文档视界 最新最全的文档下载
当前位置:文档视界 › 高分子材料中粉体表面改性的作用

高分子材料中粉体表面改性的作用

高分子材料中粉体表面改性的作用

超细粉体材料进行表面改性的作用分析

(上海汇精亚纳米新材料有限公司刘涛)

(凤阳汇精纳米新材料科技有限公司)

高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。但由于超细粉体间普遍存在着范德华力(分子间作用力)、库仑力(静电力),粉体的细化过程实质上是以粒子的内部结合力不断被破坏,体系总能量不断增加的过程。因此从热力学角度来看,超细粉体有自发凝聚的倾向,而且颗粒越细小,团聚越严重。因此如何使团聚解聚,使颗粒均匀分散成为超细粉体材料得到很好应用的首要问题。研究表明,影响超细粉体分散的主要原因是:1:液桥力(液体的表面张力):当粉体受潮时,此力最大;2:范德华力;3:库仑力,不同电荷吸引力是粉体团聚的第三大因素。而对于超细粉体在高分子材料中的分散,一是常温下的分散混合,二是熔融状态下的分散混合,这两个过程都要求做到分散均匀。表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如生物相容性、抗静电性能、染色性能及良好的分散性能等。汇精公司粉体材料的表面改性产品就是用偶联剂及表面活性剂在粉体表面进行,其可以降低粉体表面能,提高相容性,阻止或减轻团聚体的形成,提高其分散性,并使得粉体在高分子材料中得到迅速、均匀的分散。若超细粉体不加任何处理就加入到高分子材料中去,材料与聚合物之间就会存在明显的界面,如果在基体树脂中存在的许多空洞,在外力作用下能承受外力的有效截面积减少,填充材料的力学性能就会变差。因此超细粉体在表面处理水份控制以及选择合适的表面改性剂是非常关键的。

上海汇精亚纳米新材料有限公司、凤阳汇精纳米新材料科技有限公司利用自身丰富粉体应用技术资源,采用专业的配方,使用SLG加热式连续性表面改性机对超细粉体材料进行表面改性处理,使得超细粉体材料在各行业的使用性能得到大大提升,更赋予它新的功能;使得超细粉体的各项性能得到更好的发挥,适应了时代发展的趋势需求。

高分子材料中粉体表面改性的作用

超细粉体材料进行表面改性的作用分析 (上海汇精亚纳米新材料有限公司刘涛) (凤阳汇精纳米新材料科技有限公司) 高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。但由于超细粉体间普遍存在着范德华力(分子间作用力)、库仑力(静电力),粉体的细化过程实质上是以粒子的内部结合力不断被破坏,体系总能量不断增加的过程。因此从热力学角度来看,超细粉体有自发凝聚的倾向,而且颗粒越细小,团聚越严重。因此如何使团聚解聚,使颗粒均匀分散成为超细粉体材料得到很好应用的首要问题。研究表明,影响超细粉体分散的主要原因是:1:液桥力(液体的表面张力):当粉体受潮时,此力最大;2:范德华力;3:库仑力,不同电荷吸引力是粉体团聚的第三大因素。而对于超细粉体在高分子材料中的分散,一是常温下的分散混合,二是熔融状态下的分散混合,这两个过程都要求做到分散均匀。表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如生物相容性、抗静电性能、染色性能及良好的分散性能等。汇精公司粉体材料的表面改性产品就是用偶联剂及表面活性剂在粉体表面进行,其可以降低粉体表面能,提高相容性,阻止或减轻团聚体的形成,提高其分散性,并使得粉体在高分子材料中得到迅速、均匀的分散。若超细粉体不加任何处理就加入到高分子材料中去,材料与聚合物之间就会存在明显的界面,如果在基体树脂中存在的许多空洞,在外力作用下能承受外力的有效截面积减少,填充材料的力学性能就会变差。因此超细粉体在表面处理水份控制以及选择合适的表面改性剂是非常关键的。 上海汇精亚纳米新材料有限公司、凤阳汇精纳米新材料科技有限公司利用自身丰富粉体应用技术资源,采用专业的配方,使用SLG加热式连续性表面改性机对超细粉体材料进行表面改性处理,使得超细粉体材料在各行业的使用性能得到大大提升,更赋予它新的功能;使得超细粉体的各项性能得到更好的发挥,适应了时代发展的趋势需求。

粉体表面改性设备介绍

粉体表面改性设备

中国粉体表面改性设备种类很多,例如高速混合机、捏合机、密炼机、开炼机、单螺杆挤出机、双螺杆挤出机等,但这些设备大多从化工机械借用过来。存在许多严重问题,针对这些问题,近年来有了许多改进和进展,本文重点介绍引进国外机型和对高冷搅机组进行的改进。 现状粉体表面改性设备,主要担负三项职责,一是混合,二是分散,三是表面改性剂在设备中熔化和均匀分散到物料表面,并产生良好的结合。由于混合物的种类和性质各不相同,混合、分散和表面改性要求的质量指标也不相同,因而出现多种性质不同的改性设备,而这些设备又多为借用,因而并不能很好地完成改性任务。主要使用的改性设备为: •。重力混合器 •。气动混合器 •。转鼓式混合机 •。v型混合机 •。Z型混合机 •。高速混合机及高速混合机和冷却混合机组(简称高冷搅机组) •。开炼机 •。密炼机 •。混炼型单螺杆挤出机,布斯混炼机 •。双螺杆挤出机以及静态混合器,空腔混合器,和拉伸混合器等。 这些设备存在的主要问题是: ①多数是间歇式的,连续式设备如单、双螺杆挤出机大都是直线运动式,混合效果差。存在产量低,能耗大,工人劳动强度高,易造成环境污染等问题。

②升温慢,改性时间长,相反改性剂用量大,改性效果差。 ③比较而言,高冷搅机组价格低、耐用、易操作、改性效果好。 ④与国外设备相比,差距明显,主要表现在连续性和改性效果方面。 可以说,中国的粉体表面改性设备的落后,严重制约表面改性深加工技术的发展。已经到了非改不可的地步。 从90年代开始,一些科技人员就着手对改性设备进行改革、到2002年已经取得阶段性成果。 这些阶段成果包含两个方面: ①引进国外连续改性机型 ②对高冷搅机组进行改革 引进国外机型 引进、吸收、消化国外先进设备,是现阶段我们的主要手段之一。改性设备也不例外,现在由大专院校、科研单位与生产企业共同引进开发的改性设备已经问世,且价格大大低于直接购买的国外同类设备。 1、PS系列粉体表面改性机 由原武汉工业大学北京研究生部非矿所和青岛青矿矿山设备有限公司共同开发研制成功的PSC系列粉体表面改性机是表面化学改性的专用设备,它具有设计先进,科学,能连续生产,产量高,能耗低,自动化程度高,工人劳动强度低,无粉尘污染,且表面改性剂用量少,包覆率高等特点。 ①PSC表面改性性能结构特征: 本机由给料输送、主机、改性剂供给、排料、成品输送、成品收集仓、加热、给风、除尘等系统构成。

SLG 型连续式粉体表面改性机应用研究

SLG型连续式粉体表面改性机应用研究 郑水林1李 杨2骆剑军3 1.中国矿业大学北京校区,北京 100083; 2.北京工业大学; 3.江阴市启泰非金属工程有限公司 摘 要:在论述粉体表面改性设备应具备的工艺特性的基础上,介绍了新研制开发的SLG型连续式粉体表面改性机的结构、工作原理、性能特点以及在重钙、轻钙、纳米氧化锌、纳米碳酸钙、煅烧高岭土等无机粉体表面改性中的应用。工业应用结果表明,SLG型连续式粉体表面改性机对粉体和表面改性剂具有良好的分散性,能使它们充分和机会均等地接触,对粉体,特别是对超细粉体和无机纳米粉体的表面改性或处理效果较好,且能耗低、无粉尘污染、操作简单、运行平稳。 关键词:粉体 表面改性 改性机 超细粉体 纳米粉体 在现代有机/无机和无机/无机复合材料中,广泛应用各种无机粉体原(材)料。这些粉体原料的分散性及与有机基料或其它无机组份的相容性,对复合材料的性能,尤其是力学性能有重要的影响。而且,随着粉体制备技术向亚微米及纳米尺度推进,解决粉体的团聚问题就成为其应用的关键。此外,随着对粉体材料功能性要求的提高,粒子表面性能的优化和设计也越来越重要。因此,现代粉体材料,尤其是超细和纳米粉体材料的表面改性或表面处理技术,已成为重要和必需的粉体深加工技术之一。 粉体的表面改性或表面处理技术,包括表面改性方法、工艺、表面改性剂及其配方、表面改性设备等。其中在表面改性工艺和改性剂配方确定的情况下,表面改性设备的优劣就成为粉体表面改性或表面处理的关键。性能好的表面改性设备应具备以下基本工艺特性:①对粉体及表面改性剂的分散性好;②粉体与表面改性剂的接触或作用机会均等;③改性温度可调;④单位产品能耗低;⑤无粉尘污染;⑥操作简便、运行平稳。 我国粉体表面改性技术的发展较晚,在2000年之前基本上无专业化的表面改性设备。除湿法改性之外,干法改性大多采用塑料加工行业的高速加热混合机或其它带导热油加热的混合设备。由于不是针对粉体表面改性处理,尤其是不是针对超细和纳米粉体表面改性设计的,这些设备难以满足超细粉体表面改性的要求。在这种背景下,原武汉工业大学北京研究生部与江阴市启泰非金属工程设备有限公司合作研制开发了专门针对超细粉体表面改性或表面

非金属矿物粉体表面改性技术探讨

非金属矿物粉体表面改性技术探讨 发表时间:2018-07-26T10:08:10.707Z 来源:《基层建设》2018年第15期作者:张仕奇张君杰张扬[导读] 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 内蒙古科技大学内蒙古自治区包头市昆都仑区 014010 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 关键词:非金属矿物;表面改性;技术 随着新型复合材料的兴起,非金属矿物表面改性技术也得到了快速的发展,表面改性是非金属矿物材料必须的加工技术,通过表面改性能够使材料的性能和应用价值得到极大的提升。 1 表面改性方法 表面改性的方法很多,能够改变非金属矿物粉体表面或界面的物理化学性质的方法,如表面物理涂覆、化学包覆、无机沉淀包覆或薄膜、机械力化学、化学插层等可称为表面改性方法。目前工业上非金属矿物粉体表面改性常用的方法主要有表面化学包覆改性法、沉淀反应改性法和机械化学改性法及复合法。 (1)表面化学包覆改性法:是目前最常用的非金属矿物粉体表面改性方法,这是一种利用有机表面改性剂分子中的官能团在颗粒表面吸附或化学反应对颗粒表面进行改性的方法。所用表面改性剂主要有偶联剂(硅烷、钛酸酯、铝酸酯、锆铝酸酯、有机络合物、磷酸酯等)、表面活性剂(高级脂肪酸及其盐、高级胺盐、非离子型表面活性剂、有机硅油或硅树脂等)、有机低聚物及不饱和有机酸等。改性工艺可分为干法和湿法两种。 (2)沉淀反应法:是利用化学沉淀反应将表面改性物沉淀包覆在被改性颗粒表面,是一种“无机/无机包覆”或“无机纳米/微米粉体包覆”的粉体表面改性方法。粉体表面包覆纳米Ti02、ZnO、CaC03等无机物的改性,就是通过沉淀反应实现的,如云母粉表面包覆TiO2制备珠光云母颜料、钛白粉表面包覆Si02和A1203。 (3)机械力化学改性法:是利用超细粉碎过程及其他强烈机械力作用有目的地激活颗粒表面,使其结构复杂或无定形化,增强它与有机物或其他无机物的反应活性。机械化学作用可以增强颗粒表面的活性点和活性基团,增强其与有机基质或有机表面改性剂的使用。以机械力化学原理为基础发展起来的机械融合技术,是一种对无机颗粒进行复合处理或表面改性,如表面复合、包覆、分散的方法。 (4)化学插层改性法:是指利用层状结构的粉体颗粒晶体层之间结合力较弱(如分子键或范德华键)或存在可交换阳离子等特性,通过化学反应或离子交换反应改变粉体的性质的改性方法。因此,用于插层改性的粉体一般来说具有层状或似层状晶体结构,如蒙脱土、高岭土等层状结构的硅酸盐矿物或粘土矿物以及石墨等。用于插层改性的改性剂大多为有机物,也有无机物。 (5)复合改性法:是指综合采用多种方法(物理、化学和机械等)改变颗粒的表面性质以满足应用的需要的改性方法。目前应用得复合改性方法主要有物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆等。 2 表面改性工艺 表面改性工艺依表面改性的方法、设备和粉体制备方法而异。目前工业上应用的表面改性工艺丰要有干法工艺、湿法工艺、复合工艺三大类。干法工艺根据作业方式的不同又可以分为间歇式和连续式;湿法工艺又可分有机改性工艺和无机改性工艺;复合工艺又可分为物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆工艺等。 (1)干法工艺:是一种应用最为广泛的非金属矿物粉体表面改性工艺。目前对于非金属矿物填料和颜料,如重质碳酸钙和轻质碳酸钙、高岭土与煅烧高岭土、滑石、硅灰石、硅微粉、玻璃微珠、氢氧化铝和轻氧化镁、陶土、陶瓷颜料等,大多采用干法表面改性工艺。原因是干法工艺简单,作业灵活、投资较省以及改性剂适用性好等特点。其中,间歇式干法工艺的特点是可以在较大范围内灵活调节表面改性的时间(即停留时间),但颗粒表面改性剂难以包覆均匀,单位产品药剂耗量较多,生产效率较低,劳动强度大,有粉尘污染,难以适应大规模工业化生产,一般应用于小规模生产。连续式改性工艺的特点是粉体与表面改性剂的分散较好,颗粒表面包覆较均匀,单位产品改性剂耗量较少,劳动强度小,生产效率高,适用于大规模工业化生产。连续式干法表面改性工艺常常置于干法粉体制备工艺之后,大批量连续生产各种非金属矿物活性粉体,特别是用于塑料、橡胶、胶粘剂等高聚物基复合材料的无机填料和颜料。 (2)湿法表面有机改性工艺:与干法工艺相比具有表面改性剂分散好、表面包覆均匀等特点,但需要后续脱水(过滤和干燥)作业。一般用于可水溶或可水解的有机表面改性剂以及前段为湿法制粉(包括湿法机械超细粉碎和化学制粉)工艺而后段又需要干燥的场合,如轻质碳酸钙(特别是纳米碳酸钙)、湿法细磨重质碳酸钙、超细氢氧化铝与氢氧化镁、超细二氧化硅等的表面改性,这是因为化学反应后生成的浆料即使不进行湿法表面改性也要进行过滤和干燥,在过滤和干燥之前进行表面改性,还可使物料干燥后不形成硬团聚,改善其分散性。无机沉淀包覆改性也是一种湿法改性工艺。它包括制浆、水解、沉淀反应和后续洗涤,脱水、煅烧或焙烧等工序或过程。 (3)机械力化学/化学包覆复合改性工艺:是在机械力作用或细磨、超细磨过程中添加表面改性剂,在粉体粒度减小的同时对颗粒进行表面化学包覆改性的工艺。这种复合表面改性工艺的特点是可以简化工艺,某些表面改性剂还具有一定程度的助磨作用,可在一定程度上提高粉碎效率。不足之处是温度不好控制;此外,由于改性过程中颗粒不断被粉碎,产生新的表面,颗粒包覆难以均匀,要设计好表面改性剂的添加方式才能确保均匀包覆和较高的包覆率;此外,如果粉碎设备的散热不好,强烈机械力作用过程中局部的过高温升可能使部分表面改性剂分解或分子结构被破坏。 (4)无机沉淀反应/化学包覆复合改性工艺:是在沉淀反应改性之后再进行表面化学包覆改性,实质上是一种无机/有机复合改性工艺。这种复合改性工艺已广泛用于复合钛白粉表面改性,即在沉淀包覆SiO2或A1203薄膜的基础上,再用钛酸酯、硅烷及其他有机表面改性剂对Ti02/Si02或A1203复合颗粒进行表面有机包覆改性。 (5)物理涂覆/化学包覆复合改性工艺:是一种物理涂覆的方式,在进行金属镀膜或者覆膜之后,在通过有机化学进行改性的工艺。 参考文献: [1] 刘伯元.中国粉体表面改性(塑料填充改性)的最新进展[C]// 中国建筑材料及非金属矿物加工与检测技术交流大会.建筑材料工业技术情报研究所,2009. [2] 郑水林.粉体表面改性工艺设备及其选择[C]// 中国白色工业矿物技术与市场交流大会.2009.

《粉体材料表面改性》课程教学大纲

《粉体材料表面改性》课程教学大纲 课程代码:050542002 课程英文名称:Surface Modification of powder (A2) 课程总学时:24 讲课:24 实验:0 上机:0 适用专业:粉体科学与工程专业 大纲编写(修订)时间:2017.3 一、大纲使用说明 (一)课程的地位及教学目标 粉体表面改性是粉体科学与工程专业方向课,为选修课。本门课程讲授粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、各行业典型粉体及纳米粉体饿表面改性方法、实践及改性产品的检测及表征方法。通过本课程的学习,不仅让学生掌握粉体表面改性的相关理论,同时培养学生发现、分析与解决问题的能力和精密进行科学研究的技能。为学生将来从事粉末材料、粉体工程领域的生产、科研打下坚实的理论和实践基础。 通过本课程的学习,学生将达到以下要求: 1.掌握粉体材料表面改性工艺的方法和原理; 2.使学生掌握目前工业表面改性典型设备; 3.使学生了解表面改性剂的种类、性质、使用条件; 4.掌握粉体改性前后的物性变化及相关的检测方法; 5. 进一步结合创新创业培养目标,加强学生创新能力的培养,使学生具备独立进行粉体表面原位修饰工艺设计与设备选型的能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握粉体表面改性一般知识,包括粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、改性产品的检测及表征方法等。 2.基本理论和方法:掌握粉体表面的物性,粉体表面改性的基本原理、掌握粉体表面改性工艺设计和设备;了解常见工业粉体的表面改性方法及应用。 3.基本技能:掌握粉体改性工艺设计计算、独立进行设备选型的技能等。了解特种粉体的生产工艺、制备技术及行业发展趋势。具备制备、加工特种粉体的必要的基础知识和基本技能。 (三)实施说明 本课程安排在第七学期学习,共24学时,其中理论讲课24学时。根据教学的需要,有针对性地对教学内容适当增减,各部分学时数可适当调整2学时。 1.教学方法:课堂讲授中重点对基本概念、基本原理和基本方法的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;积极增加课堂教学的趣味性和互动性,充分调动学生学习的主观能动性;注意培养学生独立进行科学研究的能力。讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于专业课,涉及到许多物粉体表面改性的设备,因此在教学中采用ppt与课堂讲授相结合的教学手段,培养学生浓厚的学习兴趣,确保在有限的学时内,高质量地完成课程教学任务。 (四)对先修课的要求

粉体表面改性复习要点(精简版)

第2章 纳米粉体的分散 1.粉体分散的三个阶段(名词解释) 润湿 是将粉体缓慢加入混合体系形成的漩涡,使吸附在粉体表面的空气或其它杂质被液体取代的过程。 ?解团聚 是指通过机械或超声等方法,使较大粒径的聚集体分散为较小颗粒。 ?稳定化 是指保证粉体颗粒在液体中保持长期的均匀分散 2.常用的分散剂种类 (1)表面活性剂 空间位阻效应 (2)小分子量无机电解质或无机聚合物 吸附--提高颗粒表面电势 (3)聚合物类(应用最多) 空间位阻效应、静电效应 (4)偶联剂类 3.聚电解质(名词解释) 是指在高分子链上带有羧基或磺酸基等可离解基团的水溶性高分子 4.对不同pH 值下PAA 在ZrO 2表面的吸附构型进行分析。 图.不同pH 值下PAA 在ZrO 2 表 面的吸附构型 a.当pH<4时,PAA 几乎不解离,以线团方式存在于固液界面上,吸附层很薄,几乎无位阻作用 δ δδ

b.随pH值增加,链节间静电斥力使其伸展开 c.ZrO2表面电荷减小直至由正变负,PAA的负电荷量增加,其间斥力增加, 使得PAA链更加伸展,可在较远范围提供静电位阻作用 5.用聚电解质分散剂分散纳米粉体时,影响浆料稳定性的各种因素有哪些? 1、聚电解质的分子量 当聚电解质分子量过小,在粉体表面的吸附较弱,吸附层也较薄,影响位阻作用的发挥。 分子量过大,易发生桥连或空位絮凝,使团聚加重,粘度增加。 2、分散剂用量 适宜的分散剂用量才可以使分散体系稳定。 用量过低,粉体表面产生不同带电区域,相邻颗粒因静电引力发生吸引,导致絮凝。 用量过高,离子强度过高,压缩双电层,减小静电斥力;同时,还易发生桥连或空缺絮凝,稳定性下降。 3、温度 研究表明,为了获得较好的分散效果(以最低粘度为衡量标准),随温度的升高,所需分散剂的用量随之增加 6.结合下图,分析煅烧为什么能够改善纳米Si3N4粉体的分散性? 煅烧改善纳米Si3N4粉体的可分散性 ?此前提到,球磨可有效降低粉体的粒度。但球磨过程可能造成分散介质与粉体发生化学反应。 ?以乙醇为介质球磨Si3N4粉体时,表面的Si-OH可能与乙醇反应生成酯。 ?酯基的生成对粉体的分散性影响很大: a、酯基是疏水基团 b、屏蔽负电荷,影响分散剂的吸附 ?采取煅烧去除酯基,可改善其分散性 第3章纳米粉体表面改性(功能化) 1.表面改性有哪些重要应用? 改善纳米粉体的润湿和附着特性。 改善纳米粉体在基体中的分散行为,提高其催化性能。 改善粉体与基体的界面结合能等。 2.纳米粉体的表面改性方法? 气相沉积法 机械球磨法 高能量法

粉体表面改性

粉体表面改性学习报告 前言:粉体是无数个细小固体粒子集合体的总称。根据固体粒子的尺寸不同可以将固体粒子分为颗粒、微米颗粒、亚微米颗粒、超微颗粒、纳米颗粒。通常粉体是尺度界于10-9m到10-3m范围的颗粒。随着颗粒尺寸的减小相应的各种性质也随着尺寸的改变而改变。 因此小尺寸颗粒有如下几个特征: 1.比表面积增大促进溶解性和物质活性的提高,易于反应处理。 2.颗粒状态易于流动,具有与液体相类似的流动性。 3.实现分散、混合、均质化控制材料的组成与构造。 4.易于成分分离,有效地从天然资源或废弃物中分离有用成分。 5. 由于比表面积大,因此粉体粒子容易聚集,吸附。 6. 具有与气体相类似的压缩性,具有固体的抗变形能力。 因此,利用这些特点,对矿物粉体进行表面改性,然后运用于农业、化工、造纸、塑料、橡胶、涂料等产品中。特别是经过改性的矿物粉体用于有机物填料不仅可以降低材料的成本,而且还可以改善材料的各方面性能。常用的矿物填料有碳酸钙、云母、硅灰石、滑石、高岭土、等因为具有独特的物理化学性质,能改善聚合物的物理性能、力学性能、加工性能和热性能,在聚合物中的应用发展很快。无机填料在聚合物中的作用,概括起来就是增量、增强和赋予新功能,但是由于无机填料与高聚物的相容性差,如果直接添加,会造成分散不均,甚至引起应力集中,降低材料的力学性能,这些弊端不但限制了填料在聚合物中的添加量,而且还严重影响制品性能,所以通过对无机填料进行表面改性,改变了无机填料原有的表面性质,改善无机填料与聚合物的亲合性,相容性,以及加工的流动性,分散性,还可以提高填料与聚合物相界面之间的结合力,使聚合物材料的综合性能得到显著提高,从而使非功能的无机填料转变为功能无机填料。近年来,随着聚合物的迅猛发展无机填料的表面改性也受到了前所未有的关注。 一、无机粉体表面改性机理 由于无机矿物材料是极性或强极性的亲水旷物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材料、新工艺和新产品开发的重要内容,通过粉体表面改性可以提高粉体材料的附加价值、扩大产品的用途并且开发新的产品。如滑石粉可作为塑料填料,提高塑料制品的电绝缘性、抗酸性耐火性等; 云母可作为塑料增强填料,提高塑料制品的弯曲弹性模量和拉伸弹性模量;高岭土具有优良的电绝缘性能和一定的阻燃作用,可作为聚氯乙烯等聚烯烃绝缘电线包皮; 石英对热塑性树脂和热固性树脂具有较高的补强作用,并且能提高制品的刚硬度,对提高塑料制品的电绝缘性也能起一定的作用; 金红石型二氧化钛作为塑料填料可增大光的反射率,起到光屏蔽剂的作用。赤泥、粉煤灰均为塑料填料,既可消除污染,又可降低成本。目前无机粉体表面改性技术在保证改性效果的前提下力求降低成本,并根据无机粉体的具体情况,如粒度大小、颗粒分布、表面极性、浸润性、电性、酸碱性以及应用目的和要求等来选择适当的表面改性剂和相应的改性工艺。由于无机粉体种类的多样性以及表面改性剂的不断更新,无机粉体改性的方法很多。根据表面改性剂和粉体粒子之间有没有发生化学反应,可以将无

粉体表面改性的研究进展

粉体表面改性技术的研究进展 姓名:黄政杰 学号:200839110324 专业:无机非金属材料 班级:0803班 早在20世纪50年代,研究人员就已经注意到,对无机颜料,如钛白粉,用二氧化硅或三氧化铝等进行表面复合或者包膜处理可以改善其保光性和耐候性。但是作为技术加工研究表面改性是在近一二十年的事情,尤其是现代有机/无机复合材料、无机/无机复合材料、涂料或涂层材料、吸附与催化材料、环境材料以及超细粉体和纳米粉体的制备和应用具有重要意义。 粉体表面改性的研究进展 粉体工程表面改性或者表面处理与很多学科,如粉体工程,物理化学,表面与胶体化学,有机化学,无机化学,高分子化学,无机非金属材料,高分子材料,复合材料,结晶学,光学,电学磁学等学科密切相关。可以说,粉体表面改性是粉体工程或者颗粒制备技术与其他众多学科相关的边缘学科。粉体工程改性主要包括四个方面。 1粉体改性的原理和方法 2 表面改性剂 3表面改性工艺与设备 4粉体表面改性产品的检测与表征 一粉体表面改性的原理 利用物理、化学机、械等方法对颗粒表面进行处理,根据应用的需要有目的地改变颗粒表面的物理化学性质,如表面晶体结构和官能团表面能、界面润湿性、电性、表面吸附和反应特性等,以满足现代新材料,新工艺和新技术发展的需要。 二表面改性方法 表面改性的方法很多,能够改变非金属矿物粉体表面或界面的物理化学性质的方法,如表面物理涂覆、化学包覆、微胶囊包覆、机械力化学、等可称为表面改性方法。目前工业上非金属矿物粉体表面改性常用的方法主要有表面化学包覆改性法、微胶囊包覆改性法和机械化学改性法及原位聚合改性法。

(1)表面化学包覆改性法:是目前最常用的非金属矿物粉体表面改性方法,这是一种利用有机表面改性剂分子中的官能团在颗粒表面吸附或化学反应对颗粒表面进行改性的方法。所用表面改性剂主要有偶联剂(硅烷、钛酸酯、铝酸酯、锆铝酸酯、有机络合物、磷酸酯等)、表面活性剂(高级脂肪酸及其盐、高级胺盐、非离子型表面活性剂、有机硅油或硅树脂等)、高分子分散剂改性和接枝改性。 (2)微胶囊包覆改性法 微胶囊的制备首先是将液体.固体或者气体囊心物质分细,然后以这些微粒为核心,使聚合物成膜材料在其上沉积.涂成形成一层膜,将囊心微粒包覆。依据囊壁形成机制合成囊条件,微胶囊化方法大致分为三类,即化学法(界面聚合法,原位聚合法,锐孔法),物理法(喷雾干燥法,空气悬浮法,真空蒸发沉积法,静电结合法,溶剂蒸发法,包结络合物法,挤压法等)和物理化学法(水相分离法、油相分离法融化分散冷凝法等)。 (3)机械化学改性法 是利用超细粉碎过程及其他强烈机械力作用有目的地激活颗粒表面,使其结构复杂或无定形化,增强它与有机物或其他无机物的反应活性。机械化学作用可以强颗粒表面的活性点和活性基团,增强其与有机基质或有机表面改性剂的使用。以机械力化学原理为基础发展起来的机械融合技术,是一种对无机颗粒进行复合处理或表面改性,如表面复合、包覆、分散的方法。能够对颗粒进行激活的粉碎设备主要有各种类型的球磨机,气磨机和机械冲击式磨机等。 (4)原位聚合改性法 利用粉体在乳液单体中均匀分散,然后用引发剂引发聚合,从而形成带有弹性包覆层的核一壳结构的纳米粒子。由于外层是有机聚合物,所以可以提高粉体与有机物的亲和力再者它是一种内硬外软的核一壳结构的纳米粒子可以填充到塑料或者橡胶中时可以改变它们的力学性能原位聚合改性法可分为无皂乳液聚合包覆法,预处理乳液聚合法和微乳液聚合法等。 三表面改性剂 粉体的表面改性,主要是依靠表面改性剂在粉体颗粒表面的吸附、反应,包覆或包膜来实现的。因此,表面改性剂对于粉体的表面改性或表面处理具前应用的表面改性剂主要有偶联剂、表面活性剂、有机硅、不饱和有机酸及有机低聚物,超分散剂、水溶性高分子等。

高分子材料与工程_就业前景和社会需求

材料工程类属于理工科类,是研究有机及生物高分子材料的制备、结构、性能和加工应用的 高新技术专业。材料工程科学的形成可以追溯到19世纪30年代,但直到20世纪70年代, 才得到全面的发展。目前高分子材料已被广泛应用于生活、生产、科研和国防等各个领域, 成为我国科学研究的一个重点领域。学生毕业后可以到高分子材料及高分子复合材料成型加工、高分子合成、化学纤维、新型建筑装饰材料、现代喷涂与包装材料、汽车、家用电器、电子电气、航天航空等企业从事设计、新产品开发、生产管理、市场经营及贸易部门工作,也可以到高等学校、科研单位从事科学研究与教学工作,还可以到政府部门从事行政管理、质量监督等工作。 由于高分子材料发展十分迅速,所以申请这个专业的人数也稍微偏多,竞争相对激烈。在就业方面可以从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作,就业前景很不错。所以美国大学的录取要求相对别的专业都会有所提高。 高分子材料与工程专业就业前景 当今,高分子材料又向着尖端领域发展,新的特殊性能高分子功能材料不断出现, 前 景十分的广阔?市场对高分子人才的需求也日益增加,无论是在日常化工,还是在高精尖端科技,高分子人才都备受欢迎,高分子材料专业的社会需求一直处于化学、材料类专业的前列?随着国际国内对环境保护的重视,印刷包装领域也在不断改进材料,如环保型印刷材料、环保型包装材料和新型数字印刷材料等都是产业发展方向,相信经过四年的学习,在印刷包装材料领域一定大有可为?高分子材料与工程专业就业前景广阔,高分子材料人才可以在绝大多数 工业领域取得发展,因为需要高分子材料的行业多得超乎你的想像?学任何专业,如果立志于毕业后干本行业,专业课是必须要学好的,另外英语也能成为你的一把利器? 高分子材料与工程专业就业前景之课程介绍 高等数学、大学物理、计算机文化基础及语言、近代化学基础(包括无机、有机、分析化学等)、物理化学、仪器分析、工程力学、高分子化学和物理、材料科学与工程基础、工程制图、化工原理、高分子材料成型加工基础、高分子材料成型机械及模具基础、聚合物 共混改性原理、机械设计基础、机械原理及计算机设计、高分子材料加工新技术、模具工程设计、模具CAD/CAE、聚合物成型机械等. 高分子材料与工程专业就业前景之培养目标 本专业培养德、智、体全面发展,掌握高分子材料合成、加工的基本原理,能在高分子材料的合成、共混改性和加工成型等领域从事科学研究、技术开发、工艺和设备设计、生 产及经营管理、教学等方面工作,并具有开拓创新精神和竞争能力的高级工程技术人才?高分子材料与工程专业就业前景之就业方向 本专业毕业生的择业面很宽,适应能力强.适合于高分子材料合成与加工、复合材料、橡胶、塑料及纤维制品等的生产企业以及研究单位的新产品研发、生产和管理工作,以及高 等院校的教学和科研.主要面向化工、建材、汽车、石油化工、航天航空、电子、家电、包装以及造船等行业. 高分子材料与工程专业就业前景之市场需求 高分子材料与工程专业为当今国内应用广泛,是研究天然及生物有机高分子材料的 设计、合成、制备以及组成、结构、性能和加工应用的充满活力的材料类学科,其工业和研究体系已经成为国民经济发展的支柱产业.高分子材料与工程专业就业前景是众多专业发 展前景好的专业之一.近年来本科毕业生读研比例均在65%以上,一次就业率均超过95%,毕业生深受国内各行业的青睐;学院注重国际化人才培养,除每年招收部分优秀学生进入学校英才班学习,与国际著名大学进行联合培养以外,还与国外多个知名高校合作,选送优秀本科生 进行联合培养;专业拥有高分子化学实验室、高分子物理实验室、功能高分子实验室和多家企业联合

SLG型连续式粉体表面改性机应用研究

第25卷增刊非金属矿Vo l 25Special Issue 2002年9月Non M etallic M ines Sep,2002 SLG型连续式粉体表面改性机应用研究 郑水林1 李 杨2 骆剑军3 (1 中国矿业大学北京校区,北京 100083;2 北京工业大学;3 江阴市启泰非金属工程有限公司) 摘 要 在论述粉体表面改性设备应具备的工艺特性的基础上,介绍了新研制开发的SLG型连续式粉体表面改性机的结构、工作原理、性能特点以及在重钙、轻钙、纳米氧化锌、纳米碳酸钙、煅烧高岭土等无机粉体表面改性中的应用。工业应用结果表明,SLG型连续式粉体表面改性机对粉体和表面改性剂具有良好的分散性,能使它们充分和机会均等地接触,对粉体,特别是对超细粉体和无机纳米粉体的表面改性或处理效果较好,且能耗低、无粉尘污染、操作简单、运行平稳。 关键词 粉体 表面改性 改性机 超细粉体 纳米粉体 在现代有机/无机和无机/无机复合材料中,广泛应用各种无机粉体原(材)料。这些粉体原料的分散性及与有机基料或其它无机组份的相容性,对复合材料的性能,尤其是力学性能有重要的影响。而且,随着粉体制备技术向亚微米及纳米尺度推进,解决粉体的团聚问题就成为其应用的关键。此外,随着对粉体材料功能性要求的提高,粒子表面性能的优化和设计也越来越重要。因此,现代粉体材料,尤其是超细和纳米粉体材料的表面改性或表面处理技术,已成为重要和必需的粉体深加工技术之一。 粉体的表面改性或表面处理技术,包括表面改性方法、工艺、表面改性剂及其配方、表面改性设备等。其中在表面改性工艺和改性剂配方确定的情况下,表面改性设备的优劣就成为粉体表面改性或表面处理的关键。性能好的表面改性设备应具备以下基本工艺特性: 对粉体及表面改性剂的分散性好; 粉体与表面改性剂的接触或作用机会均等; 改性温度可调; 单位产品能耗低; 无粉尘污染; 操作简便、运行平稳。 我国粉体表面改性技术的发展较晚,在2000年之前基本上无专业化的表面改性设备。除湿法改性之外,干法改性大多采用塑料加工行业的高速加热混合机或其它带导热油加热的混合设备。由于不是针对粉体表面改性处理,尤其是不是针对超细和纳米粉体表面改性设计的,这些设备难以满足超细粉体表面改性的要求。在这种背景下,原武汉工业大学北京研究生部与江阴市启泰非金属工程设备有限公司合作研制开发了专门针对超细粉体表面改性或表面处理的SLG型连续式粉体表面改性机,并对其进行了应用研究。 1 SLG型连续式粉体表面改性机结构和性能特点1 1 结构和工作原理 SLG型连续式粉体表面改性机, 主要由温度计、出料门、进风口、风管、主机、进料口、计量泵和喂料机组成(图1)。其主机由三个呈品字形排列的改性圆筒组成。 图1 SLG型连续式粉体表面改性机结构 1 温度计; 2 出料门; 3 进风口; 4 风管; 5 主机; 6 进料口; 7 计量泵; 8 喂料机 工作时,待改性的物料经喂料机给入,经与计量和连续给入的表面改性剂接触后,依次通过三个圆筒形的改性腔从出料口排出。在改性腔中,特殊设计的高速旋转的转子和定子与物料的冲击、剪切和摩擦作用,产生其表面改性所需的温度。该温度可通过转子转速、粉料通过的速度或给料速度及风门大小来调节,最高可达120 。同时转子的高速旋转,强制物料松散并形成涡旋二相流,使表面改性剂能迅速、均匀或均等地与颗粒表面作用,包覆于颗粒表面。因此,该机的结构和工作原理,基本上能满足对粉体及表面改性剂的良好分散性、粉体与表面改性剂的接触或作用机会均等的技术要求。 1 2 性能特点 SLG型连续式粉体表面改性机的工艺配置,主要由给料装置、给药装置、SLG型连续式粉体表面改性机、旋风集料器及除尘器组成(图2)。这一配置,具备了连续生产、无粉尘污染等工艺特性,且操作简便、运行平稳、单位产品能耗低。 目前,该型粉体表面改性机共研制出二种机型,

粉体表面改性设备

粉体表面改性设备 中国粉体表面改性设备种类很多,例如高速混合机、捏合机、密炼机、开炼机、单螺杆挤出机、双螺杆挤出机等,但这些设备大多从化工机械借用过来。存在许多严重问题,针对这些问题,近年来有了许多改进和进展,本文重点介绍引进国外机型和对高冷搅机组进行的改进。 现状粉体表面改性设备,主要担负三项职责,一是混合,二是分散,三是表面改性剂在设备中熔化和均匀分散到物料表面,并产生良好的结合。由于混合物的种类和性质各不相同,混合、分散和表面改性要求的质量指标也不相同,因而出现多种性质不同的改性设备,而这些设备又多为借用,因而并不能很好地完成改性任务。主要使用的改性设备为: •重力混合器 •气动混合器 •转鼓式混合机 •v型混合机 •Z型混合机 •高速混合机及高速混合机和冷却混合机组(简称高冷搅机组) •开炼机 •密炼机 •混炼型单螺杆挤出机,布斯混炼机 •双螺杆挤出机以及静态混合器,空腔混合器,和拉伸混合器等。 这些设备存在的主要问题是: ①多数是间歇式的,连续式设备如单、双螺杆挤出机大都是直线运动式,混合效果差。存在产量低,能耗大,工人劳动强度高,易造成环境污染等问题。 ②升温慢,改性时间长,相反改性剂用量大,改性效果差。 ③比较而言,高冷搅机组价格低、耐用、易操作、改性效果好。 ④与国外设备相比,差距明显,主要表现在连续性和改性效果方面。 可以说,中国的粉体表面改性设备的落后,严重制约表面改性深加工技术的发展。已经到了非改不可的地步。

从90年代开始,一些科技人员就着手对改性设备进行改革、到2002年已经取得阶段性成果。 这些阶段成果包含两个方面: ①引进国外连续改性机型 ②对高冷搅机组进行改革 引进国外机型 引进、吸收、消化国外先进设备,是现阶段我们的主要手段之一。改性设备也不例外,现在由大专院校、科研单位与生产企业共同引进开发的改性设备已经问世,且价格大大低于直接购买的国外同类设备。 1、PS系列粉体表面改性机 由原武汉工业大学北京研究生部非矿所和青岛青矿矿山设备有限公司共同开发研制成功的PSC系列粉体表面改性机是表面化学改性的专用设备,它具有设计先进,科学,能连续生产,产量高,能耗低,自动化程度高,工人劳动强度低,无粉尘污染,且表面改性剂用量少,包覆率高等特点。 ①PSC表面改性性能结构特征: 本机由给料输送、主机、改性剂供给、排料、成品输送、成品收集仓、加热、给风、除尘等系统构成。 ②工作原理: 粉体原料经给料输送系统被送至主机上方的雾化室,在输送过程中,由给料输送机特设的加热装臵将粉体加热并干燥,与此同时固体状的改性剂在专用加热容器内也被加热熔化至液体状态后经输送管道送至雾化室。 雾化室内设有两组喷嘴,并均通人由给风系统送来之热压力气流,其中一组有四只喷嘴按不同位臵分布于雾化室内壁,其作用是将由给料输送系统送来的粉体物料吹散呈雾状,另一组有一只喷嘴同时与改性剂输送管道相通,将液状改性剂也吹散呈雾状。此时,原料和改性剂形成雾状,由于受到两组喷嘴从不同方向喷射出气流的作用,得以充分的混合,随即进人主机。 主机由高速旋转的主轴、搅拌棒、冲击锤、中间充满循环导热油的夹层简体等部分组成。进入主机内的雾化物料在搅拌棒的高速搅拌下,受到了冲击、摩擦、剪切等诸多力的作用使粉体颗粒与改性剂得到更充分接触、混合。主机夹层内循

材料改性教学总结

材料改性

浅谈表面改性 摘要:本文主要总结了各种材料的改性及改性剂对其的影响,其中还涉及到各种改性方法及对材料改性的展望。 关键字:表面改性纳米金属 1 引言 表面改性是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如亲水性、生物相容性、抗静电性能、染色性能等。表面改性的方法有很多报道,大体上可以归结为:表面化学反应法、表面接枝法、表面复合化法等。 表面改性技术(surface modified technique) 则是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。 2表面改性对不同材料性能的影响 2.1 对SF/PP复合材料性能的影响 剑麻纤维(SF)因具有较高的比强度和比模量而成为树脂基体较好的天然纤维增强材料,适用于制备成本低、比模量高和耐冲击的纤维/树脂复合材料。国内常用马来酸酐接枝聚丙烯或有机硅烷为界面相容剂,来提高SF/PP复合材料的力学性能,表面改性可以提高纤维与PP基体的黏合性。使SF/PP复合材料的力学性能和流动性能提高,吸水率下降【1】。 2.2对羟基磷灰石蛋白吸附的影响 羟基磷灰石因为与人体骨组织中的无机组分相近而被广泛应用于有机/ 无机复合物中。但是, HAP 表面具有亲水性, 大多数应用于骨修复的有机材料具有疏水性, 两者的极性差异导致了界面相容性下降, 进而降低复合物的力学性能。克服这一困难最常用的方法

表面与界面

无机粉体表面改性方法综述 摘要:表面改性是无机粉体的主要加工技术之一,表面改性对提高无机粉体的应用性能起着关键的作用。改性后的无机粉体分散性提高,同时也改善了粉体和有机高聚物的相容性。本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型改性方法,并对无机粉体表面改性方法进行展望。 关键词:无机粉体;表面改性;改性方法;新型方法; 前言 无机粉体具有很高的应用性能和应用价值,添加到聚合物材料当中不仅能降低其生产成本,还提高了复合材料的力学性能和综合性能,甚至赋予其绝缘、阻燃等特殊的物理化学性质。 无机粉体一般为微米或纳米级颗粒,由于其粒径小、比表面积大、表面能高,容易发生团聚,难以在复合材料中均匀分散,影响添加效果。无机粉体的表面性质和聚合物有机体系相差甚远,这也使得无机粉体不能很好的分散到材料中。因此,当无机粉体添加到高聚物复合材料时,首先要对无机粉体进行表面改性,使其粒子表面有机化,改善其亲油性和与基体的相容性,增强界面结合能力,从而发挥无机粉体的功能[1]。 本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型的改性的方法,并分析了这些方法各自的优缺点。最后对无机粉体表面改性方法进行了展望。 1 无机粉体表面改性的机理 由于无机矿物材料是极性或强极性的亲水矿物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材料、新工艺和新产品开发的重要内容,通过粉体表面改性可以提高粉体材料的附加价值、扩大产品的用途并且开发新的产品。如滑石粉可作为塑料填料,提高塑

高分子材料的表面改性技术研究

高分子材料的表面改性技术研究 摘要:高分子材料表面改性在实际应用中具有非常巨大的价值,因此,必须加强对其表面改性技术的研究,不断进步,从而能够充分发挥出其应用的价值。 关键词:高分子材料表面改性技术等离子体 一、高分子材料的表面改性的简述 高分子材料表面是介于高分子材料本体和外部环境之间的相边界。在许多时候高分子材料表面的物理和化学性质对其应用有至关重要的影响。以聚烯烃(主要是聚乙烯与聚丙烯)类塑料为例,其表面具有化学反应性低、极性小、表面能低、憎水等特点。如果不经过改性处理,塑料制品就很难进行粘接、电镀、涂饰、层压、印刷等二次加工,这会大大缩小其应用范围。近年来,关于高分子材料在生物医学上的应用研究很多.但普通高分子材料表面的生物相容性很差,如不经过表面改性而直接应用会发生不希望的蛋白质吸附和细胞粘附等问题。 表面改性就是在保持材料或制品原有性能的前提下,赋予其表面新的性能。高分子材料经过表面改性后可以改变表面的化学组成、提高表面极性、增加表面能、改善结晶形态和表面形貌、除去弱边界层等.从而提高高分子材料表面的润湿性、粘结性及很多其他性能。 二、高分子材料的表面改性技术研究 (一)等离子体处理 等离子体处理是将材料暴露于非聚合性气体等离子体中,利用等离子体轰击材料表面,等离子体中的活性物质与高分子材料表面进行各种相互作用,引起高分子材料结构发生许多变化,进而对高分子材料进行表面改性。等离子体处理能够改善高分子材料的表面性能,包括染色性、湿润性、印刷性、粘合性、防静电性、表面固化等。 聚合物材料的浸润性与许多领域有关,如印刷、喷涂和染色等,但由于聚合物材料表面自由能低,故而导致浸润性能不好。Guruvenket等分别用氩和氧等离子体处理聚苯乙烯和聚乙烯表面,通过测定接触角对表面性能进行了研究,对于氩和氧等离子体,接触角随着等离子体能量和处理时间增加而减少,ATR一FTIR分析表明,在聚合物表面有含氧基团,如羰基、羧基、醚键和过氧基等的生成。 Lai等通过接触角测量仪、X一射线光电子能谱(XPS)和扫描电子显微镜(SEM)研究了微波氩等离子体处理聚碳酸酯、聚丙烯和聚酯的表面特性。结果显示,等离子体处理改变了表面的化学成分和粗糙度,化学成分的改变使得聚合物表面具有较高的亲水性,其主要原因是由于含氧基团所占比率的增加,这与他人的研究结果一致;但是进一步的研究分析表明,C=O 双键是导致聚合物表面亲水性增加的关键因素。 (二)等离子体聚合 等离子体聚合是将高分子材料暴露于聚合性气体中,表面沉积一层较薄的聚合物膜,等离子体聚合法有如下优点:(1)成膜均匀;(2)膜中无气体;(3)膜与基体附着性能好;(4)可进行大面积的涂复;(5)易和其它气相法(CVD)法、真空蒸镀法等结合。在表面保护膜、光学材料、电子材料、分离膜、医用材料等方面的等离子体聚合表面改性进行了广泛的研究。Tab.2列出了几个研究实例,等离子体聚合可用于制备导电高分子膜,在电子器件、传感器上有着广阔的应用前景,也可用于制备光刻胶膜、分离膜、绝缘膜、光学材料的反射率、折射率控制、薄膜波导、生物医学材料等。等离子体膜在分离中研究最多的是作气体分离膜,对渗透气化膜、反渗透膜也已作了大量的研究,PVC与液晶N-对乙氧基苄叉对丁基苯胺的共混体系具有良好的相容性,并可使膜的透气率大幅度提高,但存在液晶挥发损失问题,利用氟碳化合物有较强厌氧能力,用等离子体聚合物在累积复合物膜表面进行改性可提高其氧氮分离系数;等离子体聚合膜在电子材料中的应用不仅局限于绝缘,已发展到了作导体、半导体、超导材料方面,有关超导膜的研究是一个很活跃的领域;N.Inagaki等研究了用TFE等离子体

相关文档
相关文档 最新文档