瓷复合材料按增强体的形式可分为非连续体增强(如颗粒增强、短纤维与晶须增强)、连续纤维增强(如石墨纤维、碳化硅纤维、氧化铝纤维等)[4—6]。实际制备过程中除了要考虑基体金属与增强体陶瓷之间的物性参数匹配之外,液态金属与陶瓷间的浸润性能则往往限制了金属基陶瓷复合材料的品种。目前,金属基陶瓷复合材料的制备方法主要有以下几种。 1.1 粉末冶金法 粉末冶金法制备金属基陶瓷复合材料即把陶瓷增强体粉末与金属粉末充分混合均匀后进行冷压烧结、热压烧结或者热等静压,对于一些易于氧化的金属,烧结时通入惰性保护气体进行气氛烧结。颗粒增强、短纤维及晶须增强的金属基陶瓷复合材料通常采用此种方法,其主要优点是可以通过控制粉末颗粒的尺寸来实现相应的力学性能,而且,粉末冶金法制造机械零件是一种净终成型工艺,可以大量减少机加工量,节约原材料,但粉末冶金法的生产成本并不比熔炼法低[7]。 1.2 熔体搅拌法 熔体搅拌法是将制备好的陶瓷增强体颗粒或晶须逐步混合入机械或电磁搅拌的液态或半固态金属熔体中冷却形成坯锭的过程,制备过程对设备的要求较低,生产制备工艺相对简单。由于伴随搅拌过程,材料中容易形成气孔和夹杂而影响产品的质量,同时基体和增强体之间的密度差往往造成增强体分布不均匀的现象。熔体搅拌法制备的工件通常需要进一步的热处理和二次机加工来达到使用性能的要求[8]。 1.3 金属陶瓷共沉积法 在喷射沉积制备金属材料的基础上发展的金属陶瓷共沉积法是将液态金属通过氩气等惰性气体雾化成金属液滴,金属液滴在喷射途中与增强体陶瓷颗粒碰撞会合,共同沉积于水冷衬底上复合形成金属基陶瓷复合材料。由于金属液滴尺寸小,凝固冷却速率快,无宏观偏析等快速凝固材料的优越特性,抑制了界面的高温反应,材料微观组织均匀性高,但金属陶瓷共沉积法工艺优化条件复杂,容易出现不够密实的组织疏松等冶金缺陷[9,10]。 1.4 叠层复合法 叠层式金属基复合材料是先将不同金属板用扩散方法结合,然后用离子溅射或分子束外延将金属层/陶瓷层叠合成复合材料。这种复合材料性能好,已经少量应用于航空航天及军用设备上,如航天飞机中部的货舱桁架、卫星上的天线结构件、波导管、运输机货舱地板等,但叠层复合法工艺复杂,材料有明显的各向异性[11—13]。

陶瓷基复合材料

河南农业大学机电工程学院《非金属材料》课程论文 陶瓷基复合材料 姓名: 学号: 专业班级: 论文方向: 任课教师:

陶瓷基复合材料 摘要:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。 正文: 陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。 连续纤维补强陶瓷基复合材料(简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用。20世纪70年代初,J Aveston[2]在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。20多年来,世界各国特别是欧美以及日本等对纤维增强陶瓷基复合材料的制备工艺和增强理论进行了大量的研究,取得了许多重要的成果,有的已经达到实用化水平。如法国生产的“Cerasep”可作为“Rafale”战斗机的喷气发动机和“Hermes”航天飞机的部件和内燃机的部件[4];SiO2纤维增强SiO2复合材料已用作“哥伦比亚号”和“挑战者号”航天飞机的隔热瓦[5]。由于纤维增强

金属基复合材料

一、 1、复合材料的定义与分类:复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。按性能高低分为常用复合材料和先进复合材料。按用途可分为结构复合材料和功能复合材料。 2、金属基复合材料是以陶瓷(连续长纤维、短纤维、晶须及颗粒)为增强材料,金属(铝、镁、钛、镍、铁、铜等)为基体材料而制备的。 3、金属基复合材料按用途分类:结构复合材料、功能复合材料;按基体分类:铝、镍、钛基复合材料;按增强体分类:连续纤维增强金属基复合材料、非连续增强金属基复合材料(外加和内生)、层状复合材料。 4、内生增强的金属基复合材料具有如下特点:增强体是从金属基体中原位形核、长大的热力学稳定相,因此,增强体表面无污染,避免了与集体相容性不良的问题,且界面结合强度高;通过合理选择反应元素的类型、成分及其反应性,可有效地控制原位生成增强体的种类、大小、分布和数量;省去了增强体单独合成、处理和加入等工序,因此,其工艺简单,成本较低;从液态金属基体中原位形成增强体的工艺,可用铸造方法制备形状复杂、尺寸较大的近净成型构件;在保证材料具有较好的韧性和高温性能的同时,可较大幅度地提高材料的强度和弹性模量。 5、金属基复合材料特性:金属基复合材料的性能取决于所选金属或合金基体和增强体的特性、含量、分布等。通过优化组合可以获得既具有金属特性,又具有高比强度、高比模量、耐热、耐磨等综合性能。高比强度、高比模量;导热、导电性能;热膨胀系数小,尺寸稳定性好;良好的高温性能;耐磨性好;良好的疲劳性能和断裂韧度;不吸潮,不老化,气密性好。 二、 1、增强体的作用:增强体是金属基复合材料的重要组成部分,它起着提高金属基体的强度、模量、耐热性、耐磨性等性能的作用。 2、增强体选择:应具有良好的力学性能(杨氏模量);良好的物理性能(密度和热扩散系数);良好的化学稳定性;与金属基体具有良好的浸润性;成本。 3、增强体分类:按形态分纤维类增强体(连续长纤维和短纤维);颗粒类增强体(外加和内生);晶须类增强体(人工条件下细小单晶);其他增强体(高强度、高模量金属丝)。 4、碳纤维主要性能:强度高;模量高;密度小,比强度高;能耐超高温;耐低温性能好;耐酸性能好;热膨胀系数小,热导率达;防原子辐射,能使中子减速;导电性能好;轴向抗剪切模量较低,断后伸长率小,耐冲击差,并且后加工较为困难。 5、碳纤维主要原料:人造丝;聚丙烯腈纤维;沥青。 6、碳纤维制备工艺:拉丝(湿法、干法或熔融状态);牵伸(100~300℃);稳定(400℃加热氧化);碳化(1000℃~2000℃);石墨化(2000℃~3000℃)。 7、碳化硅纤维制备:化学气相沉积法;有机硅聚合物的熔融纺丝裂解转化法;活性炭纤维转化法;挤压法。 8、氧化铝纤维制备:淤浆法;溶胶-凝胶法;预聚和法;卜内门法;基体纤维浸渍溶液法。 9、晶须的分类与物理性质:金属晶须增强体和非金属晶须增强体。晶须是在受控条件下培殖生长的高纯度的纤细单晶体,其晶体结构近乎完整,不含有晶粒界、位错、空洞等晶体结构缺陷,具有异乎寻常的力学等物理性能。 三、 1、金属基复合材料基体的选择:基体金属选择首先是根据不同工作环境对金属基复合材料的使用性能要求,既要考虑金属基体本身的各种性能,还要考虑基体与增强体的配合及其相容性,达到基体与增强体最佳的复合和性能的发挥。原则:金属基复合材料的使用要求;金

陶瓷基复合材料与金属焊接研究现状

焊接技术第36卷第4期2007年8月 收稿日期:2007-01-15;修回日期:2006-06-15 基金项目:山东省优秀中青年基金资助项目(2006BS04004) 1引言 现代技术的发展,要求材料能在各种苟刻的环境下可靠地 工作。用粒子、晶须或纤维增韧增强的陶瓷基复合材料(ceramicmatrixcomposite,简称CMC)是目前备受重视的新型结构材料,具有高强度、高耐磨、抗氧化、耐腐蚀等优良性能,在航空航天、机械、汽车、冶金、化工、电子等方面具有广阔的应用前景。但陶瓷材料固有的硬度和脆性使其难以加工、难以制成大型或形状复杂的构件,因而在工程应用上受到了很大限制。解决其实用化的最好方法之一是将其与塑性及韧性高且抗温度冲击能力强的金属材料连接起来制成复合构件使用,充分发挥2种材料的性能优势,弥补各自的不足。 Al2O3,Zr2O,Si3N4,SiC等单相陶瓷与金属的连接技术已 有了较大进展,但CMC是由多种不同物质组合而成的多相材料,在连接CMC与金属时,除考虑单相陶瓷与金属的连接问题,还应同时考虑连接方法与材料对基体材料和加强材料的适应性,还应考虑避免加强相与基体之间的不利反应以及不能造成加强相(如纤维)的氧化与性能的降低等[1],因此复合陶瓷与金属的连接更加困难。本文在综述单相陶瓷/金属焊接现状的基础上对陶瓷基复合材料/金属的焊接现状进行了分析。 2陶瓷/金属的焊接方法 陶瓷/金属连接研究发展到今天,已经有很多连接方法, 主要有:①粘合剂粘接;②机械连接;③自蔓延高温合成连接;④熔焊;⑤钎焊;⑥扩散焊等。 2.1钎焊 钎焊是陶瓷/金属连接最常用的方法之一,其原理是利用 陶瓷与金属母材之间的钎料在高温下熔化,其中的活性组元与 陶瓷原料发生化学反应,形成稳定的反应梯度层使2种材料结合在一起。陶瓷/金属钎焊一般分为间接钎焊和直接钎焊。 间接钎焊(也称两步法)是先在陶瓷表面进行金属化,再用普通钎料进行钎焊。进行陶瓷预金属化的方法最常用的是 Mo-Mn法,此外还有物理气相沉淀(PVD)、化学气相沉积(CVD)、热喷涂法以及离子注入法等。间接钎焊连接工艺复杂, 其应用受到了一定限制。 直接钎焊法(也称一步法)又叫活性金属钎焊法,是在钎料中加入活性元素,如过渡金属Ti,Zr,Hf,Nb,Ta等,通过化学反应使陶瓷表面发生分解,形成反应层。反应层主要由金属与陶瓷的化合物组成,这些产物大部分情况下表现出与金属相同的结构,因此可以被熔化的金属润湿。直接钎焊法可使陶瓷构件的制造工艺变得简单,成为近年来国内外研究的热门 [2 ̄4] 。直接钎焊陶瓷的关键是使用活性钎料,在钎料能够润湿 陶瓷的前提下,还要考虑高温钎焊时陶瓷与金属热膨胀差异会引起裂纹。在陶瓷和金属之间插入中间缓冲层可有效降低残余应力,提高接头强度。直接钎焊的局限性在于接头的高温强度较低及大面积钎焊时钎料的铺展问题。 2.2扩散焊 扩散焊是陶瓷/金属连接最常用的另一种方法,是指在一 定的温度和压力下,被连接表面相互靠近、相互接触,通过使局部发生塑性变形,或通过被连接表面产生的瞬态液相而扩大被连接表面的物理接触,然后结合层原子间相互扩散而形成整体可靠连接的过程。其显著特点是接头质量稳定、连接强度高、接头高温性能和耐腐蚀性能好。根据被焊材料的结合及加压方式, 扩散焊可分为固相扩散焊和瞬间液相扩散焊 (Transientliquidphasebonding,简称TLPB)等。 固相扩散焊中,连接温度、压力、时间及焊接表面状态是 陶瓷基复合材料/金属焊接研究现状 沈孝芹1,2,李亚江1,王 娟1,黄万群1 (1.山东大学材料液态结构及其遗传性教育部重点实验室,山东济南250061; 2.山东建筑大学机电学院,山东济南 250101) 摘要:由于用粒子、晶须或纤维增韧的陶瓷基复合材料具有良好的耐磨和耐腐蚀性,是目前备受重视的新型结构材料,用焊接的方法将其与金属焊接制成复合构件可推广应用。介绍了陶瓷/金属常用焊接方法的特点及连接机理,着重讨论了钎焊和扩散焊方法,并对陶瓷基复合材料/金属的焊接研究现状进行了分析。关键词:陶瓷基复合材料;金属;焊接中图分类号:TG44;TB333 文献标识码:A 文章编号:1002-025X(2007)04-0008-04 ?专题综述? 8

陶瓷基复合材料的简介

陶瓷基复合材料的简介 蔡炜庭 (南通大学机械工程学院,南通) 概述:陶瓷基复合材料主要以高性能陶瓷为基体.通过加入颗粒、晶须、连续 纤维和层状材料等增强体而形成的复合材料。 关键词:陶瓷基复合材料制备性能基体 Introduction to ceramic matrix composites Cai wei ting (School of Mechanical Engineering,Nantong University,Nantong) Abstract:Cera m ic matrix composite materials primarily to high-performance ceramic substrate. By joining the particles, whiskers, and layered materials such as continuous fiber reinforcement to form composite materials. Key words:ceramic matrix composite preparation performance matrix 前言:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷 基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。 1陶瓷基复合材料性能 近年来人们开始对陶瓷基复合材料进行研究.以期获得一种有强度、韧性 耐高温的陶瓷基材料。在这种复合材料陶瓷应该具有以下一些性能: (1)陶瓷能够很好地渗透进纤维点须和颗粒增强材料; (2)同增强材料之间形成较强的结合力;

陶瓷基复合材料的研究现状与发展前景

陶瓷基复合材料的研究现状与发展前景 课程名称:复合材料 学生姓名:费勇 学号:201010402209 班级:功能材料 日期:2013年12月

陶瓷基复合材料的研究现状与发展前景 摘要:本文介绍了三种陶瓷基复合材料,分别从氧化物陶瓷基复合材料的发展历史,制备工艺,性能与应用,存在的问题,未来展望等几方面综述了国内外氧化物陶瓷基复合材料的研究现状。介绍了碳化硅陶瓷基复合材料的应用和发展现状,阐述了CVI-CMC-SiC制造技术在我国的研究进展,开展了CVI-CMC-SiC的性能与微结构特性的研究和CVI过程控制及其对性能影响的研究,研制了多种CMC-SiC和其构件。阐述了用燃烧法合成氮化物陶瓷基复合材料的生产工艺。 关键词:发展历史、生产工艺、性能、应用、CVI技术、燃烧合成 1.发展历史 1.1概述 陶瓷基复合材料(Ceramicmatrixcomposite,CMC)是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷(Multiphasecompositeceramic)或复相陶瓷(Diphaseceramic)[1]。陶瓷基复合材料是20世纪80年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。文献[2]报道,陶瓷基复合材料正是人们预计在21世纪中可替代金属及其合金的发动机热端结构的首选材料。鉴于此,许多国家都在积极开展陶瓷基复合材料的研究,大大拓宽了其应用领域,并相继研究出各种制备新技术[3] 1.2 分类 陶瓷基体材料主要以结晶和非结晶两种形态的化合物存在,按照组成化合物的元素不同,又可以分为氧化物陶瓷、碳化物陶瓷、氮化物陶瓷等。此外,还有一些会以混合氧化物的形态存在。 1.2.1氧化物陶瓷基体 (1)氧化铝陶瓷基体 以氧化铝为主要成分的陶瓷称为氧化铝陶瓷,氧化铝仅有一种热动力学稳定的相态。氧化铝陶瓷包括高纯氧化铝瓷,99氧化铝陶瓷,95氧化铝陶瓷,85氧化铝陶瓷等 (2)氧化锆陶瓷基体 以氧化锆为主要成分的陶瓷称为氧化锆陶瓷。氧化锆密度 5.6-5.9g/cm3,熔点2175℃。稳定的氧化锆陶瓷的比热容和导热系数小,韧性好,化学稳定性良好.高温时具有抗酸性和抗碱性。 1.2.2氮化物陶瓷基体 (1)氮化硅陶瓷基体 以氮化硅为主要成分的陶瓷称氮化硅陶瓷,氮化硅陶瓷有两种形态。此外氮

相关文档