文档视界 最新最全的文档下载
当前位置:文档视界 › 现代热物理测试技术一些知识点总结

现代热物理测试技术一些知识点总结

现代热物理测试技术一些知识点总结
现代热物理测试技术一些知识点总结

第13章:红外气体分析

分子光谱: 分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱).

E E E E ?=?+?+?电子振动转动 .

气体特征吸收带: 气体:1~25μ

m 近、中红外 .

红外吸收的前提: 存在偶极距(对称分子无法分析)、频率满足要求 . 非分光红外(色散型)原理、特点 : 原理:课本P195 特点:

优点:灵敏度高、选择性好、不改变组分、连续稳定、维护简单寿命长. 缺点:无法检测对称分子气体(如O 2,H 2,N 2.)、测量组分受探头限制.

烟气预处理的作用 :滤除固液杂质(3224SO H O H SO +=)、冷凝保护(1.酸露点温度达

155℃ 2.冷凝器 )、

去除水气影响(1.红外吸收干扰 2.气体溶解干扰 ). 分光红外原理: ? (三棱镜分光原理)

傅立叶分光原理(属于分光红外常用一种)、特点 :

原理:光束进入干涉仪后被一分为二:一束透射到动镜(T),另一束反射到定镜(R)。透射到动镜的红外光被反射到分束器后分成两部分, 一部分透射返回光源(TT), 另一部分经反射到达样品(TR);反射到定镜的光再经过定镜的反射作用到达分束器,一部分经过分束器的反射作用返回光源(RR), 另一部分透过分束器到达样品(RT)。也就是说,在干涉仪的输出部分有两束光,这两束相干光被加和, 移动动镜可改变两光束的光程差,从而产生干涉,得到干涉图,做出此干涉图函数的傅立叶余弦变化即得光谱, 这就是人们所熟悉的傅立叶变换.

特点:优点:测试时间短、同时测多组分、可测未知组分;而且,分辨能力高、具有极低的杂散辐射、适于微少试样的研究、研究很宽的光谱范围、辐射通量大、扫描时间极快.

第12章:色谱法

色谱法的发明和命名、色谱法原理 : P173-174 色谱系统的组成:分析对象、固定相、流动相

气相色谱与液相色谱的区别 :气相色谱法系采用气体为流动相(载气)流经装有填充剂的色谱柱进行分离测定的色谱方法。物质或其衍生物气化后,被载气带入色谱柱进行分离,各组分先后进入检测器,用记录仪、积分仪或数据处理系统记录色谱信号。高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。

气相色谱和液相色谱优缺点:1、气相色谱采用气体作为流动相,由于物质在气相中的流速比在液相中快得多,气体又比液体的渗透性强,因而相比液相色谱,气相色谱柱阻力小,可以采用长柱,例如毛细管柱,所以分离效率高。2、由于气相色谱毋需使用有机溶剂和价格昂贵的高压泵,因此气相色谱仪的价格和运行费用较低,且不易出故障。3、能和气相色谱分离相匹配的检测器种类很多,因而可用于各种物质的分离与检测。特别是当使用质谱仪作为检测器时,气相色谱很容易把分离分析与定性鉴定结合起来,成为未知物质剖析的有力工具。4、气相色谱不能分析在柱工作温度下不汽化的组分,例如,各种离子状态的化合物和许多高分子化合物。气相色谱也不能分析在高温下不稳定的化合物,例如蛋白质等。5、液相色谱则不能分析在色谱条件下为气体的物质,但却能分离不挥发、在某溶剂中具有一定溶解度的化合物,例如高分子化合物、各种离子型化合物以及受热不稳定的化合物(蛋白质、核酸及其它生化物质)。

色谱系统组成及各部分作用: 载气、进样、温控、分离、检测 (P176) 温控的作用:P178

色谱柱:填充柱(不锈钢;直径2~6mm;柱长0.5 ~ 10m.填充固定相,根据相似相溶的原则选择)、毛细管柱(玻璃或石英;直径0.1 ~ 0.5mm;柱长10 ~ 100m.没有填料,内壁涂一层固定液膜或吸附剂)(P177)。

检测器:热导检测器(TCD)、氢火焰离子化检测器(FID)(P197)

色谱图(P175)、定性分析、定量分析:

第11章:阴影法与纹影法

阴影法原理、反映的参数 :密度梯度==》光线折射偏转,导致光偏转,适用范围可压缩流体。反映折射

率二阶导。(P160)

阴影法装置:

阴影图像简单识别:?

纹影原理、两对成像(?)、反映的参数:

光强反映折射率的一阶导数。(P161)

纹影法装置:

纹影图像简单识别:?

透射式、反射式对比:P(162)

第8章:LDV与PIV

多普勒现象 :波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。

双光束系统原理(干涉条纹的理解)、方向模糊性解决 :?

激光多普勒测速(LDV)的优点和缺点 :LDV优点:非接触式测量、干扰少,精度最高、无需标定、测量分辨率高、动态响应好、可扩展2D、3D ;LDV缺点:成本高、单点测量、需要示踪粒子.

粒子图像测速(PIV)原理、系统组成:

查问区、相关法原理 :?

示踪粒子要求、双激光、粒子衍射 :示踪粒子要求: 粒子直径 、直径小跟随性好、直径大光散射强 、密度与流体接近、球形最佳、散射性好。双激光为了获得两个不同时间的像?。

粒子衍射,粒子典型直径:10μm 、放大率M 0<1 、像素典型尺寸:5~10μm 、衍射光斑直径: 02.44(1)S d M F λ≈+、

典型值:6 μm 、实际直径:d τ

PIV 优缺点、激光安全 :PIV 优点:非接触测量、可测速度场、干扰少,精度高 。PIV 缺点:添加示踪粒子、透明流道、流体、需要尺寸标定。

激光致盲、实验注意事项:摘掉手表及金属饰物、确定紧急停止激光器、不在疲劳时使用、采取适当防护措施、所有人员方位确认、移动前确认光路 。

注意点:测量区物体、两相流、多相流 、颗粒不均匀 、蒸汽凝结 、叶轮、水面 发现大粒子后立即停止测量,去除大粒子。

第6章:CCD 基础及图像处理

CCD(电荷耦合器件)原理:光电转换、电荷存储、电荷转移、电荷检测 ???

CCD彩色获得原理及其缺点 :

光圈、景深,以及相互影响关系 :???

曝光时间: 曝光时间长会线性增加图像亮度,同时造成拖尾

增益、白平衡 :全局增益: Gain、对所有信号等比例放大(变亮),但噪声也被同时放大。普通相机中,表现为ISO(感光度)可调。

支路增益:R Gain,G Gain,B Gain 、对单路信号放大,该路噪声也被放大。

普通相机中,表现为白平衡调节。

高速摄像及其要求:帧率高(帧率高:>128fps )、曝光时间短(冻结图像)。

第4章:压力测量技术

压力单位、种类 :Pa, bar, atm, kgf/cm2;绝对压力、表压、真空度;

应变式压力计与压阻式压力计

应变式压力计原理(P45)、测量电路:单臂桥路、半桥差动、全桥差动;温度补偿

压阻效应、(扩散型)压阻式传感器及其特点???:(即优点:灵敏度高、误差较小、简单方便,不用接线等、、、、、)

压电效应、压电材料种类(P48):压电效应;压电材料受力发生机械变形,内部将发生极化现象,并在表面产生电荷。

压电传感器及其特点:特点;电荷少、内阻大、漏电(边界漏电、导线电流)

压电传感器的漏电影响:无法测静态压力、不可静态标定(压电式最严重的缺陷)

压电传感器优缺点 :

优点:体积小,重量轻、简单可靠,工作温度高、灵敏度高,线性好、测量范围宽(100MPa)、动态响应好,常测动态压力、无电源,减少噪声

缺点:无法测静态压力、需要信号放大、仪表高输入阻抗、定期动态标定、电缆影响大(固定、干燥、绝缘)

压阻式传感器:

优点:体积小(Φ1.8~2mm)、灵敏度高、测量范围宽(109Pa)、动态性好(数千Hz)、准确度高(0.02~0.2)、重复性好,频带宽。

缺点:温度影响大、非线性、灵敏系数不稳定,受方向影响。

应变式压力计特点:

优点:结构简单,使用方便、工艺成熟,价格便宜、性能稳定,灵敏度高(相对)、测量速度快,可静态、动态测量。缺点:受温度影响大、灵敏系数小、尺寸较大、粘贴导致应变传递差

传统(弹簧管压力计、液柱式压力计)方法的弱点:动态性差、非电信号,不易记录、远传、准确度低。

第3章:温度测量技术

温标:经验温标、热力学温标、国际温标

热电阻原理、电阻温度系数、热电阻分度表??:

物体电阻随温度变化而变化

热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

原理;热电阻测温是基于金属导体的电阻值随温度的增加而增加(或减小)这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。

热电阻材料、类型、接线制:铂、铜、半导体;装配、铠装、铂膜;两线制、三线制

热电效应、热电偶原理:(P37可以理解为Seeback效应)

热电偶四大定律及其应用 :

标准热电偶、热电偶分度表 :

补偿导线及其要求、冷端补偿 :

补偿导线:在一定温度范围内,其热电特性与被连接的热电偶的热电特性相接近的连接导线,称为该热电偶的补偿导线。

补偿导线的作用:

(1) 将热电偶参考端从温度波动的地方(t n )延伸到温度稳定的地方(t 0)。 (2) 节省贵金属材料

补偿导线注意点:只能与相应型号热电偶配套 + 与热电偶连接处温度必须相同 + 在规定温度范围使用(一般0~100℃) + 存在正、负之分.

冷端温度补偿器原理:根据电桥平衡原理,让电桥在20oC (或0℃)时达到平衡,当偏离20oC 时,电桥输出)20,(n AB t E 根据中间温度定律)20,()20,(),(t E t E t t E CD n CD n CD =

+

辐射测温原理、辐射测温的最大障碍 :

热电阻温度计的特点:

优点:应用范围广,性价比高。稳定性好,准确度高,便于远传,无需冷端补偿。 灵敏度高,输出信号大。 铂电阻稳定、准确、互换性好,可用作基准仪表。

缺点:需要电源;自热现象,影响测量精度;测温上限不能太高,铂电阻上限低于1000 ℃。 热电偶 :

目前应用最广泛的测温手段 ;精度高、简单方便、便宜、响应快、电信号

使用中注意: 选型及分度表匹配 ;冷端补偿 ;补偿导线 ;降低传热误差 ;动态性

第2章:热分析

热分析技术、TG 、DTA 、DSC 方法的基本概念、基本原理 :

热分析是在程序温度控制下测量物质的物理性质与温度关系的一类技术 。热分析法的核心就是研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化.

TG ;1786年英国人Wedgwood 在研究粘土时测得了第一条热重曲线,观察到粘土加热到“暗红”时出现明显的失重,这就是热重法的开始. DTA;

差热分析法由法国科学家Le Chatelier 在1887年首次提出。他第一次使用热电偶测温的方法研究粘土矿物在

升、降温过程中热性能的变化。用热曲线方法分析陶瓷材料,热曲线是用电流计、照相底片和切光器自动记录下来。 1955年以前,在差热分析实验中,一般都是将热电偶的接点直接插入试样和参比物,这容易使热电偶被试样或其分

解产生的气体所污染、老化。

1955年S. L. Boersma指出这种做法的弊病,并加以改进,即将热电偶与坩埚底部相接触。目前商品化的差热分析均采用这种方法。

DSC;1963年,E. S. Waston和M.J. O’Neill等发明了差示扫描量热法。

后来Perkin-Elmer公司研制了差示扫描仪DSC,由于DSC仪能直接测量物质在程序控温下所发生的热量变化,而且定量性和重复性都很好,于是受到人们的普遍重视。

热重(TG)基本原理;在程序温度(升/降/恒温及其组合)过程中,观察样品的质量随温度或时间的变化过程。在程序温度(升/降/恒温及其组合)过程中,由天平连续测量样品重量的变化并将数据传递到计算机中对时间/温度进行作图,即得到热重曲线。

DTA原理;差热分析是在程序控制温度下,测量物质与参比物之间的温度差随温度变化的一种技术。物质在受热或冷却过程中发生的物理变化和化学变化伴随着吸热和放热现象,差热分析正是建立在物质的这类性质基础之上的一种方法。

DSC 基本原理;DSC就是测量在程序控制温度下,输入到试样和参比物之间的功率差(dH/dt)与温度(T)的关系的一种技术。

DSC测量样品吸热和放热与温度或时间的关系;吸热热流入样品,即样品吸收外界热量,为负值。

放热热流出样品,即样品对外界放出热量,为正值。

掌握TG、DTA、DSC各自的影响因素:

影响热重法TG测定结果的因素;

1、仪器因素; 1)升温速率 2) 炉内气氛 3)记录纸速 4)支持器及坩埚材料5) 炉子的几何形状6) 热天平灵敏度1)升温速率;对热重法影响比较大。升温速率越大,所产生的热滞后现象越严重,往往导致热重曲线上的起始温度Ti和终止温度Tf偏高。虽然分解温度随升温速率变化而变化,但失重量保持恒定。中间产物的检测与升温速率密切相关,升温速率快不利于中间产物的检出,因为TG曲线上拐点变得不明显,而慢的升温速率可得到明确的实验结果。热重测量中的升温速率不宜太快,一般以0.5-6℃/min为宜。

2)炉内气氛的影响;热重法通常可在静态气氛或动态气氛下进行测定。在静态气氛下,如果测定的是一个可逆的分解反应,随着温度的升高,分解速率增大。但由于试样周围气体浓度增加会使分解速率下降。另外炉内气体的对流可造成样品周围的气体浓度不断变化。这些因素会严重影响实验结果,所以通常不采用静态气氛。为了获得重复性好的实验结果,一般在严格控制的条件下采用动态气氛。试样周围气氛对热分解过程有较大的影响,气氛对TG曲线的影响与反应类型、分解产物的性质和气氛的种类有关。

2、试样因素

(1)试样量;试样用量的影响大致有下列三个方面:1试样吸热或放热反应会引起试样温度偏离线性程序温度,发生偏差越大影响越大。2反应产生的气体通过试样粒子间空隙向外扩散速率受试样量的影响,试样量越大,扩散阻力越大。3试样量越大,本身的温度梯度越大。试样用量大对热传导和气体扩散都不利。应在热重分析仪灵敏度范围尽量小。

用量少,所测结果较好,反映热分解反应中间过程的平台很明显。为提高检测中间产物的灵敏度应采用少量试样。

(2)试样粒度;对热传导,气体扩散有较大影响。如粒度的不同会引起气体产物的扩散过程较大的变化,这种变化可导致反应速率和TG曲线形状的改变。粒度越小,反应速率越快,使TG曲线上的Ti和Tf温度降低,反应区间变窄。试样粒度大往往得不到较好的TG曲线。粒度减小不仅使热分解温度下降,而且也使分解反应进行的很完全。

(3)挥发物的冷凝;分解产物从样品中挥发出来,往往会在低温处在冷凝,如果冷凝在吊丝式试样皿上,会造成测得失重结果偏低,而当温度进一步升高,冷凝物再次挥发,会产生假失重,使TG曲线变形。解决办法:一般采取加

大气体的流速,使挥发物立即离开试样皿。

(4)浮力的影响;浮力效应:气体密度(ρ)随温度(T)变化而变化,导致样品支架系统所受到的浮力随温度而改变,从而形成热重测试的天然基线

浮力效应的影响因素;气体密度( Ar > N2 > He )、气体流量、升温速率、样品支架、坩埚的体积

基线扣除误差的避免;Correction 测试、Sample + Correction 测试

注意:气体流量严格一致、起始温度严格一致、测样启动前天平的稳定性、炉体温度与样品温度之间的平衡(5)其它

试样的反应热、导热性、比热等因素都对TG曲线有影响。

反应热会引起试样的温度高于或低于炉温,这将对计算动力学数据带来严重的误差。

气体分解产物在固体试样中的吸附也会影响TG曲线。可以通过无盖大口径坩埚,薄试样层或使惰性气氛流过炉子以减少吸附。

影响DTA曲线的仪器因素;

1、炉子尺寸----均温区与温度梯度的控制

2、坩埚大小和形状----热传导性控制

3、差热电偶性能----材质、尺寸、形状、灵敏度选择

4、热电偶与试样相对位置----热电偶热端应置于试样中心

5、记录系统精度

影响DTA曲线的试样因素;

(1)热容量和热导率的变化--- 应选择热容量及热导率和试样相近的作为参比物

反应前基线低于反应后基线,表明反应后试样热容减小。反应前基线高于反应后基线,表明反应后试样热容增大。

(2)试样的颗粒度

—试样颗粒越大,峰形趋于扁而宽。反之,颗粒越小,热效应温度越低,峰形变小。

—颗粒度要求:100目-300目(0.04-0.15mm)

(3)试样的结晶度、纯度和离子取代

—结晶度好,峰形尖锐;结晶度不好,则峰面积要小。

—纯度、离子取代同样会影响DTA曲线。

(4)试样的用量

—试样用量多,热效应大,峰顶温度滞后,容易掩盖邻近小峰谷。

—以少为原则。

—硅酸盐试样用量:0.2-0.3克

(5)试样的装填

—装填要求:薄而均匀

—试样和参比物的装填情况一致

(6)热中性体(参比物)

—整个测温范围无热反应

—比热与导热性与试样相近

—粒度与试样相近(100-300目筛)

常用的参比物:α-Al2O3

(经1270K煅烧的高纯氧化铝粉,α-Al2O3晶型)

影响DTA曲线的操作因素;

(1)加热速度

加热速度快,峰尖而窄,形状拉长,甚至相邻峰重叠。加热速度慢,峰宽而矮,形状扁平,热效应起始温度超前。常用升温速度:1-10K/min,硅酸盐材料:7-15K/min。

升温速度对硫酸钙相邻峰谷的影响

(2)压力和气氛

对体积变化大试样,外界压力增大,热反应温度向高温方向移动。气氛会影响差热曲线形态。

(3)热电偶热端位置

插入深度一致,装填薄而均匀。

(4)走纸速度(升温速度与记录速度的配合)

走纸速度与升温速度相配合。升温速度10K/min/走纸速度30cm/h。

适宜实验条件的选择:

1、升温速率

2、样品用量

3、制样方式

4、实验气氛

5、坩埚的选取

6、样品温度控制(STC)

7、DSC 基线

1、升温速率;

2. 样品量

综合以上两点:提高对微弱的热效应的检测灵敏度---提高升温速率、加大样品量

提高微量成份的热失重检测灵敏度---加大样品量

提高相邻峰(失重平台)的分离度---慢速升温速率、小的样品量

4. 气氛

气氛类别:动态气氛、静态气氛、真空。

从保护天平室与传感器、防止分解物污染的角度,一般推荐使用动态吹扫气氛。

对于高分子TG测试,在某些场合使用真空气氛,能够降低小分子添加剂的沸点,达到分离失重台阶的目的。

若需使用真空或静态气氛,须保证反应过程中的释出气体无危害性。

5. 坩埚的选取;常用坩埚:Al, Al2O3, PtRh

坩埚加盖的优点,有利于体系内部温度均匀、减少辐射效应与样品颜色的影响、

防止微细样品粉末飞扬,或在抽取真空过程中被带走、有效防止传感器受到污染。

坩埚加盖的缺点,减少了反应气氛与样品的接触、产物气体不易带走、导致反应体系压力较高。

坩埚盖扎孔的目的

保证样品与气氛一定接触、允许一定程度的气固反应、允许气体产物随动态气氛带走、保持坩埚内外压力平衡。

6. 样品温度控制(STC)??

7. DSC 基线

掌握DT和DTG、DTA和DSC的差别:

DTA面临的问题: 定性分析,灵敏度不高

DSC:通过对试样因热效应而发生的能量变化进行及时补偿,保持试样与参比物之间温度始终保持相同,无温差、无热传递,使热损失小,检测信号大。灵敏度和精度大有提高,可进行定量分析。

软件测试技术知识点整理

一、软件测试的定义 软件测试是一个过程或一系列过程,用来确认计算机代码完成了其应该完成的功能,不执行其不该有的操作。 1.软件测试与调试的区别 (1)测试是为了发现软件中存在的错误;调试是为证明软件开发的正确性。 (2)测试以已知条件开始,使用预先定义的程序,且有预知的结果,不可预见的仅是程序是否通过测试;调试一般是以不可知的内部条件开始,除统计性调试外,结果是不可预见的。(3)测试是有计划的,需要进行测试设计;调试是不受时间约束的。 (4)测试经历发现错误、改正错误、重新测试的过程;调试是一个推理过程。 (5)测试的执行是有规程的;调试的执行往往要求开发人员进行必要推理以至知觉的"飞跃"。 (6)测试经常是由独立的测试组在不了解软件设计的条件下完成的;调试必须由了解详细设计的开发人员完成。 (7)大多数测试的执行和设计可以由工具支持;调式时,开发人员能利用的工具主要是调试器。 2.对软件测试的理解 软件测试就是说要去根据客户的要求完善它.即要把这个软件还没有符合的或者是和客户要求不一样的,或者是客户要求还没有完全达到要求的部分找出来。 (1)首先要锻炼自己软件测试能力,包括需求的分析能力,提取能力,逻辑化思想能力,即就是给你一个系统的时候,能够把整个业务流程很清晰的理出。 (2)学习测试理论知识并与你锻炼的能力相结合。 (3)想和做。想就是说你看到任何的系统都要有习惯性的思考;做就是把实际去做练习,然后提取经验。 总结测试用例,测试计划固然重要,但能力和思想一旦到位了,才能成为一名合格的软件测试工程师。 二、软件测试的分类 1.按照测试技术划分 (1)白盒测试:通过对程序内部结构的分析、检测来寻找问题。检查是否所有的结构及逻辑都是正确的,检查软件内部动作是否按照设计说明的规定正常进行。--结构测试 (2)黑盒测试:通过软件的外部表现来发现错误,是在程序界面处进行测试,只是检查是否按照需求规格说明书的规定正常实现。--性能测试 (3)灰盒测试:介于白盒测试与黑盒测试之间的测试。

大学物理知识点总结汇总

大学物理知识点总结汇总 大学物理知识点总结汇总 大学物理知识点总结都有哪些内容呢?我们不妨一起来看看吧!以下是小编为大家搜集整理提供到的大学物理知识点总结,希望对您有所帮助。欢迎阅读参考学习! 一、物体的内能 1.分子的动能 物体内所有分子的动能的平均值叫做分子的平均动能. 温度升高,分子热运动的平均动能越大. 温度越低,分子热运动的平均动能越小. 温度是物体分子热运动的平均动能的标志. 2.分子势能 由分子间的相互作用和相对位置决定的能量叫分子势能. 分子力做正功,分子势能减少, 分子力做负功,分子势能增加。 在平衡位置时(r=r0),分子势能最小. 分子势能的大小跟物体的体积有关系. 3.物体的内能

(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能. (2)分子平均动能与温度的关系 由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的`平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。 (3)分子势能与体积的关系 分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。而分子力与分子间距有关,分子间距的变化则又影响着大量分子所组成的宏观物体的体积。这就在分子势能与物体体积间建立起某种联系。因此分子势能分子势能跟体积有关系, 由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加; 体积变化时,分子势能发生变化,因而物体的内能发生变化. 此外, 物体的内能还跟物体的质量和物态有关。 二.改变物体内能的两种方式 1.做功可以改变物体的内能.

并发测试知识点总结

性能测试目的: 提高系统吞吐量, 缩短响应时间 更好地支持并发 性能是在某一个特定环境下,系统所表现出来的最大事务处理能力。如果我们将这个问题细化,性能取决于具体环境,取决于系统架构,取决于软件与服务器的优化等等 概念 并发测试: 多用户同时访问一个应用程序、同一模块或数据记录时是否存在死锁或其他性能问题。分类 并发测试主要分两类: 1、独立业务性能测试:核心业务模块的某一业务并发性能测试; 2、组合业务性能测试:一个或多个模块的多个业务同时进行并发测试。 一、独立业务性能测试 1)完全一样功能的并发测试:检查程序对同一时刻并发操作的处理,例如模拟多个用户在同一时刻向数据库写入相同数据,或者多个用户在同一时刻发出请求测试系统能否正确响应。 2)完全一样操作的并发测试:在同一时刻完成完全一样的操作,即从宏观上看操作对系统的影响是一致的,例如同时单击保存按钮。这类测试目的在于验证大量用户使用同一功能时系统能否正常工作。

3)相同/不同的子功能并发测试:同一模块大多数功能相互耦合,针对一些子功能较多的模块做组合测试。组合的依据就是用户使用的场景,每个不同的子功能都模拟一定的用户数量进行并发测试。 二、组合业务性能测试 1)不同核心业务模块的用户进行并发,模块之间具有一定耦合:这种测试比较接近用户使用情况,测试的对象是多个模块组,每个组相关的模块之间具有一定耦合关系。组与组之间的关系相对独立。例如实际中各类型的用户都会对应一组模块,相当于不同的业务组并发的访问系统。 2)具有耦合关系的核心模块组进行并发,每组模块内部存在耦合关系:主要测试多用户并发条件下一些存在耦合或者数据接口的模块是否正常运行,可以参考集成测试用例和概要设计文档,分析出一些核心模块的接口。 3)基于用户场景的并发测试:选择用户的一些经典场景做测试,测试对象可以使核心模块,也可以是非核心模块。这种测试更接近用户使用的实际情况,测试需要充分考虑实际场景。设计组合模块用户并发性测试用例一般用不同“子功能”或者“子事务”为单位,来进行各个模块的不同核心功能组合。 并发测试步骤 注意:测试计划包括:测试范围、测试环境、测试方案简介、风险分析

汽车检测与诊断技术知识点总结复习过程

1.汽车检测与诊断技术是汽车检测技术与汽车故障诊断技术的统称。汽车检测是指为了确定汽车技术状况或工作能力所进行的检查与测量。汽车诊断是指在不解体(或仅拆下个别小件)的情况下,确定汽车的技术状况,查明故障部位及故障原因 2.汽车检测分类 1.安全性能检测 2.综合性能检测 3.汽车故障检测 4.汽车维修检测 汽车维修检测包括汽车维护检测和汽车修理检测,汽车维护检测主要是指汽车二级维护检测,它分为二级维护前检测和二级维护竣工检测。汽车修理检测主要是指汽车大修检测,它分为修理前,修理中及修理后检测 3.随机误差是指误差的大小和符号都发生变化而且没有规律可循的测量误差,不可避免 4.粗大误差是指由于操作者的过失而造成的测量误差 ,可以避免 5.汽车检测系统通常由电源,传感器,变换及测量装置,记录及显示装置,数据处理装置的组成 传感器是一种能够把被测量的某种信息拾取出来,并将其转换成有对应关系的,便于测量的电信号装置 变换及测量装置是一种将传感器送来的电信号变换成易于测量的电压或电流信号的装置 6.检测系统的基本要求:1.具有适当的灵敏度和足够的分辨力 2.具有足够的检测精度另外,检测系统还应具备良好的动态特性 灵敏度是指输出信号变化量与输入信号变化量的比值 分辨力是指检测系统能测量到最小输入量变化的能力,即能引起输出量发生变化的最小输入变化量 7.智能化检测系统的特点:1自动零位校准和自动精度校准 2自动量程切换 3功能自动选择 4自动数据处理和误差修正 5自动定时控制 6.自动故障诊断 7功能越来越强大 8使用越来越方便 8.诊断参数分类 诊断参数可分为三大类:工作过程参数,伴随过程参数,几何尺寸参数 (1)工作过程参数:指汽车工作时输出的一些可供测量的物理量、化学量,或指体现汽车功能的参数,如汽车发动机功率、燃油消耗率、最高车速和制动距离等。从工作参数本身就能表诊断对象总的技术状况,适合于总体诊断 (2)伴随过程参数:伴随过程参数一般并不直接体现汽车或总成的功能,但却能通过其在汽车工作过程中的变化,间接反映诊断对象的技术状况,如工作过程中出现的振动、噪声、发热和异响等。伴随过程参数常用于复杂系统的深入诊断。 (3)几何尺寸参数:几何尺寸参数能够反映诊断对象的具体结构要素是否满足要求,可提供总成、机构中配合零件之间或独立零件的技术状况,如配合间隙、自由行程、圆度和圆柱度等。 9.诊断参数选用原则: (1)单值性 (2)灵敏性 (3)稳定性 (4)信息性 10.诊断参数标准的组成:(1)初始标准值 (2)极限标准值 (3)许用标准值 11.诊断周期 汽车诊断周期是汽车诊断的间隔期,以行使里程或使用时间表示,诊断周期的确定,应满足技术和经济两方面的条件,获得最佳诊断周期。 最佳诊断周期,是能保证车辆的完好率最高而消耗的费用最少的诊断周期。

大学物理学知识总结

大学物理学知识总结 第一篇 力学基础 质点运动学 一、描述物体运动的三个必要条件 (1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。 (2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。 质点适用的范围: 1.物体自身的线度l 远远小于物体运动的空间范围r 2.物体作平动 如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。 如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。 (3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。 二、描述质点运动和运动变化的物理量 (1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。 在直角坐标系中 zk yi xi r ++= 在自然坐标系中 )(s r r = 在平面极坐标系中 rr r = (2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即 1 2r r r -=?

位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。 路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ?表示。路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下: s r ?≠? 但是在0→?t 时,有 ds dr = (3)速度v 与速率v : 平均速度 t r v ??= 平均速率 t s v ??= 平均速度的大小(平均速率) t s t r v ??≠ ??= 质点在t 时刻的瞬时速度 dt dr v = 质点在t 时刻的速度 dt ds v = 则 v dt ds dt dr v === 在直角坐标系中 k v j v i v k dt dz j dt dy i dt dx v z y x ++=++= 式中dt dz v dt dy v dt dx v z y x = == ,, ,分别称为速度在x 轴,y 轴,z 轴的分量。

软件测试知识点总结

软件测试知识点总结 第一次课10.7 软件测试概述 一软件测试定义:使用人工或者自动的手段来运行或测定它是否满 足规定的需求,或弄预期结果与实际结果之间的差别。 二软件测试的分类 1.按照开发阶段划分 a)单元测试:模块测试,检查每个程序单元嫩否正确实现详细设计说明中的 模块功能等。 b)集成测试:组装测试,将所有的程序模块进行有序、递增的测试,检验 程序单元或部件的接口关系 c)系统测试:检查完整的程序系统能否和系统(包括硬件、外设和网络、系统 软件、支持平台等)正确配置、连接,并满足用户需求。 d)确认测试:证实软件是否满足特定于其用途的需求,是否满足软件需求说 明书的规定。 e)验收测试:按项目任务或合同,供需双方签订的验收依据文档进行的对整 个系统的测试与评审,决定是否接受或拒收系统。 2.按照测试技术划分白盒测试:通过对程序内部结构的分析、检测来寻找问题。检查是否所有的结构及逻辑都是正确的,检查软件内部动作是否按照设计说明的规定正常进行。-- 结构测试 黑盒测试:通过软件的外部表现来发现错误,是在程序界面处进行测试,只是检查是否按照需求规格说明书的规定正常实现。

灰盒测试:介于白盒测试与黑盒测试之间的测试。 3 按照测试实施组织划分:开发方测用户测试第三方测试 4 是否使备测软件运行:静态测试动态测试。 课后作业:1. 软件测试与调试的区别? (1)测试是为了发现软件中存在的错误;调试是为证明软件开发的正确性。(2)测试以已知条件开始,使用预先定义的程序,且有预知的结果,不可预见的仅是程序是否通过测试;调试一般是以不可知的内部条件开始,除统计性调试外,结果是不可预见的。 (3)测试是有计划的,需要进行测试设计;调试是不受时间约束的。 (4)测试经历发现错误、改正错误、重新测试的过程;调试是一个推理过程。(5)测试的执行是有规程的;调试的执行往往要求开发人员进行必要推理以至知觉的"飞跃" 。 (6)测试经常是由独立的测试组在不了解软件设计的条件下完成的;调试必须由了解详细设计的开发人员完成。 (7)大多数测试的执行和设计可以由工具支持;调式时,开发人员能利用的工具主要是调试器。 2.对软件测试的理解? 软件测试就是说要去根据客户的要求完善它. 即要把这个软件还没有符合的或者是和客户要求不一样的,或者是客户要求还没有完全达到要求的部分找出来。

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

性能测试培训——基础知识

性能测试培训(一) ——基础知识 1.软件性能测试的概念 1.1软件性能与性能测试 软件性能:覆盖面广泛,对一个系统而言,包括执行效率、资源占用、稳定性、安全性、兼容性、可扩展性、可靠性等。 性能测试:为保证系统运行后的性能能够满足用户需求,而开展的一系列的测试组织工作。 1.2不同角色对软件性能的认识 用户眼中的软件性能: ?软件对用户操作的响应时间 如用户提交一个查询操作或打开一个web页面的链接等。 ?业务可用度,或者系统的服务水平如何 管理员眼中的软件性能:

开发人员眼中的软件性能: 1.3性能测试的对象 服务器端: ?负载均衡系统; ?服务器(单机、双机热备、集群); ?存储系统、灾备中心; ?数据库、中间件。 网络端: ?核心交换设备、路由设备; ?广域网络、专线网络、局域网络、拨号网络等; 应用系统: 由此可见,性能测试是一个系统性的工作,被测对象包括系统运行时使用的所有软硬件。但在实际操作时,将根据项目的特点,选择特定的被测对象。 1.4性能测试的目标 评价系统当前的性能:

?系统刚上线使用,即处于试运行时,用户需要确定当前系 统是否满足验收要求; ?系统已经运行一段时间,如何保证一直具有良好的性能。分析系统瓶颈、优化系统: ?用户提出业务操作响应时间长,如何定位问题,调整性能; ?系统运行一段时间后,速度变慢,如何寻找瓶颈,进而优 化性能。 预见系统未来性能、容量可扩充性: ?系统用户数增加或业务量增加时,当前系统是否能够满足 需求,如果不能,需要进行哪些调整?提高硬件配置?增 加应用服务器?提高数据库服务器的配置?或者是需要对 代码进行调整? 1.5性能测试的分类 按照测试压力级别: ?负载测试; ?压力测试; 按照测试实施目标: ?应用在客户端的测试; ?应用在网络的测试; ?应用在服务器端的测试; 按照测试实施策略:

检测技术知识点总结

1、检测技术:完成检测过程所采取的技术措施。 2、检测的含义:对各种参数或物理量进行检查和测量,从而获得必 要的信息。 3、检测技术的作用:①检测技术是产品检验和质量控制的重要手段 ②检测技术在大型设备安全经济运行检测中得到广泛应用③检测技 术和装置是自动化系统中不可缺少的组成部分④检测技术的完善和 发展推动着现代科学技术的进步 4、检测系统的组成:①传感器②测量电路③现实记录装置 5、非电学亮点测量的特点:①能够连续、自动对被测量进行测量和 记录②电子装置精度高、频率响应好,不仅能适用与静态测量,选 用适当的传感器和记录装置还可以进行动态测量甚至瞬态测量③电 信号可以远距离传输,便于实现远距离测量和集中控制④电子测量 装置能方便地改变量程,因此测量的范围广⑤可以方便地与计算机 相连,进行数据的自动运算、分析和处理。 6、测量过程包括:比较示差平衡读数 7、测量方法;①按照测量手续可以将测量方法分为直接测量和间接 测量。②按照获得测量值得方式可以分为偏差式测量,零位式测量 和微差式测量,③根据传感器是否与被测对象直接接触,可区分为 接触式测量和非接触式测量 8、模拟仪表分辨率= 最小刻度值风格值的一半数字仪表的分辨率 =最后一位数字为1所代表的值 九、灵敏度是指传感器或检测系统在稳态下输出量变化的输入量变化的 比值 s=dy/dx 整个灵敏度可谓s=s1s2s3。 十、分辨率是指检测仪表能够精确检测出被测量的最小变化的能力 十一、测量误差:在检测过程中,被测对象、检测系统、检测方法和检测人员受到各种变动因素的影响,对被测量的转换,偶尔也会改变被测对象原有的状态,造成了检测结果和被测量的客观值之间存在一定的差别,这个差值称为测量误差。 十二、测量误差的主要来源可以概括为工具误差、环境误差、方法误差和人员误差等 十三、误差分类:按照误差的方法可以分为绝对误差和相对误差;按照误差出现的规律,可以分系统误差、随机误差和粗大误差;按照被测量与时间的关系,可以分为静态误差和动态误差。 十四、绝对误差;指示值x与被测量的真值x0之间的差值 =x—x0 十五、相对误差;仪表指示值得绝对误差与被测量值x0的比值r=(x-x0/x0)x100%

现代热物理测试技术一些知识点总结

第13章:红外气体分析 分子光谱: 分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱). E E E E ?=?+?+?电子振动转动 . 气体特征吸收带: 气体:1~25μ m 近、中红外 . 红外吸收的前提: 存在偶极距(对称分子无法分析)、频率满足要求 . 非分光红外(色散型)原理、特点 : 原理:课本P195 特点: 优点:灵敏度高、选择性好、不改变组分、连续稳定、维护简单寿命长. 缺点:无法检测对称分子气体(如O 2,H 2,N 2.)、测量组分受探头限制. 烟气预处理的作用 :滤除固液杂质(3224SO H O H SO +=)、冷凝保护(1.酸露点温度达 155℃ 2.冷凝器 )、 去除水气影响(1.红外吸收干扰 2.气体溶解干扰 ). 分光红外原理: ? (三棱镜分光原理) 傅立叶分光原理(属于分光红外常用一种)、特点 : 原理:光束进入干涉仪后被一分为二:一束透射到动镜(T),另一束反射到定镜(R)。透射到动镜的红外光被反射到分束器后分成两部分, 一部分透射返回光源(TT), 另一部分经反射到达样品(TR);反射到定镜的光再经过定镜的反射作用到达分束器,一部分经过分束器的反射作用返回光源(RR), 另一部分透过分束器到达样品(RT)。也就是说,在干涉仪的输出部分有两束光,这两束相干光被加和, 移动动镜可改变两光束的光程差,从而产生干涉,得到干涉图,做出此干涉图函数的傅立叶余弦变化即得光谱, 这就是人们所熟悉的傅立叶变换. 特点:优点:测试时间短、同时测多组分、可测未知组分;而且,分辨能力高、具有极低的杂散辐射、适于微少试样的研究、研究很宽的光谱范围、辐射通量大、扫描时间极快. 第12章:色谱法 色谱法的发明和命名、色谱法原理 : P173-174 色谱系统的组成:分析对象、固定相、流动相 气相色谱与液相色谱的区别 :气相色谱法系采用气体为流动相(载气)流经装有填充剂的色谱柱进行分离测定的色谱方法。物质或其衍生物气化后,被载气带入色谱柱进行分离,各组分先后进入检测器,用记录仪、积分仪或数据处理系统记录色谱信号。高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。 气相色谱和液相色谱优缺点:1、气相色谱采用气体作为流动相,由于物质在气相中的流速比在液相中快得多,气体又比液体的渗透性强,因而相比液相色谱,气相色谱柱阻力小,可以采用长柱,例如毛细管柱,所以分离效率高。2、由于气相色谱毋需使用有机溶剂和价格昂贵的高压泵,因此气相色谱仪的价格和运行费用较低,且不易出故障。3、能和气相色谱分离相匹配的检测器种类很多,因而可用于各种物质的分离与检测。特别是当使用质谱仪作为检测器时,气相色谱很容易把分离分析与定性鉴定结合起来,成为未知物质剖析的有力工具。4、气相色谱不能分析在柱工作温度下不汽化的组分,例如,各种离子状态的化合物和许多高分子化合物。气相色谱也不能分析在高温下不稳定的化合物,例如蛋白质等。5、液相色谱则不能分析在色谱条件下为气体的物质,但却能分离不挥发、在某溶剂中具有一定溶解度的化合物,例如高分子化合物、各种离子型化合物以及受热不稳定的化合物(蛋白质、核酸及其它生化物质)。 色谱系统组成及各部分作用: 载气、进样、温控、分离、检测 (P176) 温控的作用:P178

软件测试知识点总结

软件测试知识点总结 第一次课10.7软件测试概述 一软件测试定义:使用人工或者自动的手段来运行或测定它是否满足规定的需求,或弄预期结果与实际结果之间的差别。 二软件测试的分类 1.按照开发阶段划分 a)单元测试:模块测试,检查每个程序单元嫩否正确实现详细设计 说明中的模块功能等。 b)集成测试:组装测试,将所有的程序模块进行有序、递增的测试, 检验程序单元或部件的接口关系 c)系统测试:检查完整的程序系统能否和系统(包括硬件、外设和 网络、系统软件、支持平台等)正确配置、连接,并满足用户需 求。 d)确认测试:证实软件是否满足特定于其用途的需求,是否满足软 件需求说明书的规定。 e)验收测试:按项目任务或合同,供需双方签订的验收依据文档进 行的对整个系统的测试与评审,决定是否接受或拒收系统。 2.按照测试技术划分 白盒测试:通过对程序内部结构的分析、检测来寻找问题。检查是否所有的结构及逻辑都是正确的,检查软件内部动作是否按照设计说明的规定正常进行。--结构测试 黑盒测试:通过软件的外部表现来发现错误,是在程序界面处进行

测试,只是检查是否按照需求规格说明书的规定正常实现。 灰盒测试:介于白盒测试与黑盒测试之间的测试。 3 按照测试实施组织划分:开发方测用户测试第三方测试 4 是否使备测软件运行:静态测试动态测试。 课后作业:1.软件测试与调试的区别? (1)测试是为了发现软件中存在的错误;调试是为证明软件开发的正确性。 (2)测试以已知条件开始,使用预先定义的程序,且有预知的结果,不可预见的仅是程序是否通过测试;调试一般是以不可知的内部条件开始,除统计性调试外,结果是不可预见的。 (3)测试是有计划的,需要进行测试设计;调试是不受时间约束的。(4)测试经历发现错误、改正错误、重新测试的过程;调试是一个推理过程。 (5)测试的执行是有规程的;调试的执行往往要求开发人员进行必要推理以至知觉的"飞跃"。 (6)测试经常是由独立的测试组在不了解软件设计的条件下完成的;调试必须由了解详细设计的开发人员完成。 (7)大多数测试的执行和设计可以由工具支持;调式时,开发人员能利用的工具主要是调试器。 2.对软件测试的理解? 软件测试就是说要去根据客户的要求完善它.即要把这个软件还

传感器与检测技术(知识点总结)

传感器与检测技术(知识点总结) 一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。③基本转换电路是将该电信号转换成便于传输,处理的电量。 二、传感器的分类 1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。 2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器; ③光栅式传感器)。 3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。

4、按工作原理分类主要是有利于传感器的设计和应用。 5、按传感器能量源分类(1)无源型:不需外加电源。而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。 6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。其代码“1”为高电平,“0”为低电平。 三、传感器的特性及主要性能指标 1、传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性。 2、传感器的静态特性是当传感器的输入量为常量或随时间作缓慢变化时,传感器的输出与输入之间的关系,叫静态特性,简称静特性。表征传感器静态特性的指标有线性度,敏感度,重复性等。 3、传感器的动态特性是指传感器的输出量对于随时间变化的输入量的响应特性称为动态特性,简称动特性。传感器的动态特

大学物理物理知识点总结!!!!!!

y 第一章质点运动学主要容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动程 ()r r t =r r 运动程的分量形式() ()x x t y y t =???=?? 位移 是描述质点的位置变化的物理量 △t 时间由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和向的物理量) 平均速度 x y r x y i j i j t t t u u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度向是曲线切线向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

性能测试基础知识

性能测试基础知识 一、性能测试概述 1、性能测试定义 所谓性能,有狭义和广义两种含义。狭义的性能指运行速度的快慢。广义的性能涉及很多内容,如可靠性、可用性、功耗、环境适应性、兼容性、安全性、保密性、可扩充性、可移植性、利用率、性能价格比、速度等。 性能测试是通过自动化的测试程序或工具模拟多种正常、峰值以及异常负载条件来对系统的各项性能指标进行测试。 2、性能测试目的 真实环境下检测系统性能,评估系统性能以及服务等级的满足情况 预见系统负载压力承受力,在应用实际部署之前,评估系统性能 分析系统瓶颈,优化系统 二、主要性能指标 响应时间、吞吐量、并发、点击率、资源利用率 1、响应时间 响应时间指的是客户端发出请求到得到响应的整个过程所经历的时间。 响应时间=网络传输时间*2+服务器处理时间+客户端显示时间。 2、吞吐量 单位时间内流经被测系统的数据流量,一般单位为b/s,即每秒钟流经的字节数。吞吐量是指单位时间内系统处理的客户请求的数量,直接体现软件系统的性能承载能力。 TPS的概念,每秒事务数。确实TPS会随着负载的增加而逐渐增加,但不会无限制的一直增加。比如,到了300用户后就会出现连接服务失败,那可能说明系统进入了繁忙期,从而产生了失败的事务,从而使得每秒的事务数不再增加,甚至会减少。 TPS就像是一个抛物线,可分为3部分,轻负载区、重负载区、负载失效区。 一开始上升的部分就是轻负载区,最顶端的部分就是TPS的峰值(重负载区),然后随着负载的继续增加,TPS会慢慢下降,从而进入我们所谓的负载失效区。 3、并发用户数 指在某一给定时间内,某个特定点上进行会话操作的用户数。是陆陆续续交替执行的。 随着用户数的增加,HIT PER SECOND开始逐渐减少,说明系统已经开始有失败的VUSER 和事务出现。 4、资源利用率 CPU利用率、内存利用率、磁盘利用率、网络带宽利用率

现代测试技术及应用

现代测试技术及应用作业 学号2013010106 姓名刘浩峰 专业核技术及应用 提交作业时间2014 12 10 无损检测中的CT重建技术 1无损检测 1、1无损检测概述 无损检测就是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。中国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市与地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。 无损检测缩写就是NDT(或NDE,non-destructive examination),也叫无损探伤,就是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术与设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查与测试。无损检测就是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有射线检验(RT)、超声检测(UT)、磁粉检测(MT)、液体渗透检测(PT)、涡流检测(ECT)、声发射(AE)与超声波衍射时差法(TOFD)。 1、射线照相法(RT)就是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损检 测方法,该方法就是最基本的,应用最广泛的一种非破坏性检验方法。工作原理就是射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。RT的定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。 2、超声波检测(UT)原理就是通过超声波与试件相互作用,就反射、透射与散射的波进行研究, 对试件进行宏观缺陷检测、几何特性测量、组织结构与力学性能变化的检测与表征,并进而对其特定应用性进行评价的技术。适用于金属、非金属与复合材料等多种试件的无损检测;可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材与板材,也可检测几米长的钢锻件;而且缺陷定位较准确,对面积型缺陷的检出率较高;灵敏度高,可检测试件内部尺寸很小的缺陷;并且检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。缺点就是对具有复杂形状或不规则外形的试

大学物理下册知识点总结材料(期末)

大学物理下册 学院: : 班级: 第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 第一部分:气体动理论与热力学基础 第二部分:静电场 第三部分:稳恒磁场 第四部分:电磁感应 第五部分:常见简单公式总结与量子物理基础

中心位置:3(平动自由度) 直线方位:2(转动自由度) 共5个 3. 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 12 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为:2 k i kT ε= 五. 理想气体的能(所有分子热运动动能之和) 1.1mol 理想气体2 i E RT = 5. 一定量理想气体()2i m E RT M νν' == 九、气体分子速率分布律(函数) 速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。即 十、三个统计速率: a. 平均速率 M RT M RT m kT dv v vf N vdN v 60.188)(0 === == ??∞ ∞ ππ b. 方均根速率 M RT M k T v dv v f v N dN v v 73.13)(20 2 2 2 == ? = = ??∞ C. 最概然速率:与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在p v 附近的单位速率区间的分子数占气体总分子数的百分比最大。 M RT M RT m kT v p 41.1220=== 三种速率的比较: 各种速率的统计平均值: 理想气体的麦克斯韦速率分布函数 十一、分子的平均碰撞次数及平均自由程: 一个分子单位时间里受到平均碰撞次数叫平均碰撞次数表示为 Z ,一个分子连续两次碰撞之间经历的平均自由路程叫平均自由程。表示为 λ 平均碰撞次数 Z 的导出: 热力学基础主要容 一、能 分子热运动的动能(平动、转动、振动)和分子间相互作用势能的总和。能是状态的单值函数。 对于理想气体,忽略分子间的作用 ,则 平衡态下气体能: 二、热量 系统与外界(有温差时)传递热运动能量的一种量度。热量是过程量。 )(12T T mc Q -=)(12T T Mc M m -=) (12T T C M m K -= 摩尔热容量:( Ck =Mc ) 1mol 物质温度升高1K 所吸收(或放出)的热量。 Ck 与过程有关。 系统在某一过程吸收(放出)的热量为: )(12T T C M m Q K k -= 系统吸热或放热会使系统的能发生变化。若传热过程“无限缓慢”,或保持系统与外界无穷小温差,可看成准静态传热过程。 准静态过程中功的计算: 元功: 41 .1:60.1:73.1::2=p v v v Z v = λn v d Z 2 2π=p d kT 22πλ= n d Z v 221πλ= = kT mv e v kT m v f 22232 )2(4)(-=ππ?∞ ?=0 )(dv v f v v ? ∞ ?= 22)(dv v f v v ∑∑+i pi i ki E E E =内) (T E E E k =理 =RT i M m E 2 =PdV PSdl l d F dA ==?=

软件测试知识点总结

一、基础知识1、什么是软件测试,软件测试的目的是啥?2、什么是测试计划?都包括啥?什么是测试方案,什么是测试策略?测试方案包含哪些内容?测试用例设计方法有哪些?测试用例内容有哪些?3、测试用例为什么需要分级,如何分级别?测试用例需要哪些人来评审?评审的目的是什么?好的测试用例关键点是什么?不能发现BUG的测试用例不是好的测试用例吗?4、测试分为哪几个阶段?5、软件测试类型都有哪些?你进行过哪些测试,擅长什么?6、软件缺陷等级划分7、缺陷生命周期8、测试生命周期9、为什么要进行交叉测试?10、α、β测试是什么,两者的区别是什么?11、什么是驱动模块、桩模块12、什么是白盒测试,有几种方法13、测试结束标准14、测试报告包含哪些内容?15、项目中的需求,测试可以和客户沟通吗?不确定的需求怎么解决?16、你认为测试人员需要具备哪些素质?开发犯低级错误怎么办?开发说不是bug怎么办?你为什么能够做测试这一行?你的职业规划?17、如何测试纸杯二、接口测试1、什么是API?什么是API测试?2、常见的API 测试点有哪些?API测试中使用的一些常用协议?用于API测试的工具?最常用的API文档模板?3、API和Web服务之间的区别?4、什么是Soap?什么是Rest API?SOAP和REST的区别?5、API常见测试有哪些?API测试有哪些优势?API测试中验证哪些内容?6、API测试、单元测试和UI测试之间的区别?7、API测试中可能会遇到哪些问题?8、执行API测试时我们一般会发现哪些BUG类型呢?9、接口测试用例的编写要点有哪些?10、列举一些最常用的HTTP方法?常见的响应状态码及意义11、可以使用GET请求而不是POST请求来创建资源吗?POST和GET有什么区别?12、PUT和POST方法有什么区别?13、接口产生的垃圾数据如何清理?测试的数据你放在哪?14、你们怎么做的参数化?15、接口测试的步骤有哪些?API测试设计的原理是?16、异步接口怎么测试?17、请详细阐述接口测试和UI测试在测试活动中是如何协同测试的?18、怎么设计接口测试用例?19、下个接口请求参数依赖上个接口的返回数据?依赖于登录的接口如何处理?依赖于第三方数据的接口如何进行测试?20、不可逆的操作,如何处理,比如删除一个订单这种接口如何测试21、json和字典dict的区别?三、性能测试1、性能测试包含了哪些软件测试(至少举出3种)?2、请问什么是性能测试、负载测试、压力测试?3、在给定的测试环境下进行,考虑被测系统的业务压力量和典型场景?4、什么时候可以开始执行性能测试?5、简述性能测试的步骤。6、你如何识别性能瓶颈?7、性能测试时,是不是必须进行参数化?为什么要创建参数?LoadRunner中如何创建参数?8、你如何设计负载?标准是什么?9、解释5个常用的性能指标的名称与具体含义。10、描述不同的角色(用户、产品开发人员、系统管理员)各自关注的软件性能要点。11、请分别针对性能测试、负载测试和压力测试试举一个简单的例子?12、请问您是如何得到性能测试需求?怎样针对需求设计、分析是否达到需求?13、描述你的性能测试流程四、安全测试1、HTTP接口测试和Web Service接口测试区别是什么?2、HTTPS的优点和缺点?HTTPS的工作原理?HTTPS和HTTP的区别?什么是http代理服务器,有什么用?HTTPS在哪一层, 会话层在第几层?3、简述TCP/IP的三次握手和四次挥手,为什么TCP建立连接协议是三次握手,而关闭连接却是四次握手呢?为什么不能用两次握手进行连接?4、TCP和UDP有

相关文档
相关文档 最新文档