文档视界 最新最全的文档下载
当前位置:文档视界 › 粉末冶金粉体常见的制备方法及综述1

粉末冶金粉体常见的制备方法及综述1

粉末冶金粉体常见的制备方法及综述1
粉末冶金粉体常见的制备方法及综述1

粉末冶金粉体常见的制备方法及综述Powder metallurgy powder and preparation method of common

摘要:粉末冶金方法起源于公元前三千多年。制造铁的第一个方法实质上采用的就是粉末冶金方法。粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。目前,我国粉末冶金行业整体技术水平低下、工艺装备落后,与国外先进技术水平相比存在较大差距。本文介绍了粉末冶金粉体的制备方法,包括物理方法和化学方法,物理法包括机械粉碎法,化学法包括气相沉积法、雾化法和电解法,气相沉积法、雾化法和电解法目前在工业上已经得到了广泛的应用。

关键词:粉末冶金;粉体;气相沉积法,雾化法,电解法Abstract: the method of powder metallurgy originated in three thousand years . Manufacture of iron for the first method is essentially by powder metallurgy method. Powder metallurgy products, a wide range of applications, from the ordinary machinery manufacturing of precision instrument; from the hardware to the large machinery; from electronics to motor manufacturing; from the civilian industry to the military industry; from the general technology to sophisticated high technology, can see the figure of powder metallurgy

process. At present, our country metallurgy industry overall technology level is low, the backward technology and equipment, with foreign advanced level of technology compared to exist bigger difference. This paper introduces the powder metallurgy powder preparation method, including physical methods and chemical methods, physical methods including mechanical crushing method, chemical method includes a vapor deposition method, spray method and the electrolytic method, vapor deposition, spray method and the electrolytic method currently in the industry has been widely used.

Key words: powder metallurgy; powder; vapor deposition method, spraying method, electrolytic method

一、引言

粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。由于粉末冶金技术的优点,它已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。

二、粉体的制备及综述

粉末冶金的生产工艺是从制取原材料——粉末开始的。这些粉末可以纯金属,也可以是非金属,还可以是化合物。制取粉末的方法有很多,他的选择主要取决于该材料的特殊性能及制取方法的成本。

粉体的的制备方法如下:

(一)物理法(机械粉碎法)

机械粉碎法是一种常见的固相制粉工艺。尤其是制备粒度在微米级以上的陶瓷粉体时,用机械粉碎法方便快捷,成本也比较低廉。

1、常用的粉碎法有:

(1)辊碾式

将单根或多根研棒或环等装入磨腔内,借助某种特殊力使磨腔内的棒或环作旋转运动,棒与棒之间或环与环之间以及它们与磨腔内壁之间产生的碰撞、挤压、研磨、剪切等作用,使它们之间的物料被破碎。

(2)高速旋转式

主要是利用高速旋转的部件产生的强冲击力、剪切力摩擦而使物料被粉碎。

高速旋转粉碎机由于结构及作用力的方式不同又分为:销棒粉碎机(针状磨)、摆式粉碎机、轴流式粉碎机(笼式磨)、筛分磨、离心分级磨等。

(3)球磨式

近期在球磨机的基础上,开发出了多种形式的广义球磨机,如振动球磨、离心球磨、行星磨、离心滚动磨等。

(4)介质搅拌式

是依靠磨腔中机械搅拌棒、齿或片带动研磨介质运动,利用研磨介质之间的挤压力和剪切力使物料粉碎。它实际上是一种内部有动件的球磨机,靠内部动件带动磨介运动来对物料进行粉碎。搅拌磨早期主要用于染料、油漆、涂料行业浆料分散与混合。后来经多次改进,逐步发展成为一种新型的高效超细粉碎机。有时称之为介质磨,也有人称之为“剥片机”。

(5)气流式粉碎机

是在高速气流作用下,物料通过本身颗粒之间的撞击,气流对物料的剪切作用以及物料与其它部件的冲击、摩擦、剪切而使物料粉碎。先后有:扁平式(圆盘式)气流磨、循环式气流磨、对撞式气流磨、流化床气流磨、靶式气流磨、超音速气流磨等。广泛应用于化工、材料、冶金、非矿、农药、电子、食品、生物工程、医药、军工、航天、航空等领域。

2、新近开发的粉碎法有:液流式、射流粉碎机、超低温、超临界、超声粉碎机等。

构筑法是通过物质的物理状态变化来生成粉体。由小至大(纳米级)。

(二)化学法

包括气相沉积法、雾化法和电解法等,其中,气相沉积法、雾化法和电解法目前在工业上已经得到了广泛的应用。

1、气相法

气相法是直接利用气体或者通过各种手段将物质(固相或液相)变成气体,使之在气体状态下发生物理变化或化学变化,最后在冷却过程中凝聚长大形成纳米微粒的方法。气相法又大致可分为气体中蒸发法、化学气相反应法和溅射法。

(1)气体中蒸发法(蒸发冷凝法)

主要是将待蒸发物质(金属、合金或陶瓷)装入一密封容器中,并通过泵将该容器抽至100Pa高真空(真空蒸发室),然后充入低压(约为2KPa)惰性气体(He,Ne,Ar。注:纯度约为99.9996%),然后加热(通过电阻、等离子体、电子束、激光、高频感应等加热源)蒸发源,使物质蒸发成雾状原子(气化或形成等离子体),与惰性原子碰撞而失去能量,然后骤冷,随惰性气体流冷凝到冷凝器上。将聚集的纳米尺度粒子刮下、收集,即得到纳米粉体。用此粉体最后在较高压力下(1Gpa-10GPa)压实,即得到纳米材料。

(2)气相化学反应法(也叫化学气相沉积法CVD Chemical Vapor Deposition)

利用金属化合物的蒸气,通过化学反应生成所需要的化合物,在保护气体环境下快速冷凝,从而制备各类物质的纳米微粒。

第一:挥发性金属卤化物和氢化物;

第二:有机金属化合物等蒸气为原料,进行气相热分解和其它化学反应来合成细粉。它是合成高熔点无机化合物超细粉最引人注目的方法。

优点:颗粒均匀、纯度高、粒度小、分散性好、化学反应活性高、工艺可控和过程连续等。

适合于制备各类金属、金属化合物以及非金属化合物纳米微粒。如各种金属、氮化物、碳化物、硼化物等。

按体系反应类型:分为气相分解和气相合成。

①单一化合物的热分解(气相分解法)

对待分解的化合物或经前期预处理的中间化合物进行加热、蒸发(物理变化)、分解(化学变化),得到目标物质的纳米微粒。热分解法要求必须具备目标纳米微粒物质的全部所需元素的适

当化合物。

②两种以上物质之间的气相反应(气相合成法)

利用两种以上物质之间的气相化学反应,在高温下合成出相应的化合物,再经过快速冷凝,制备各类物质的微粒。用该法可以进行多种微粒的合成,具有灵活性和互换性。

2雾化法

自从第二次世界大战期间开始生产雾化铁粉以来,雾化工艺获得了不断地发展,并日益完善。各种雾化高质量粉末与新的致密技术相结合,便出现许多粉末冶金新产品,其性能往往优于相应的铸锻产品。

雾化法是将液体金属或合金直接破碎成为细小的液滴,其大小一般小于150μm,而成为粉末。雾化法可以用来制取多种金属粉末,也可制取各种预合金粉末。实际上,任何能形成液体的材料都可以进行雾化。

用于制造大颗粒粉末的工艺称为“制粒”。它是让熔融金属通过小孔或筛网自动地注入空气或水中,冷凝后便得到金属粉末。这种方法制得的粉末粒度较粗,一般为0.5~1mm,它适于制取低熔点金属粉末。

借助高压水流或气流的冲击来破碎液流,称为水雾化或气雾化,也称二流雾化(图6);用离心力破碎液流称为离心雾化(图5);在真空中雾化叫做真空雾化(图7);利用超声波能量来实现液流的破碎称作超声波雾化(图8)。

图5离心雾化示意图

图6水雾化和气雾化示意图(a)水雾化;(b)气雾化

图7真空(溶气)雾化示意图

图8超声雾化示意图

3电解法

在一定条件下,粉末可以在电解槽的阴极上沉积出来。一般说来,电解法生产的粉末成本较高,因此在粉末生产中所占的比重是较小的。电解粉末具有吸引力的原因是它的纯度高。电解法制取粉末主要采用水溶液电解和熔盐电解。

水溶液电解可以生产铜、铁、镍、银、锡、铅、铬、锰等金属粉末;在一定条件下也可以使几种元素同时沉积而制得铁-镍、铁-铬等合金粉末。图1-14为电解过程示意图。

图1-14 电解过程示意图

三、结束语

目前,工业中用得最多的是通过粉碎法,应用最多的粉体是

通过粉碎法、化学法产生的微米级和亚微米级粉体,纳米粉体的生产及使用量相对较少。随着技术的进步,粉末冶金材料和制

品的今后发展方向1、有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展。2、制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金。3、用增强致密化过程来制造一般含有混合相组成的特殊合金。4、制造非均匀材料、非晶态、微晶或者亚稳合金。5、加工独特的和非一般形态或成分的复合零部件。

参考文献

(1)胡黎明,等.超细粉末制备技术进展[J].化学通报,1996 (2)刘维平,邱定蕃,卢惠民.纳米材料制备方法及应用领域[J].化工矿物与加工,2003

(3)李亮.纳米粉体及其制备方法的浅析[J].科学论坛工程科学.2007

(4)材料导报 1995年第二期

(5)徐凌志吴小丽吕文林《机械科学与技术》2001 第3

期- 万方数据

(6)郁建明姜建国《粉末冶金工业》

镁铝尖晶石粉体的制备方法

【摘 要】:综述了目前常用的制备镁铝尖晶石粉体的各种方法的工艺过程、特点及其产物的性能特征。经分析指出纯度和粒度是粉体最重要的两个性能指标;降低合成温度、简化工艺过程是今后制备技术发展的趋势。金属醇盐可能成为获得高纯度产物最有应用前景的前驱物;水热处理、溶剂蒸发、超临界干燥等物理手段是解决粒度最有效的途径。 【关键词】:耐火材料,镁铝尖晶石,粉体,制备方法 引 言 镁铝尖晶石(Magnesium Aluminium Spinel,以下简称MAS)材料是一种熔点高、热膨胀系数小、热导率低、抗热震性好、抗碱侵蚀能力强的材料[1],主要应用于钢包内衬、平炉炉顶、水泥回转窑烧成带衬砖。MAS单晶体是一种高熔点、高硬度的晶体材料。在10GHz以上的微波段上,MAS单晶的声衰减比蓝宝石或石英低得多,可作为介质制作微波声体波器件[2]。MAS还具有优良的电绝缘性,且与Si的匹配性能好,其线膨胀系数与Si相近,因而其外延Si形成膜的形变小,是一种重要的集成电路衬底材料[3]。 近年来,制备MAS粉体的方法受到人们的广泛关注,并在原有制备工艺基础上,涌现出许多新的制备技术。本文拟总结近年来国内外对获取高性能MAS体制备方法,以期找到解决粉体的纯度、粒度、化学均匀性等问题的途径,从而在获取高性能粉体,发挥其优越性能。 1 固相法 1.1传统固相法 固相法是固体与固体之间发生化学反应生成新的固体物质的反应过程,其中反应温度高于600℃称为高温 固相反应。Lepkova D[4]等研究了MgO和Al 2O 3 的固 相反应中,添加剂对尖晶石形成温度和转化率的影响。 将α-Al 2O 3 和Mg(HCO 3 ) 2 分解后的MgO及添加剂均 匀混合后,在一定的温度下反应制备尖晶石粉,添加剂 为B 2O 3 和TiO 2 ,或B 2 O 3 和氟化物(LiF,CaF 2 ,ZnF 2 , BaF 2 )的混合物。尖晶石合成转化率在85%~95%之间, 加入B 2 O 3 和TiO 2 复合添加剂时,尖晶石粉的生成量最大。 传统固相法无疑是最简单、最方便的合成尖晶石的工艺, 存在的显著缺点是合成温度高。而添加剂又会影响产物 的纯度,无法满足高技术领域的要求。 1.2凝胶固相法 凝胶固相法是将初始原料同有机单体、交联剂、引 发剂等混合形成凝胶,干燥后经焙烧制备粉体。粉体具 有颗粒细小均匀、纯度高、分散性好等优点。仝建峰[5] 等以Mg(OH) 2 ·4MgCO 3 ·6H 2 O和Al 2 O 3 按n(Mg)∶ n(Al)=1∶2进行混合,有机单体丙烯酰胺(C 3 H 5 NO)为 凝胶,N,N′-亚甲基双丙烯酰胺为交联剂,过硫酸铵 (NH 2 ) 2 SO 6 水溶液为引发剂,4-甲基乙二胺(C 6 H 16 N 2 ) 为催化剂,选用JA-281试剂为分散剂,用NH 3 ·H 2 O 调节pH值。将干凝胶在1250℃左右保温3h,便可得到 平均粒径为0.5μm的球形MgAl 2 O 4 微粉。王修慧[6]等 先以异丙醇水溶液将高纯MgO粉体分散成浆体,再将异 丙醇铝水解得到凝胶,然后按n(Mg)∶n(Al)=1∶2配 料球磨混合24h,干燥后进行焙烧,800℃即开始出现尖 晶石相,1200℃时形成了完善的MAS相结构,最终得 到纯度高达99.99%MAS粉体。之所以能够降低合成温 度,是原因反应物之一的AlOOH凝胶替代Al 2 O 3 ,活性 高,粒度细,混合过程中可达到高度的均匀性;在加热 至500℃~600℃范围内会生成高活性Al 2 O 3 。此法解决 了产物的纯度问题,可以应用于提拉法生长尖晶石单晶 材料;但其缺点是粒度偏粗大,不适于透明多晶体的制备。 2 沉淀法 2.1 均匀沉淀法 均匀沉淀法是利用某一化学反应,将溶液中的构 晶离子从溶液中缓慢、均匀地释放出来,与溶液中的 Mg2+和Al3+生成沉淀,然后再经干燥、焙烧制得粉 体。Hokazono S[7]等采用2种溶液体系来制备MAS粉 体:一是Al(NO 3 ) 3 、Mg(NO 3 ) 2 、尿素水溶液体系;二 是Al 2 (SO 4 ) 3 、MgSO 4 、尿素水溶液体系。按n(Mg)∶ n(Al)=1∶2进行配料;其中,C 尿素 =1.8mol·L-1, C Al 3+=0.1mol·L-1,C Mg 2+= 0.08mol·L-1,分别用 HNO 3 、H 2 SO 4 调至pH值为2,在90℃水浴分别加热 22.5h和38h,生成的沉淀经离心分离后于100℃干燥 24h,在800℃~1000℃焙烧,得到比表面积为25~ 66m2·g-1的MAS粉体。硝酸盐体系制备的前驱物含 镁铝尖晶石粉体的制备方法 王修慧1,2,王程民2,司 伟2,李 刚2,曹冬鸽2,翟玉春1 (1东北大学材料与冶金学院, 沈阳 110006; 2大连交通大学材料科学与工程学院, 大连 116028) 收稿日期:2008-1-24 基金项目:国家自然科学基金资助项目,编号:50104003 作者简介:王修慧(1964-),男,博士研究生,副教授; 从事金属醇盐、高纯氧化物粉体制备研究。 E-mail:dl_wangxh@https://www.docsj.com/doc/172453721.html, 文章编号:1001-9642(2008)07-0003-04

粉末冶金原理_考研复习纲要

课程名称:粉末冶金学 Powder Metallurgy Science 第一章导论 1粉末冶金技术的发展史History of powder metallurgy 粉末冶金是采用金属粉末(或非金属粉末混合物)为原料,经成形和烧结操作制造金属材料、复合材料及其零部件的加工方法。 粉末冶金既是一项新型材料加工技术,又是一项古老的技术。 .早在五千年前就出现了粉末冶金技术雏形,古埃及人用此法制造铁器件; .1700年前,印度人采用类似方法制造了重达的“DELI 柱”(含硅Fe合金,耐蚀性好)。 .19世纪初,由于化学实验用铂(如坩埚)的需要,俄罗斯人、英国人采用粉末压制、烧结和热锻的方法制造致密铂,成为现代粉末冶金技术的基础。 .20世纪初,现代粉末冶金的发展起因于爱迪生的长寿命白炽灯丝的需要。钨灯丝的生产标志着粉末冶金技术的迅速发展。 .1923年硬质合金的出现导致机加工的革命。 .20世纪30年代铜基含油轴承的制造成功,并在汽车、纺织、航空、食品等工业部门的广泛应用。随后,铁基粉末冶金零部件的生产,发挥了粉末冶金以低的制造成本生产高性能零部件的技术优点。 .20世纪40年代,二战期间,促使人们开发研制高级的新材料(高温材料),如金属陶瓷、弥散强化合金作为飞机发动机的关键零部件。 .战后,迫使人们开发研制更高性能的新材料,如粉末高速钢、粉末超合金、高强度铁基粉末冶金零部件(热锻)。大大扩大了粉末冶金零部件及其材料的应用领域。 .粉末冶金在新材料的研制开发过程中发挥其独特的技术优势。 2粉末冶金工艺 粉末冶金技术的大致工艺过程如下:

↓ 成形(模压、CIP、粉浆浇注、轧制、挤压、温压、注射成形等) ↓ 烧结(加压烧结、热压、HIP等) ↓ —后续处理 Typical Processing flowchart for Powder Metallurgy Technique 3粉末冶金技术的特点 .低的生产成本: 能耗小,生产率高,材料利用率高,设备投资少。 ↑↑↑ 工艺流程短和加工温度低加工工序少少切削、无切削 .材料成分设计灵活、微观结构可控(由工艺特征决定): 能制造普通熔练法不可能生产的材料,如W-Cu、SnO 2 -Ag、WC-Co、Cu-石墨、金 属陶瓷(TiC-NiCr,Al 2O 3 -Ni或Cu,TiB 2 -Cu等)、弥散强化材料(Al 2 O 3 -Cu Al 2 O 3 -Al, Y 2O 3 -Fe基合金)、粉末超合金(非相图成分)、难熔金属及其合金如钨钼、含油 轴承、过滤材料等。 .高的性能: 粉末高速钢、粉末超合金因无成分偏析和稳定的组织(细的晶粒)而性能优于熔炼法制备的合金;纳米材料,金属-陶瓷梯度复合材料(梯度硬质合金)。 主要不足之处: .由于受设备容量的限制,传统粉末冶金工艺制造的粉末冶金零部件的尺寸较其它加工方法(铸造,机加工等)小; .材料韧性不高; .零部件的形状复杂程度和综合力学性能有限等。

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

综述:硬质合金

硬质合金的研究和应用 The studies and applications of cemented carbide 作者:何梓秋机械类创新实验班 3112010441 内容摘要:硬质合金由于具有高硬度,高抗压强度,高热硬性以及高耐磨性,高耐腐蚀性,常用于制造切削工具和耐磨零部件。广泛应用于军工、航天航空、机械加工、冶金等领域。本文将通过新型硬质合金的研发和硬质合金制造工艺的进步两条路径对硬质合金的研究进行介绍。再结合各种硬质合金的特性,介绍其具体的应用。 Abstract:Because cemented carbide has high hardness,high compressive strength,high abrasive resistance and high corrosion resistance,it is always used for manufacture cutting tools and wear-resistant parts.It provides widely applications in war industry,aerospace,machine work,metallurgy and so on.This thesis will describe the studies of cemented carbide on two ways,the inventions of new-type cemented carbide and the progress of manufacturing process for cemented carbide.And then this thesis will introduce the specific applications combining the characteristics of every type of cemented carbide. 关键词:硬质合金,研究,应用,金属碳化物,粉末冶金 Keywords:cemented carbide,studies,applications,metal carbide,powder metallurgy 关于硬质合金的基础知识 一.硬质合金的起源 早在1923年,德国科学家施勒特尔为了提高拉丝模质量,往碳化钨粉末中加进10%~20%的钴做粘结剂,发明了世界上人工制成的第一种硬质合金。 虽然用这种硬质合金制造成的刀具进行切割钢材很容易产生刀刃磨损甚至断裂,但是硬质合金因此得以面世,为至今几乎长达一个世纪的硬质合金研究、发展及应用开辟了起点。 二.硬质合金的成分、分类和牌号 硬质合金是一种金属陶瓷,它的组成是:基体为金属碳化物(如WC、TiC、TaC等),Co、Ni、Mo等金属粉末则充当粘结剂。于是硬质合金具是有金属性质的粉末冶金材料,它具有高硬度,高抗压强度,高热硬性以及高耐磨性,高耐腐蚀性,常用于制造切削工具、刀具、钴具和耐磨零部件。它的分类及牌号如下: 1.钨钴类硬质合金 主要成分是碳化钨(WC)和粘结剂钴(Co)。牌号由“YG”(“硬、钴”两字汉语拼音字首)和平均含钴量(质量分数X 100)组成。例如YG6,表示平均ωCo=6%,余量为碳化钨的钨钴类硬质合金。

粉末冶金粉体常见的制备方法及综述1

粉末冶金粉体常见的制备方法及综述Powder metallurgy powder and preparation method of common 摘要:粉末冶金方法起源于公元前三千多年。制造铁的第一个方法实质上采用的就是粉末冶金方法。粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。目前,我国粉末冶金行业整体技术水平低下、工艺装备落后,与国外先进技术水平相比存在较大差距。本文介绍了粉末冶金粉体的制备方法,包括物理方法和化学方法,物理法包括机械粉碎法,化学法包括气相沉积法、雾化法和电解法,气相沉积法、雾化法和电解法目前在工业上已经得到了广泛的应用。 关键词:粉末冶金;粉体;气相沉积法,雾化法,电解法Abstract: the method of powder metallurgy originated in three thousand years . Manufacture of iron for the first method is essentially by powder metallurgy method. Powder metallurgy products, a wide range of applications, from the ordinary machinery manufacturing of precision instrument; from the hardware to the large machinery; from electronics to motor manufacturing; from the civilian industry to the military industry; from the general technology to sophisticated high technology, can see the figure of powder metallurgy

粉末冶金原理

1.粉末冶金:制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料, 经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。 2.二次颗粒:单颗粒以某种方式聚集就构成二次颗粒 3.松装密度:粉末在规定条件下自然充填容器时,单位体积内自由松装粉末体的质量 g/cm3。 4.孔隙率:孔隙体积与粉末体的表观体积之比的百分数称为孔隙度(θ)。 5.中位径:将各种粒级粉末个数或百分数逐一相加累积并做图,可以得到累积分布曲线, 分布曲线对应50%处称为中位径 弹性后效:在压制过程中,粉末由于受力而发生弹性变形和塑性变形,压坯内存在着很大的内应力,当外力停止作用后,压坯便出现膨胀现象 6.合批:将成分相同而粒度不同的粉末进行混合,称为合批 7.烧结机构:研究烧结过程中各种可能的物质迁移方式及速率。 8.热压:热压又称为加压烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常 烧结温度或更低一些的温度,经过较短时间烧结成致密而均匀的制品。 9.活化烧结:是指采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结 体的密度和其它性能得到提高的方法。 10.单颗粒:粉末中能分开并独立存在的最小实体称为单颗粒。 11.振实密度:粉末装于振动容器,规定条件下,经振动敲打后测得的粉末密度。 12.粒度:以mm或μm的表示的颗粒的大小称颗粒直径,简称粒径或粒度。 13.混合:将两种或两种以上不同成分的粉末混合均匀。分为机械法和化学法。 14.搭桥:粉末在松装堆集时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成 拱桥孔洞的现象。 15.快速冷凝技术的特点:(1)急冷可大幅度地减小合金成分的偏析;(2)急冷可增加合 金的固溶能力;(3)急冷可消除相偏聚和形成非平衡相;(4)某些有害相可能由于急冷而受到抑制甚至消除;(5)由于晶粒细化达微晶程度,在适当应变速度下可能出现超塑性等。 16.粉末颗粒的聚集形式:聚合体、团粒、絮凝体;区别:通过聚集方式得到的二次颗 粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华力粘接而成的,其结合强度不大,用研磨。擦碎等方法在液体介质中容易分散成更小的团粒或二次颗粒或单颗粒;絮凝体则是在粉磨悬浊液中,由单颗粒或二次颗粒结合成的更松软的聚集颗粒。 17.减少因摩擦出现的压力损失的措施:1)添加润滑剂、2)提高模具光洁度和硬度、3) 改进成形方式,如采用双面压制等。 18.粉末冶金技术的优点:1. 能生产用普通熔炼方法无法生产的具有特殊性能的材料:① 能控制制品的孔隙度(多孔材料、多孔含油轴承等);②能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材料(钨-铜假合金型的电触头材料、金属和非金属组成的摩擦材料等);③能生产各种复合材料。 2.粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越:①高合金粉末冶金材料的性能比熔铸法生产的好(粉末高速钢可避免成分的偏析);②生产难熔金属材料或制品,一般要依靠粉末冶金法(钨、钼、铌等难熔金属)。缺点:1、粉末成本高;2、制品的大小和形状受到一定限制;3、烧结零件的韧性较差。 19.粉末料预处理的方式及作用:1、退火:还原氧化物,消除杂质,提高纯度;消除加工 硬化,稳定粉末的晶体结构;钝化金属,防止自燃。2、混合:使不同成分的粉末混合均匀,便于压制成形和后续处理。3、筛分:筛分的目的在于把颗粒大小不匀的原始粉

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

特种陶瓷的制备工艺综述及其发展趋势

特种陶瓷的制备工艺综述及其发展前景 摘要:本文主要介绍了粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法以及未来的发展趋势。目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些面临急需解决的问题。当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。压力成形不能满足形状复杂性和密度均匀性的要求。多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;粉末冶金;陶瓷材料 引言 陶瓷分为普通陶瓷和特种陶瓷两大类,特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。因此研究特种陶瓷制备技术至关重要。 1 陶瓷原料的制备方法 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。 由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著

超细粉体材料的制备技术现状及应用形势

文章编号:1008-7524(2005)03-0034-03 超细粉体材料的制备技术现状及应用形势* 房永广1,梁志诚2,彭会清3 (1.江西理工大学环建学院,江西赣州341000;2.化工部连云港设计研究院, 江苏连云港222004;3.武汉理工大学资环学院,湖北武汉430070) 摘要:综述了国内超细粉体材料的制备工艺、设备现状及进展,并介绍了超细粉体材料在电子信息、医药、农药、模具、军事、化工等方面的应用。 关键词:超细粉体;制备;综述 中图分类号:TD921+.4文献标识码:A 0引言 从上世纪50年代日本首先进行超细材料的研究以后,到上世纪80~90年代世界各国都投入了大量的人力、物力进行研究。我国早在上世纪60年代就对非金属矿物超细粉体技术、装备进行了研究,对于超细粉体材料的系统的研究则开始于上世纪80年代后期。 超细粉体从广义上讲是从微米级到纳米级的一系列超细材料,在狭义上讲是从微米级、亚微米级到100纳米以上的一系列超细材料。材料被破碎成超细粉体后由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于电子信息、医药、农药、军事、化工、轻工、环保、模具等领域。可以预见超细粉体材料将是21世纪重要的基础材料。1超细粉体的制备设备 超细粉体的制备方法有很多,但从其制备的原理上分主要有两种:一种是化学合成法,一种是物理粉碎法。化学合成法是通过化学反应或物相转换,由离子、原子、分子经过晶核形成和晶体长大而制备得到粉体,由于生产工艺复杂、成本高、而产量却不高,所以化学合成法在制备超细粉体方面应用不广。物理粉碎法是通过机械力的作用,使物料粉碎。物理粉碎法相对于化学合成法,成本较低,工艺相对简单,产量大。因此,目前制备超细粉体材料的主要方法为物理粉碎法。常用的超细粉碎设备有气流粉碎机、机械冲击粉碎机、振动磨、搅拌磨、胶体磨以及球磨机等。 1.1气流粉碎机 自从1892年美国人戈麦斯第一次提出挡板式气流粉碎机的模型并申请专利以来,经过百余年的发展,目前气流磨已经发展成熟,成为国内外用于超细粉体加工的主要设备。我国研制气流粉碎机开始于上世纪80年代初。目前气流粉碎机可分为圆盘式、对喷式、靶式、循环式、流化床式等。 气流粉碎机又称流能磨或喷射磨,由高压气体通过喷射嘴产生的喷射气流产生的巨大动能,使颗粒相互碰撞、冲击、摩擦、剪切而实现超细粉碎。粉碎出的产品粒度细,且分布较集中;颗粒表面光滑,形状完整;纯度高,活性大,分散性好。目前超细粉碎机有很多的机型,其中流化床式气流粉碎机是其效率最高的。其工作原理为物料进入粉碎室,超音速喷射流在下部形成向心逆喷射流场,在压差作用下,使磨底物料流态化,被加速的物料在多喷嘴的交汇点汇合,产生剧烈的冲击碰撞,摩擦而粉碎,被粉碎的细粉随气流一起运动至上部的涡轮分级机处,在离心力作用下,将符合细度要求的微粉排出。其优点是粉碎效率高,能耗 # 34 # *收稿日期:2004-09-24

电镜样品制备方法中英文(常用_

No.1 扫描电镜样品制备方法 样品在2.5%的戊二醛溶液中4℃固定过夜,然后按下列步骤处理样品:?倒掉固定液,用0.1M,pH7.0的磷酸缓冲液漂洗样品三次,每次15min; ?用1%的锇酸溶液固定样品1-2h; ?倒掉固定液,用0.1M,pH7.0的磷酸缓冲液漂洗样品三次,每次15min; ?用梯度浓度(包括30%,50%,70%,80%,90%和95%五种浓度)的乙 醇溶液对样品进行脱水处理,每种浓度处理15min,再用100%的乙醇处理两次,每次20 min。 ?用乙醇与醋酸异戊酯的混合液(V/V=1/1)处理样品30min,再用纯醋酸 异戊酯处理样品1-2h。 ?临界点干燥。 ?镀膜,观察。 处理好的样品在Hitachi TM-1000型扫描电镜中观察。 1.Double fixation: The specimen was first fixed with 2.5% glutaraldehyde in phosphate buffer (pH7.0) for more than 4hours; washed three times in the phosphate buffer; then postfixed with 1% OsO4 in phosphate buffer (pH7.0) for 1hour and washed three times in the phosphate buffer. 2.Dehydration: The specimen was first dehydrated by a graded series of ethanol (30%,50%, 70%, 80%, 90%, 95% and 100%) for about 15 to 20 minutes at each step, transferred to the mixture of alcohol and iso-amyl acetate (v:v=1:1) for about 30 minutes, then transferred to pure iso-amyl acetate for about 1hour. In the end, the specimen was dehydrated in Hitachi Model HCP-2 critical point dryer with liquid CO2. 3.Coating and observation: The dehydrated specimen was coated with gold-palladium and observed in Philips Model TM-1000 SEM. No.2 Negative staining of bacterium The bacterium suspension was stained by 1 to 2%solution of phosphotungstic acid (PTA) in a pH range of 6.5 to 7.0 for 15 to 30 seconds. Then, the bacterium was observed in TEM of Model JEM1230. No.3透射电镜样品制备方法 样品在2.5%的戊二醛溶液中4℃固定过夜,然后按下列步骤处理样品:?倒掉固定液,用0.1M,pH7.0的磷酸缓冲液漂洗样品三次,每次15min; ?用1%的锇酸溶液固定样品1-2h; ?倒掉固定液,用0.1M,pH7.0的磷酸缓冲液漂洗样品三次,每次15min; ?用梯度浓度(包括30%,50%,70%,80%,90%和95%五种浓度)的乙 醇溶液对样品进行脱水处理,每种浓度处理15min,再用100%的乙醇

超细粉体的应用及制备

应用与开发 超细粉体的应用及制备 刘宏英,李春俊,白华萍,李凤生 (南京理工大学超细粉体与表面科学技术研究所,江苏南京210094) 摘要:介绍了超细粉体在国民经济各领域的应用,研究了各种超细粉体的制备技术、分级技术及设备的性能特点,分析了国内外相关技术,对超细粉体技术今后的发展和研究方向提出了建议。 关键词:超细粉碎;制备;分级 中图分类号:T B44 文献标识码:A 文章编号:1002-1116(2001)01-0030-03 超细粉体技术是指制备与使用超细粉体及其相关的技术。其研究内容包括超细粉体的制备技术,分级技术,分离技术,干燥技术,输送、混合与均化技术,表面改性技术,粒子复合技术,检测及应用技术等。南京理工大学超细粉体与表面科学技术研究所在国内率先开展了易燃易爆材料、纤维材料、塑性材料和刚柔混合材料等特殊材料的超细粉碎、混合、乳化、分级与表面改性技术研究。经过多年的研究和实际应用,取得了一些成功的经验。目前该技术与设备已广泛用于军民各个领域,为国防现代化和国民经济的发展作出了一定的贡献。由于超细粉体技术是一门综合性很强的技术,涉及知识面很广,本文就超细粉体的应用、超细粉碎技术、分级技术作简要综述。 1 超细粉体应用的研究进展 超细粉体不仅本身是一种功能材料,而且为新的功能材料的复合与开展展现了广阔的应用前景[1]。超细粉体由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于许多高新技术领域。 1.1 在材料领域的应用 超细粉体在材料领域应用广泛。如磁性材料、隐身隐形材料、高耐磨及超塑材料、新型冶金材料及建筑材料。利用超细陶瓷粉可制成超硬塑性抗冲击材料,可用其制造坦克和装甲车复合板,这种复合板较普通坦克钢板重量轻30%~50%,而抗冲击强度较之提高1~3倍,是一种极好的新型复合材料[2]。将固体氧化剂、炸药及催化剂超细化后,制成的推进剂的燃烧速度较普通推进剂的燃烧速度可提高1~10倍[3],这对制造高性能火箭及导弹十分有利。1.2 在化工领域的应用 将催化剂超细化后可使石油的裂解速度提高1~5倍,赤磷超细化后不仅可制成高性能燃烧剂,而且与其它有机物反映可生成新的阻燃材料。油漆、涂料、染料中固体成分超细化后可制成高性能高附着力的新型产品。在造纸、塑料及橡胶产品中,其固体填料如:重质碳酸钙、氧化钛、氧化硅等超细化后可生产出高性能的铜板纸、塑料及橡胶产品。 1.3 在生物医药领域的应用 医药经超细化后,外用或内服时可提高吸收率、疗效及利用率,适当条件下可改变剂型,如微米、亚微米及纳米药粉可制成针剂使用[4]。在医疗诊断方面可将超细粉经适当处理后注入或服入人体内进行各种病理诊断。 南京理工大学超细粉体与表面科学技术研究所已成功地为上海XX医药公司、常州XX公司及浙江XX公司等单位生产了大量超细硫糖铝及超细阿基诺维奇等药,产品性能提高,达到国际标准,因而大 第29卷第1期2001年2月 江苏化工 Jiangsu Chem ical Industry V ol.29N o.1  Feb.2001 收稿日期:2000-10-18 作者简介:刘宏英(1954年出生),女,江苏南京人,高级工程师,1980年毕业于华东工学院机械制造专业,长期从事超细粉体物料的制备、粉碎、分级等技术研究,已发表论文数篇。

柴油机连杆文献综述

文献综述 一.柴油机连杆加工工艺分析 主要说的是关于传统工艺连杆加工中影响其精度的主要参数和连杆加工工艺路线,连杆加工工艺的分析和改进,以及连杆加工工艺设计中应该注意的问题反映连杆精度的参数主要有五个:(1).连杆大端中心面和小端中心面相对于连杆身中心面的对称(2).连杆大小头孔中心距尺寸精度(3).连杆大小头孔平行度;(4).连杆大小头孔的尺寸精度、形状精度;(5).连杆大头螺栓孔与接合面的垂直度。 传统加工路线: 连杆工艺设计注意问题: 工序安排

定位基准: 夹具使用 二.发动机连杆的粉末锻造 主要介绍粉末锻造工艺的技术特点、制造工艺流程、主要制造工艺参数、主要生产工序及工艺参数等;国外采用连杆胀断工艺的公司有哪些 1.特点:粉末冶金烧结件作锻造毛坯可一次锻造成形,无飞边,节省加工工时和设备。具有粉末冶金和机械精锻的优点。粉末锻造可实现烧结材料的高密度化,是材料具有高强度和无明显各向异性。a.避免不必要的机械加工,如模锻连杆早热处理前需要经过几到机加工,而粉锻连杆仅需一道机加工。b.质量偏差小,模锻3%-5%,粉锻连杆仅0.5%。c.疲劳轻度高d.零件致密、轻量,密度≥7.8g/cm3,形状及尺寸经一次性锻造即可达到最终产品要求。e.节约能源50%,节约材料40%,有利于环境保护。 2.制造工艺流程: 预合金钢粉→配料机混料→压制成预制坯→烧结成锻坯→快速送入预热的锻模→致密化闭模锻造→锻件脱模→在可控气氛中冷至室温→热处 理→喷丸强化 3.原料参数:德国宝马生产V8发动机连杆所用预合金钢粉成分为w(Mn)=0.3%~0.4%、w(Cr)=0.1%%~0.25%、w(Ni)=0.2%%~0.3%、w(Mo)=0.25%~0.35、w(C)=0.6%,其余为Fe. 4.主要工艺参数: a.配料及混料经配料计算和准确称取粉重后置于混料机混合20—30分钟至分布均匀; b.压制预制坯要对预制坯的设计应合理,对其密度、质量、质量变化和尺寸要求精确控制,避免过负荷损坏模具; c.烧结预制坯在通有还原保护气体的专用烧结炉中进行,烧结温度1120—1130℃,至完全合金化,后移至无氧化性气体的温饱炉中于1000℃左右保温;

纳米粉体的制备方法

纳米粉体的制备方法 一、纳米粉体应具备的特性 1、化学成分配比准确:尽量符合化学计量,避免烧结出现液相或阻碍烧结; 2、纯度高:出现液相或影响电性能; 3、成分分布均匀:尤其微量掺杂; 4、粒度要细,尺寸分布范围要窄;结构均匀,密度高; 5、无团聚体:软团聚,硬团聚。 二、制备方法分类 化学法 化学法是指通过适当的化学反应,从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法、化学气相冷凝法、溶胶一凝胶法、水热法、沉淀法、冷冻干燥法等。 化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。 化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。 化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物,使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。 物理法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度.然后用物理气相沉积法在其表面上抗积一层膜,经过热处理,即可得到纳米颗粒的阵列。这些方法我们统称为物理凝聚法,物理凝聚法主要分为: (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到或更高的真空度,然后注人少量的惰性气体或性2N、3NH等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气休的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1,Nb-Si等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备技术。物理法的特点是:操作简单,成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。 物理化学方法

TEM样品的制备方法及注意事项。

第一节概述 由于电子束的穿透能力比较低(散射能力强),因此用于TEM分析的样品厚度 要非常薄,根据样品的原子序数大小不同,一般在5~500nm之间。要制备这样薄的样品必须通过一些特殊的方法。 第二节复型技术 ?衬度:眼睛能观察到的或者其它媒介能记录到的光强度或感光度的差异; ?质厚衬度就是样品中不同部位由于原子序数不同或者密度不同、样品厚度不同,入射电子被散射后能通过物镜光阑参与成像的电子数量不同, 从而在图像上体现出的强度的差别。

2.1 影响质厚衬度的因素: ?与原子序数的关系:物质的原子序数越大,散射电子的能力越强,在明场像(物镜光阑只允许散射角小的电子通过)中参与成像的电子越少,图像上相应位置越暗。 ?与试样厚度的关系:设试样上相邻两点的物质种类和结构完全相同,只是电子穿越的厚度不同,则在明场像中,暗的部位对应的试样厚,亮的部位对应的试样薄。 ?与物质密度的关系:试样中不同的物质或者不同的聚集状态,其密度一般不同,也可形成图像的反差,但这种反差一般比较弱。 2.2 复型技术 复型就是表面形貌的复制(其原理与侦破案件时用的石膏复制罪犯鞋底花纹相似)。通过复型制备出来的样品是真实样品表面形貌组织结构细节的薄膜复制品。 2.3 用于复型制备材料的要求: (1)必须是非晶材料; ( 2)粒子尺寸必须很小; ( 3)应具备耐电子轰击的性能。 2.4 主要采用的复型方法: 一级复型法、二级复型法、萃取复型法。 2.4.1一级复型 ?一级复型是指在试样表面的一次直接复型。 ?一级复型复型主要分为塑料(火棉胶)一级复型和碳膜一级复型,以及氧化膜复型。 塑料(火棉胶醋酸戊酯溶液或者醋酸纤维素丙酮溶液-AC纸)一级复型,相对于试样表面来讲,是一种负复型,即复型与试样表面的浮雕相反;其形成的示意图如下图所示。从图中可以看出,一级塑料复型是对样品表面形貌的简单的复制,它表面的形貌与样品的形貌刚好互补,所以称之为负复型。其厚度可以小到100纳米。

粉末冶金原理重点

装球量:球磨筒内磨球的数量。 球料比:磨球与磨料的质量比电流效率:一定电量电解出的产物的实际质量与通过同样电量理论上应电解出的产物质量之比,用公式表示为n i=M/ (qlt)x 100% 粒度分布:指不同粒径的的颗粒在粉末总质量中所占的百分数,可以用某种统计分布曲线或统计分布函数描述。 松装密度:粉末在规定条件下自然填充容器时,单位体积内粉末的质量,单位为 g/cm3。 振实密度:在规定条件下,粉末受敲打或振动填充规定容器时单位体积的粉末质量。单颗粒:晶粒或多晶粒聚集,粉末中能分开并独立存在的最小实体。 一次颗粒:最先形成的不可以独立存在的颗粒,它只有聚集成二次颗粒时才能独立存在。 二次颗粒:由两个以上的一次颗粒结合而又不易分离的能独立存在的聚集颗粒称为二次颗粒。 压缩性: 粉末被压紧的能力 成形性: 粉末压制后,压坯保持既定形状的能力 净压力: 单元系烧结:纯金属、固定化学成分的化合物和均匀固溶体的粉末烧结体系,是一种简单形式的固相烧结。 多元系固相烧结:由两种以上组元(元素、化合物、合金、固溶体)在固相线以下烧结的过程。 气氛的碳势:某一含碳量的材料在某种气氛烧结时既不渗碳也不脱碳,以材料中碳含量表示气氛中的碳势。 活化烧结:系指能降低烧结活化能,是体系的烧结在较低的温度下以较快的速度进行,烧结体性能得以提高的烧结方法。 氢损值:金属粉末的试样在纯氢气中煅烧足够长时间,粉末中的氧被还原成了水蒸气,某些元素与氢气生成挥发性的化合物,与挥发性金属一同排除,测的试样粉末的相对质量损失,称为氢损。 液相烧结:烧结温度高于烧结体系低熔组分的熔点或共晶温度的多元系烧结过程,即烧结过程中出现液相的粉末烧结过程统称为液相烧结。 机械合金化是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。 热等静压:把粉末压坯或把装入特制容器内的粉末体在等静高压容器内同时施以高温和高压,使粉末体被压制和烧结成致密的零件或材料的过程 冷等静压:室温下,利用高压流体静压力直接作用在弹性模套内的粉末体的压制方法 1 、粉末制备的方法有哪些,各自的特点是什么? 1 物理化学法 1 还原法:碳还原法(铁粉)气体(氢和一氧化碳)还原法(W,Mo,Fe,Ni,Cu,Co 及其合金粉末) 金属热还原法(Ta,Nb,Ti,Zr,Th,U)-SHS自蔓延高温合成。 1.2还原-化合法:适合于金属碳化物、硼化物、硅化物、氮化物粉末 1.3化学气相沉积CVD 1.4物理气相沉积PVD或PCVD (复合粉)

相关文档