文档视界 最新最全的文档下载
当前位置:文档视界 › 二氧化锡半导体纳米粉体

二氧化锡半导体纳米粉体

二氧化锡半导体纳米粉体
二氧化锡半导体纳米粉体

二氧化锡半导体纳米粉体的制备及气敏性能研究报告

学院:资源加工与生物工程学院

班级:无机0801

姓名:魏军参

学号:0305080723

组员:张明陈铭鹰项成有

半导体纳米粉体的制备及气敏性能研究

前言

SnO2 粉体作为一种功能基本材料,在气敏、湿敏、光学技术等方面有着广泛的应用。目前是应用在气敏元件最多的基本原材料之一。纳米级SnO2 对H2 、C2H2 等气体有着较高的灵敏度、选择性和稳定性,具有更广阔的应用市场前景。研究纳米SnO2 粉体的制备方法很多,例如:真空蒸发凝聚法、低温等离子法、水解法、醇盐水解法、化学共沉淀法、溶胶—凝胶法,近期还出现了微乳液法,水热合成法等。每种制粉方法各有特点,但是在目前技术装备水平和纳米粉体应用市场还未真正形成的条件下,上述纳米粉体制备方法由于技术成熟度或制备成本等方面的原因,大多都还未形成具有实际意义上的生产规模,主要还处于提供研究样品阶段。

以廉价的无机盐SnCl4·5H2O为原料,采用溶胶-凝胶法制备出粒度均匀的超细SnO2粉体,该工艺具有设备简单,过程易控,成本低,收率高等优点。实验考察制备工艺过程中原料浓度、反应温度、反应终点pH值、干燥脱水方式、培烧温度等因素对纳米SnO2粉体粒径的影响。实验过程以TG-DTA热分析、红外光谱等测试手段,分析前驱体氢氧化物受热行为,前驱体表面基团及过程防团聚机理等。利用透射电子显微镜、X-射线衍射仪、比表面测试仪分别对纳米粒子的形貌与粒径分布、晶相组成、比表面积进行了表征与测定。

在实验中制备得到得SnO2 胶体,在干燥、煅烧的过程中很容易形成团聚。因为粉体颗粒细小, 表面能巨大, 往往会粘结在一起。水热法是近年来出现的制备超细粉体的新方法,其利用密封压力容器, 以水为溶剂, 温度从低温到高温(100 ℃~400 ℃) , 压力在10~200 MPa 。该方法为前驱物反应提供了一个在常压下无法实现的特使物理化学条件。避免在普通煅烧过程中, 由于晶粒间细小间隙产生毛细现象导致的颗粒长大团聚。

水热法制备过程中, 粉体在液相中达到“煅烧”温度。通过控制反应条件, 有效阻碍颗粒间的长大, 保持颗粒粒度均匀, 形态规则, 且干燥后无需煅烧, 避免形成硬团聚。

本文以SnCl4·5H2O 为原料, 利用溶胶凝胶法和离心洗涤制备纯净凝胶, 水热脱水法制备SnO2微晶;研究不同水热条件下, SnO2 粉体的形成、晶粒大小以及分散性能。

文献综述

1.1 半导体纳米粉体

半导体定义

电阻率介于金属和绝缘体[1]之间并有负的电阻温度系数的物质。半导体室温时电阻率约在10E-5~10E7欧姆?米之间,温度升高时电阻率指数则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。

本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由

于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子 - 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子 - 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。

半导体历史

半导体的发现实际上可以追溯到很久以前,1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。 1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。半导体于室温时电导率约在10ˉ10~10000/Ω?cm之间,纯净的半导体温度升高时电导率按指数上升。半导体材料有很多种,按化学成分可分为元素半导体和化合物半导体两大类。除上述晶态半导体外,还有非晶态的有机物半导体等和本征半导体。

1.1.1导体纳米材料的概念

纳米级结构材料简称为纳米材料(nano material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

半导体纳米线和半导体氧化物纳米带可用于研制纳米器件。氧化物的多样性又使其覆盖了几乎所有的金属学和固体物理的研究领域,包括超导、铁电性、磁性质等。

二维的半导体氧化物,如ZnO、SnO2、In2O3和CdO,更是具有独特的性质,现在被广泛应用于传感材料和气体探测感应装置。例如,搀杂有氟的SnO2薄膜被广泛应用于建筑物门窗的玻璃上,因为它对于红外线有较低的发射率。而SnO2的纳米颗粒被认为是气体探测感应器的最重要的传感材料,因为它对很稀薄的气体也具有较高的敏感度,被用于检测如H,S,CO等一些可燃的还原性气体的泄漏。

1.1.2半导体的特性

半导体五大特性∶电阻率特性,导电特性,光电特性,负的电阻率温度特性,整流特性。在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热辐射条件下,其导电性有明显的变化。晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。

自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。载流子:运载电荷的粒子称为载流子。导体电的特点:导体导电只有一种载流子,即自由电子导电。本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。当温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多(即载流子的浓度升高),导电性能增强;当温度降低,则载流子的浓度降低,导电性能变差。

结论:本征半导体的导电性能与温度有关。半导体材料性能对温度的敏感性,可制作热敏和光敏器件,又造成半导体器件温度稳定性差的原因。杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。

N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。

多数载流子:N型半导体中,自由电子的浓度大于空穴的浓度,称为多数载流子,简称多子。

少数载流子:N型半导体中,空穴为少数载流子,简称少子。

施子原子:杂质原子可以提供电子,称施子原子。

N型半导体的导电特性:它是靠自由电子导电,掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。

P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P型半导体。

多子:P型半导体中,多子为空穴。

少子:P型半导体中,少子为电子。

受主原子:杂质原子中的空位吸收电子,称受主原子。

P型半导体的导电特性:掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。结论:多子的浓度决定于杂质浓度。少子的浓度决定于温度。PN结的形成:将P 型半导体与N型半导体制作在同一块硅片上,在它们的交界面就形成PN结。PN结的特点:具有单向导电性。扩散运动:物质总是从浓度高的地方向浓度低的地方运动,这种由于浓度差而产生的运动称为扩散运动。空间电荷区:扩散到P区的自由电子与空穴复合,而扩散到N区的空穴与自由电子复合,所以在交界面附近多子的浓度下降,P区出现负离子区,N区出现正离子区,它们是不能移动,称为空间电荷区。电场形成:空间电荷区形成内电场。空间电荷加宽,内电场增强,其方向由N区指向P区,阻止扩散运动的进行。漂移运动:在电场力作用下,载流子的运动称漂移运动。PN结的形成过程:如图所示,将P型半导体与N 型半导体制作在同一块硅片上,在无外电场和其它激发作用下,参与扩散运动的多子数目等于参与漂移运动的少子数目,从而达到动态平衡,形成PN结。电位差:空间电荷区具有一定的宽度,形成电位差Uho,电流为零。耗尽层:绝大部分空间电荷区内自由电子和空穴的数目都非常少,在分析PN结时常忽略载流子的作用,而只考虑离子区的电荷,称耗尽层。

PN结的单向导电性

P端接电源的正极,N端接电源的负极称之为PN结正偏。此时PN结如同一个开关合上,呈现很小的电阻,称之为导通状态。P端接电源的负极,N端接电源的正极称之为PN 结反偏,此时PN结处于截止状态,如同开关打开。结电阻很大,当反向电压加大到一定程度,PN结会发生击穿而损坏。

相对于金属材料而育,半导体中的电子动能较低,有较长的德布罗意波长,因而对空间的限制比较敏感.当空间某一方向的尺度限制与电子的德布罗意波长可比拟时,电子的运劫就会受限,而被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维.因此,通常在体材料中适

用的电子的粒子行为在此材料中不再适用,这种新型的材料称为半导体低维结构,也称为半导体纳米材料.1986年,Fuouler等人。首次令人们信服地证实了在si/sio:界面处存在二维电子气,从此拉开了半导体低维结构研究的序幕.sj—MOsFET 可以认为是对载流子实现一个维度方向限崩最早的固体结构.在这个系统中,由于Sj和sjO 界面导带的不连续,形成一个三角势阱,将电子限制在其中,使其既不能穿过氧化层,也不能进人si的体内,电子舶运动被限制在二维界面内.随着微加工技术的发展和分子柬外延技术.(MBE)、金属有机物化学气相沉积技术(MOCVD)、液相外延(I PE)、气相外延(VPE)等技术的应用,人们可以制造出更多的二维电子气系统.它是由两种具有不同带隙的半导体材料构成,一般要求这两种材料结构相同,并且晶格常量接近,以获得原子级光滑的界面.

MBE和MOCVD 的一个重要特征是可以制备量子尺寸的多层结构,其控制精度可迭单原子层量级0 .这些结构可分为量子阱(QW )和超晶格(SL).1970年,Esaki和Tsu“在寻找具有负微分电阻的新器件时,提出了全新的“半导体超晶格”概念.如果势垒层厚度足够宽,使得相邻阱内电子波函数投有相互作用,郎被称为量子阱.反之,如果相邻阱内电子波函数有较强的相互作用,即相当于在晶格周期场上叠加一个多层结构的超晶格周期场,则被称为超晶格从此,对半导体量子阱和超晶格等半导体微结构的材料和器件的研究成为近20多年来半导体物理学中最重要、最活跃的研究领域之一.1978年Dingle“等人对异质结中二维电子气沿平行于界面的输运进行了研究,发现了电子迁移率增强现象.以后,德国的K.V.Kl—itzing 和崔琦等人相继发现了整数量子霍耳教应和分散量子霍耳效应,使半导体物理的研究取得了重大进展,他们也因此分别获得了诺贝尔奖.近年来,除了超晶格、量子阱以外,对一维量子线和量子点体系韵研究也非常引人注意-早在8O年代初,人们发现禳嵌在硅玻璃中的半导体纳米晶体对于准粒子(电子、空穴、激于等)表现出三维受限性质.量子点的研究之所以会越来越引起人们的重视,是因为量子点的结构具有十分显著的量子化效应,它直接影响着量子点的各种物理性质,如电子结构、输运性质以及光学特性等.半导体纳米材料研究的进展无疑会为单电子物理学和低维材料学的研究开辟新的发展方向,同时也将对新一代量子功能器件的设计与制造产生革命性的影响.

在考虐体材料中电子的行为时,一般是按牛顿定律将电子作为粒子进行处理的,同时还考虑了电子在运动过程中受杂质和声于散射影响的情况.由于量子点是小尺寸的量子系统,具有明显的电子的波动行为,由此会产生各种量子效应.此时半经典理论不再适合描述量子点中的电子性质,而需用量子力学理论加以讨论,大体上可分为以下四种量子效应.半导体的导电性能比导体差而比绝缘体强。实际上,半导体与导体、绝缘体的区别在不仅在于导电能力的不同,更重要的是半导体具有独特的性能(特性)。

1.在纯净的半导体中适当地掺入一定种类的极微量的杂质,半导体的导电性能就会成百万倍的增加—-这是半导体最显著、最突出的特性。例如,晶体管就是利用这种特性制成的。

2.当环境温度升高一些时,半导体的导电能力就显著地增加;当环境温度下降一些时,半导体的导电能力就显著地下降。这种特性称为“热敏”,热敏电阻就是利用半导体的这种

特性制成的。

3.当有光线照射在某些半导体时,这些半导体就像导体一样,导电能力很强;当没有光线照射时,这些半导体就像绝缘体一样不导电,这种特性称为“光敏”。例如,用作自动化控制用的“光电二极管”、“光电三极管”和光敏电阻等,就是利用半导体的光敏特性制成的。

由此可见,温度和光照对晶体管的影响很大。因此,晶体管不能放在高温和强烈的光照环境中。在晶体管表面涂上一层黑漆也是为了防止光照对它的影响。最后,明确一个基本概验:所谓半导体材料,是一种晶体结构的材料,故“半导体”又叫“晶体”。

4,性质

(1)热学特性

纳米微粒的熔点,烧结温度比常规粉体要低得多。这是由于表面与界面效应引起的。

比如:大块的pb的熔点600k,而20nm球形pb微粒熔点降低288k,纳米Ag 微粒在低于373k时开始融化,常规Ag的熔点远高于1173k。还有,纳米TiO2在7 73k加热出现明显致密化,而大晶粒样品要出现同样的致密化需要再升温873k才能达到,这和烧结温度有很大关系。

(2)光学特性

宽频带强吸收当尺寸减小到纳米颗粒时,几乎成黑色,对可见光反射率急剧下降。

有些纳米颗粒如同氮化硅,SiC及三氧化二铝对红外有一个宽频带强吸收谱。而ZnO、三氧化二铁和二氧化钛纳米颗粒对紫外线有一个宽频带强吸收谱。

蓝移和红移和大块材料相比,纳米微粒普遍吸收带存在蓝移,即吸收带移向短波长方向;而在某些条件下粒径减小至纳米级时吸收带向长波方向转移,即红移。

(3)化学性质

由于表面效应,可以做催化剂,提高反应活力。

由此可见,温度和光照对晶体管的影响很大。因此,晶体管不能放在高温和强烈的光照环境中。在晶体管表面涂上一层黑漆也是为了防止光照对它的影响。最后,明确一个基本概验:所谓半导体材料,是一种晶体结构的材料,故“半导体”又叫“晶体”。

1.1.3纳米粉体材料的基本性质:

(1).小尺寸效应

随着颗粒的量变,当纳米颗粒的尺寸与光波、传导电子德布罗意波长以及超导态的相干长度或透射深度等物理尺寸特征相当或更小时,周期边界性条件将被破坏,声、光、电、磁、热、力等特性均会出现质变。由于颗粒尺寸变小所引起的宏观物理性质的变化成为小尺寸效应。

(2).表面与界面效应

纳米微粒尺寸小、表面大、位于表面的原子占相当大的比例。由于纳米粒径的减小,最终会引起表面原子活性增大,从而不但引起纳米粒子表面原子输送和构型的变

化,同时也引起表面电子自旋构象和电子能谱的变化。以上的这些性质被称为“表面与界面效应”。

(3).量子尺寸效应

当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变成离散能级的现象成为量子尺寸效应。

1.1.3半导体材料的用途

半导体独特的导电特性是导体和绝缘体所没有的,所以半导体在现代技术中有重要的应用。

1、利用半导体材料可以制成热敏电阻、光敏电阻、传感器、晶体二极管、晶体三极管等电子元件。

利用半导体的热敏特性,可以用半导体材料制成体积很小的热敏电阻,它能将温度变化转化为电信号,测量这种电信号,就可以知道温度变化的情况。这种测量方法反应快,精度高。

利用半导体的光敏特性,可以用半导体材料制成体积很小的光敏电阻,它能将光信号转化为电信号。光敏电阻可以起到开关的作用,在需要对光照有灵敏反应的自动控制设备中有广泛的应用。

利用半导体的掺杂特性,再加上特殊的制作工艺,人们制成了晶体二极管和晶体三极管。晶体二极管和晶体三极管在电子线路中也有着较为广泛的用途。

2、制成集成电路、超大规模集成电路,开辟了微电子技术的新时代。

将晶体管、电阻、电容等元件及相应的连线同时制作在一块面积很小的半导体晶片上,使这成为具有一定功能的电路,这就是集成电路。

在大规模集成电路中,在面积比小拇指的指甲还小的一块半导体晶片上可以集成上百万个电子元件

1.1.4半导体材料的用途

由于纳米粉体材料可以压制成纳米固体。所以纳米粉体是纳米固体的基础。半导体独特的导电特性是导体和绝缘体所没有的,所以半导体在现代技术中有重要的应用。

1、利用半导体材料可以制成热敏电阻、光敏电阻、传感器、晶体二极管、晶体三极管等电子元件。

利用半导体的热敏特性,可以用半导体材料制成体积很小的热敏电阻,它能将温度变化转化为电信号,测量这种电信号,就可以知道温度变化的情况。这种测量方法反应快,精度高。

利用半导体的光敏特性,可以用半导体材料制成体积很小的光敏电阻,它能将光信号转化为电信号。光敏电阻可以起到开关的作用,在需要对光照有灵敏反应的自动控制设备中有广泛的应用。

利用半导体的掺杂特性,再加上特殊的制作工艺,人们制成了晶体二极管和晶体三极管。晶体二极管和晶体三极管在电子线路中也有着较为广泛的用途。

2,纳米粉体可以做纳米涂层。纳米涂层是运用表面技术,将部分或全部含有纳米粉的材料涂于基体,由于纳米粉体的独特表面性质,从而赋予材料新的各种性质。

①可以做成表面涂料从而改变物质表面的光学性质,如光学非线性、光吸收、光反射、光传输等。纳米颗粒在灯泡工业上有很好的应用。对于高压钠灯,碘弧灯有

69%的电能转化为红外线,只有少量的光能是可见光,并且灯管发热也会减少灯管的寿命,纳米颗粒给其提供了新的解决方案,人们利用SiO2和TiO2的纳米颗粒制成了多层干涉薄膜总厚度为微米级衬在灯管的内部不仅透光率好而且又很强的红外线

反射能力。可以节省电15%.

②纳米红外涂层,也受到很多人的研究,利用二氧化硅和三氧化二铁、三氧化二铝的纳米粉末复合后就可以很强的吸收红外线,可以做成军人的衣服,既可以保暖又可以躲避敌人热频段的探测,并且重量减少30%.

③纳米紫外涂层,是利用了纳米颗粒的蓝移现象,可作为半导体紫外线过滤器。还有可以涂在塑料表面可以减缓塑料的老化,甚至可以做成防晒霜保护皮肤。

④纳米隐身技术,随着各种探测手段越来越先进,雷达发射电磁波,利用红外探测器可以探测发热体等在以后的军事斗争中,纳米隐身技术就显得很重要了。一方面由于纳米颗粒尺寸远小于红外及其雷达波的波长,因此纳米颗粒的透射率就比常规的材料要大得多,从而减少了反射率,避开了探测;另一方面,纳米微粒的表面能比常规材料要多得多,这就使纳米微粒对电磁波的吸收很强,使反射回去的电磁波轻度大大减小从而很难被发现。纳米级的硼化物,碳化物以及纳米碳管在这方面很有发展前途。

3,在环境保护方面的应用。矿物能源的短缺,环境污染困扰着人们,纳米材料在环境保护,环境治理和减少污染方面的应用,已经呈现出欣欣向荣的景象。纳米颗粒可以抗菌、防腐、除臭、净化空气、优化环境,便于降解等,此外还可以吸附重金属离子净化水质,吸附细菌,病毒,有毒离子等。

4、制成集成电路、超大规模集成电路,开辟了微电子技术的新时代。

将晶体管、电阻、电容等元件及相应的连线同时制作在一块面积很小的半导体晶片上,使这成为具有一定功能的电路,这就是集成电路。

在大规模集成电路中,在面积比小拇指的指甲还小的一块半导体晶片上可以集成上百万个电子元件。集成电路的制成,开辟了微电子技术的时代。

5、半导体的发展前景

人胶还用斗导体制成了半导体激光器、半导体太阳电池等,半导体在现代科学技术中发挥着重要作用。

1.2 纳米氧化锡

1.2.1纳米SnO2的结构

纯SnO2属于四方晶系,金红石结构,空间群为D144n[P42/mm]。单位晶胞有6个原子,其中2个Sn原子,4个O原子,如图1.1所示。每个Sn原子位于6个O原子组成的近似八面体的中心,而每个 O原子也位于3个Sn原子组成的等边三角形的中心,形成6:3的配位结构。晶胞参数分别为a=473.7pm,c=318.5pm,c/a=0.673,O2-离子和Sn4+离子半么分别为140pm和72pm。

氧化锡的制备工艺

SnO2具有更宽的带隙和更高的激子束缚能,SnO2体材料的密度为5.67g/cm,通常制备的SnO2薄膜密度大约为体材料密度的80~90%,熔点为1927摄氏度。SnO2及其掺杂薄膜具有高可见光透过率、高电导率、高稳定性、高硬度和极强的耐腐蚀性等性能。宽带隙半导体的纳米线具有巨大的纵横比,表现出奇特的电学和光学性能,使其在低压和短波长光电子器件方面具有潜在的应用前景。与传统SnO2相比,由于SnO2 纳米材料具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,因而在光、热、电、声、磁等物理特性以及其他宏观性质方面都会发生显著的变化。 二、纳米氧化锡的制备 1.固相法 1)高能机械球磨法 高能机械球磨法是利用球磨机的转动或振动,对原料进行强 烈的撞击、研磨和搅拌。 2)草酸锡盐热分解法 2.液相法 1)醇—水溶液法 2)溶胶—凝胶法 溶胶—凝胶法的基本原理是:金属醇盐或无机盐在有机介质 中经水解、缩聚,形成溶胶,溶胶聚合凝胶化得到凝胶,凝胶经 过加热或冷冻干燥及焙烧处理,除去其中的有机成分,即可得

到纳米尺度的无机材料超细颗粒。 3)微乳液法 微乳液法是将两种反应物分别溶于组成完全相同的两份微乳液中;然后这两种反应物在一定条件下通过物质交换彼此发生反应,借助超速离心,使纳米微粒与微乳液分离;再用有机溶剂清洗除去附着在表面的油和表面活性剂;最后在一定温度下干燥处理,即可得到纳米微粒的固体样品。 4)沉淀法 沉淀法分直接沉淀法和均匀沉淀法,直接沉淀法是制备超细氧化物广泛采用的一种方法,它是在含有金属离子的溶液中加入沉淀剂后,于一定条件下生成沉淀,除去阴离子,沉淀经热分解。均匀沉淀法是利用某一反应使溶液中的构晶离子从溶液中缓慢均匀地释放出来。制得超细氧化物。 5)水热法 水热法制备超细微粉的技术始于1982年,它是指在高温、高压下一些氢氧化物在水中的溶解度大于对应氧化物在水中的溶解度,氢氧化物溶入水中同时析出氧化物。 6)微波法 7)锡粒氧化法 3.气相法 1)等离子体法 等离子体法是在惰性气氛或反应性气氛下通过直流放电

二氧化锡半导体纳米粉体

二氧化锡半导体纳米粉体的制备及气敏性能研究报告 学院:资源加工与生物工程学院 班级:无机0801 姓名:魏军参 学号:0305080723 组员:张明陈铭鹰项成有

半导体纳米粉体的制备及气敏性能研究 前言 SnO2 粉体作为一种功能基本材料,在气敏、湿敏、光学技术等方面有着广泛的应用。目前是应用在气敏元件最多的基本原材料之一。纳米级SnO2 对H2 、C2H2 等气体有着较高的灵敏度、选择性和稳定性,具有更广阔的应用市场前景。研究纳米SnO2 粉体的制备方法很多,例如:真空蒸发凝聚法、低温等离子法、水解法、醇盐水解法、化学共沉淀法、溶胶—凝胶法,近期还出现了微乳液法,水热合成法等。每种制粉方法各有特点,但是在目前技术装备水平和纳米粉体应用市场还未真正形成的条件下,上述纳米粉体制备方法由于技术成熟度或制备成本等方面的原因,大多都还未形成具有实际意义上的生产规模,主要还处于提供研究样品阶段。 以廉价的无机盐SnCl4·5H2O为原料,采用溶胶-凝胶法制备出粒度均匀的超细SnO2粉体,该工艺具有设备简单,过程易控,成本低,收率高等优点。实验考察制备工艺过程中原料浓度、反应温度、反应终点pH值、干燥脱水方式、培烧温度等因素对纳米SnO2粉体粒径的影响。实验过程以TG-DTA热分析、红外光谱等测试手段,分析前驱体氢氧化物受热行为,前驱体表面基团及过程防团聚机理等。利用透射电子显微镜、X-射线衍射仪、比表面测试仪分别对纳米粒子的形貌与粒径分布、晶相组成、比表面积进行了表征与测定。 在实验中制备得到得SnO2 胶体,在干燥、煅烧的过程中很容易形成团聚。因为粉体颗粒细小, 表面能巨大, 往往会粘结在一起。水热法是近年来出现的制备超细粉体的新方法,其利用密封压力容器, 以水为溶剂, 温度从低温到高温(100 ℃~400 ℃) , 压力在10~200 MPa 。该方法为前驱物反应提供了一个在常压下无法实现的特使物理化学条件。避免在普通煅烧过程中, 由于晶粒间细小间隙产生毛细现象导致的颗粒长大团聚。 水热法制备过程中, 粉体在液相中达到“煅烧”温度。通过控制反应条件, 有效阻碍颗粒间的长大, 保持颗粒粒度均匀, 形态规则, 且干燥后无需煅烧, 避免形成硬团聚。 本文以SnCl4·5H2O 为原料, 利用溶胶凝胶法和离心洗涤制备纯净凝胶, 水热脱水法制备SnO2微晶;研究不同水热条件下, SnO2 粉体的形成、晶粒大小以及分散性能。 文献综述 1.1 半导体纳米粉体 半导体定义 电阻率介于金属和绝缘体[1]之间并有负的电阻温度系数的物质。半导体室温时电阻率约在10E-5~10E7欧姆?米之间,温度升高时电阻率指数则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由

纳米氧化锆汇总

二氧化锆纳米材料 一.用途:纳米氧化锆本身是一种耐高温、耐腐蚀、耐磨损和低热膨胀系数的无机非金属材料,由于其卓越的耐热绝热性能,20世纪20年代初即被应用于耐火材料领域。 自1975年澳大利亚学者K.C.Ganvil首次提出利用ZrO2相变产生的体积效应来达到增韧陶瓷的新概念以来,对氧化锆的研究开始异常活跃。——利用其高硬度、抗磨损、耐刮擦、不燃的特性,极大的提高涂料的耐磨性和耐火效果。由于其导热系数低、并具备特殊光学性能,可用于军事、航天领域的热障涂料及隔热涂料。纳米复合氧化锆具备特殊光学性能,对紫外长波、中波及红外线反射率达85%以上;且其自身导热系数低,可提高其隔热性能。——由于不同晶型纳米氧化锆体积不同,可制备具备自修复功能的功能性涂料。 纳米复合氧化锆行业主要企业产能分布

二.目前的制备方法:化学气相沉积(CVD)法,液相法(包括醉盐水解法,沉淀法,水热法,徽乳液法,溶液姗烧法等),徽波诱导法及超声波法等几大类。 三.具体介绍方法:利用溶胶-凝胶法制备出高度有序的二氧化锆纳米管 简介:溶胶一凝胶法是指金属醉盐或无机盐经水解形成溶胶,然后使溶胶一凝胶化再将凝胶固化脱水,最后得到无机材料.在无机材料的制备中通常应用溶胶—凝胶方法,与传统的合成方法相比,具有高纯度、多重组分均匀以及易对制备材料化学掺杂等优点.该方法要使前驱体化合物水解形成胶体粒子的悬浮液(溶胶)后,成为聚集溶胶粒子组成凝胶,凝胶经过热处理得到所需的物质.溶胶—凝胶沉积法广泛用于在模板的纳米通道中制备纳米管或线.本文主要结合溶胶—凝胶法和模板合成法制备二氧化锆纳米管.由于锆的无机盐价格便宜且对大气环境不敏感[,我们利用锆的无机盐(氯化氧锆)作为前驱体溶液制备稳定的溶胶. 具体过程:

纳米氧化锡的研究进展

纳米氧化锡的用途及研究进展 付高辉0909404018 高分子材料与工程 1 前言 氧化锡是一种宽带系半导体材料,带宽范围为 3.6~4.0 eV。它用途广泛,在有机合成中,可用作催化剂。在陶瓷工业中,可作为釉料和搪瓷乳浊剂。由于小尺寸效应及表面效应,纳米氧化锡具有特殊的光电性能、气敏性能、催化性能以及具有化学和机械稳定性,在气敏元件、半导体元件、电极材料、液晶显示器、保护性涂层及太阳能电池等方面有着潜在的应用。是一种重要的半导体金属氧化物功能材料。 鉴于纳米材料的表面原子数与体相原子数之比随颗粒尺寸的减小而急剧增大,从而显示出体积效应、量子尺寸效应、表面效应和宏观量子隧道效应,在光、电、磁、力、化学等方面呈现出一系列独特的性质,人们自然致力研究SnO 纳米 2 材料的制备。[1-3 ] 2 纳米氧化锡的性质 2.1 化学稳定性 纳米氧化锡材料因其也为惰性金属氧化物,不易发生化学反应。因此在好多反应中都保持了自己的性质,这为开发多功能的新型材料提供了保证。 2.2 量子尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射 周边性的边界条件将被破坏,导致声、深度等物理尺寸相当或更小时,纳米SnO 2 光、电、磁、热、力学等性质呈现出新的小尺寸效应。利用这些小尺寸效应,在使用技术方面开辟了一些新的领域。 2.3 宏观量子隧道效应 宏观量子隧道效应即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。而纳米SnO 的宏观量 2 子隧道效应为其在微电子器件发面的发展奠定了良好的基础。

水热法制备纳米二氧化锡微粉

专业:应用化学08届1班;姓名:第1组;同组人员:; 课程名称:无机合成化学实验 实验名称:水热法制备纳米SnO2微粉 实验日期:2011年4月19日 一.实验目的 纳米SnO2微粉的制备和表征。 二.实验原理 纳米SnO2具有很大的比表面积,是一种很好的气皿和湿皿材料。水热法制备纳米氧化物微粉有很多优点,如产物直接为晶体,无需经过焙烧净化过程,因而可以减少其它方法难以避免的颗粒团聚,同时粒度比较均匀,形态比较规则。因此,水热法是制备纳米氧化物微粉的好方法之一。 水热法是指在温度不超过100℃和相应压力(高于常压)条件下利用水溶液(广义地说,溶剂介质不一定是水)中物质间的化学反应合成化合物的方法。 水热合成方法的主要特点有:(1)水热条件下,由于反应物和溶剂活性的提高,有利于某些特殊中间态及特殊物相的形成,因此可能合成具有某些特殊结构的新化合物;(2)水热条件下有利于某些晶体的生长,获得纯度高、取向规则、形态完美、非平衡态缺陷尽可能少的晶体材料;(3)产物粒度较易于控制,分布集中,采用适当措施尽可能减少团聚;(4)通过改变水热反应条件,可能形成具有不同晶体结构和晶体形态的产物,也有利于低价、中间价态与特殊价态化合物的生成。基于以上特点,水热合成在材料领域已有广泛应用。水热合成化学也日益受到化学与材料科学界的重视。本实验以水热法制备纳米SnO2微粉为例,介绍水热反应的基本原理,研究不同水热反应条件对产物微晶形成、晶粒大小及形态的影响。 水热反应制备纳米晶体SnO2的反应机理如下: 第一步是SnCl4的水解 SnCl4+4H2O Sn(OH)4↓+4HCl 形成无定形的Sn(OH)4沉淀,紧接着发生Sn(OH)4的脱水缩合和晶化作用,形成SnO2纳米微晶。 n Sn(OH)4→n SnO2+2n H2O (1)反应温度:反应温度低时SnCl4水解、脱水缩合和晶化作用慢。温度升高将促进SnCl4的水解和Sn(OH)4脱水缩合,同时重结晶作用增强,使产物晶体结构更完整,但也导致SnO2微晶长大。本实验反应温度以120℃~160℃为宜。 (2)反应介质的酸度:当反应介质的酸度较高时,SnCl4的水解受到抑制,中间物Sn (OH)4生成相对较少,脱水缩合后,形成的SnO2晶核数量较少,大量Sn4+离子残留在反应液中。这一方面有利于SnO2微晶的生长,同时也容易造成粒子间聚结,导致产生硬团聚,这是制备纳米粒子时应尽量避免的。 当反应介质的酸度较低时,SnCl4水解完全,大量很小的Sn(OH)4质点同时形成。在水热条件下,经脱水缩合和晶化,形成大量SnO2纳米微晶。此时由于溶液中残留的Sn4+离子数量也很少,生成的SnO2微晶较难继续生长。因此产物具有较小的平均微粒尺寸,粒子间的硬团聚现象也相应减少。本实验反应介质的酸度控制在pH=1.45。 (3)反应物的浓度:单独考察反应物浓度的影响时,反应物浓度愈高,产物SnO2的产率愈低,这主要是由于当SnCl4浓度增大时,溶液的酸度也增大,Sn4+的水解受到抑制的缘故。 当介质的pH=1.45时,反应物的粘度较大,因此反应物浓度不宜过大,否则搅拌难于进行。一般用【SnCl4】=1mol?L-1为宜。

纳米氧化锆粉体的合成与表征

纳米氧化锆粉体的合成与表征 李杰119024189 无111 1 引言 二氧化锆是制备特种陶瓷最重要的原料之一,由于其具有优良的机械、热学、电学、光学性质而在高温结构材料、高温光学元件、氧敏元件、燃料电池等方面有着广泛的应用,它是2l世纪最有发展前景的功能材料之一。而控制氧化锆前驱粒子的颗粒尺寸对制备高性能氧化锆陶瓷具有重要意义。 本研究采用水/环己烷/辛基苯基聚氧乙烯醚(Triton X-100)/正己醇四元油包水体系,通过反相微乳液法制备了纳米ZrO2粉体,用TEM,XRD等对所制备的纳米粉体进行了表征,研究了煅烧温度、pH值、陈化时间对ZrO2纳米粒子结构与性能的影响。结果表明,以单斜相为主的ZrO2纳米粉体,其晶粒尺寸可控制在20 nm左右;随着煅烧温度的提高,ZrO2的结晶程度逐渐提高;随着pH值的提高,少量四方相ZrO2全部转化为单斜相;随着陈化时间的增加,ZrO2颗粒尺寸变大。 2 结构性质 自然界的氧化锆矿物原料,主要有斜锆石和锆英石。纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715℃。通常含有少量的氧化铪,难以分离,但是对氧化锆的性能没有明显的影响。氧化锆有三种晶体形态:单斜、四方、立方晶相。常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,加热到更高温度会转化为立方相。由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。 3 用途 3.1 ZrO2在特种陶瓷中的应用 由于高纯ZrO2具有优良的物理化学性质,当其与某些物质复合时,在不同条件下又具有对电、光、声、气和温度等的敏感特性,使其广泛用于电子陶瓷、功能陶瓷和结构陶瓷等高新技术领域。 3.1.1 电子陶瓷 ZrO2在电子陶瓷中的应用主要有压电元件(如发火元件、助听器、拾音器等),滤波器(用于电视机、收录机、共电式无线电收发机等),超声波振荡器(用于潜艇音纳、鱼群探测器和测深仪等),蜂鸣器(用于电子计算机输入功率鉴定信号机、曲调桌式电子计算机、数字显示手表及闹钟等)及高温导体等。

纳米二氧化锡ATO透明隔热涂料的研制

纳米二氧化锡ATO透明隔热涂料的研制2010/6/23/8:26来源:中国防腐网作者:刘成楼 刘成楼 (北京虹霞正升涂料有限责任公司,北京102400) 慧聪涂料网讯:摘要:以有机硅乳液改性丙烯酸树脂为成膜物,以纳米掺锑二氧化锡(ATO)粉体为颜填料,在助剂的配合下制备成水性纳米透明隔热涂料,将其涂刷在玻璃表面,形成一层透明隔热涂膜,在满足采光需要的同时,又使玻璃具有一定的隔热功能。 关键词:纳米掺锑二氧化锡(ATO);玻璃;透明;隔热;涂料 中图分类号:TQ637文献标识码:A文章编号:1007-9548(2010)02-0006-04 1引言 建筑节能,就是在保证居室温度舒适的环境条件下,通过技术进步、科学选材、合理设计、性价比优化等途径,把居室建筑长期使用的采暖和降温性的能耗降低。良好的建筑外保温围护结构,可以确保建筑对能耗的需求减少50%以上,极大地降低了能源的总体消耗水平[1]。目前,我国对建筑围护结构主要推行外墙外保温和屋面保温系统,且技术已经成熟,而对改善门窗的保温隔热性技术还不够成熟。 从国家标准对住宅围护结构不同部位的传热系数(K)规定中可以看出:墙体不大于2.00W(/m·2K)、屋顶不大于1.26W(/m·2K)、窗不大于6.40W(/m2·K),普通玻璃窗的传热系数是墙体的3.2倍,是屋顶的5倍,因此,普通玻璃窗成为建筑保温围护结构中的薄弱环节,况且,为了提高室内的采光明亮度,现代建筑设计的窗户面积都较大。为了节能,科研人员进行了广泛的研究和探索,先后研制成金属镀膜隔热玻璃、真空玻璃、贴膜玻璃、Low-E玻璃等节能产品,但是这些产品也存在一些问题,其在可见光区的不透明性和高反射率限制了它的应用范围[2]。透光率低、隔热效果不佳、工艺条件控制复杂、且价格昂贵(普通玻璃贴热反射膜成本为130~160元/m)2,限制了其应用推广。市场急需一种性价比高的透明隔热涂料来解决这一关键问题[3]。 本研究以有机硅乳液改性丙烯酸树脂为成膜物,以纳米掺锑二氧化锡(ATO)为颜填料,在助剂的配合下,制备成水性纳米透明隔热涂料,将其涂刷在玻璃表面,形成一层透明隔热薄膜,在满足室内采光需要的同时,又使玻璃具有一定的

关于氧化锡的制备方法

SnO2体材料的密度为5.67g/cm,通常制备的SnO2薄膜密度大约为体材料密度的80~90%,熔点为1927摄氏度。SnO2及其掺杂薄膜具有高可见光透过率、高电导率、高稳定性、高硬度和极强的耐腐蚀性等性能。宽带隙半导体的纳米线具有巨大的纵横比,表现出奇特的电学和光学性能,使其在低压和短波长光电子器件方面具有潜在的应用前景。与传统SnO2相比,由于SnO2 纳米材料具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,因而在光、热、电、声、磁等物理特性以及其他宏观性质方面都会发生显著的变化。 二、纳米氧化锡的制备 1.固相法 1)高能机械球磨法 高能机械球磨法是利用球磨机的转动或振动,对原料进行强 烈的撞击、研磨和搅拌。 2)草酸锡盐热分解法 2.液相法 1)醇—水溶液法 2)溶胶—凝胶法 溶胶—凝胶法的基本原理是:金属醇盐或无机盐在有机介质 中经水解、缩聚,形成溶胶,溶胶聚合凝胶化得到凝胶,凝胶经 过加热或冷冻干燥及焙烧处理,除去其中的有机成分,即可得 到纳米尺度的无机材料超细颗粒。

3)微乳液法 微乳液法是将两种反应物分别溶于组成完全相同的两份微乳液中;然后这两种反应物在一定条件下通过物质交换彼此发生反应,借助超速离心,使纳米微粒与微乳液分离;再用有机溶剂清洗除去附着在表面的油和表面活性剂;最后在一定温度下干燥处理,即可得到纳米微粒的固体样品。 4)沉淀法 沉淀法分直接沉淀法和均匀沉淀法,直接沉淀法是制备超细氧化物广泛采用的一种方法,它是在含有金属离子的溶液中加入沉淀剂后,于一定条件下生成沉淀,除去阴离子,沉淀经热分解。均匀沉淀法是利用某一反应使溶液中的构晶离子从溶液中缓慢均匀地释放出来。制得超细氧化物。 5)水热法 水热法制备超细微粉的技术始于1982年,它是指在高温、高压下一些氢氧化物在水中的溶解度大于对应氧化物在水中的溶解度,氢氧化物溶入水中同时析出氧化物。 6)微波法 7)锡粒氧化法 3.气相法 1)等离子体法 等离子体法是在惰性气氛或反应性气氛下通过直流放电 使气体电离产生高温等离子体,使原料熔化和蒸发,蒸气遇

金属氧化物纳米材料的制备新进展

摘要:综述了近5年来金属氧化物纳米材料的制备方法、研究现状;讨论了这些方法的优缺点。指出液相法,尤其是溶胶-凝胶法、沉淀法、水解法、微乳液法、水热溶剂热法等是目前制备纳米金属氧化物材料最广泛应用的方法。而超声技术、微波辐射技术、交流电沉积技术、超临界流体干燥技术、非水溶剂水热技术等新技术与传统液相法的有机结合,是制备高纯度、小粒径、均匀分散的金属氧化物纳米粉体的最有前途的方法。最后对金属氧化物纳米材料研究的发展方向提出了展望。 关键词:金属氧化物;纳米;制备;进展 金属氧化物纳米材料广泛应用于制作催化剂、精细陶瓷、复合材料、磁性材料、荧光材料、湿敏性传感器及红外吸收材料等[1]。例如:纳米氧化锌在磁、光、电敏感材料方面呈现常规材料所不具备的特殊功能,使得高品质的氧化锌的应用前景广阔;纳米氧化铝作为重要的陶瓷材料,具有非常高的应用价值;高纯纳米级SnO2可用来制作气敏及湿敏元件;纳米氧化钛由于在精细陶瓷、半导体、催化材料方面的广泛应用,也越来越引起人们的关注。多年来,科技工作者们已经研制出多种制备金属氧化物纳米材料的方法,如:溶胶-凝胶法、醇盐水解法、强制水解法、溶液的气相分解法、湿化学合成法、微乳液法等。近年来材料科学家和化学家又将激光技术、微波辐射技术、超声技术、交流电沉积技术、超临界流体干燥技术、非水溶剂水热技术等方法引入了金属氧化物纳米材料的传统制备方法中,使金属氧化物纳米材料的制备方法得到了较大的完善和发展。关于金属氧化物纳米材料,邓红梅[2]综述了化学法制备及EXAFS特征研究,汪信[3]对复合金属氧化物的制备进行了评述。本文着重评述近5年来单分散性金属氧化物纳米材料的制备方法、研究现状和发展方向。 1 金属氧化物纳米微粒的制备 根据原料状态的不同,制备金属氧化物纳米微粒的方法大致可分为3类:固相法、液相法和气相法。 1.1固相法 传统的固相法是将金属盐和金属氢氧化物按一定的比例充分混合,发生复分解反应生成前驱物,多次洗涤后充分研磨进行煅烧,然后再研磨得到纳米粒子。此法设备和工艺简单,反应条件容易控制,产率高,成本低,环境污染少,但产品粒度分布不均,易团聚。刘长久等[4]采用固相反应法制备了粒径为30nm的NiO纳米粉体,并对其电化学性能进行了研究。HengLi等[5]在环境温度下用固相反应成功地合成了纳米氧化物SiO2、CeO2、SnO2,并初步探讨了环境温度下纳米材料的形成机理。贾殿赠等[6]对此法进行了改进,在固相配位化学反应的基础上,将室温固相配位化学反应引入金属氧化物纳米粒子的合成中,提出一种室温固相化学反应合成纳米材料的新方法,即用室温固相化学反应首先制得前驱物,进而前驱物经热分解得纳米金属氧化物。此法不仅是无溶剂反应,而且许多反应可在室温或低温条件下发生。因此从原料的使用、合成条件及合成工艺等方面考虑,固相配位化学反应法在合成新颖纳米材料方面具有其潜在的优点。目前采用此新方法已制得纳米CuO[7]、ZnO、NiO等。 1 2液相法 液相法因其相关的工业过程控制与设备的放大技术较为成熟,具有更强的技术竞争优势。该法比较容易控制成核,从而容易控制颗粒的化学组成、形状及大小,而且该方法添加的微量成分和组成较均匀,即使是对于很复杂的材料也可以获得化学均匀性很高的粉体。不过,该法极易引入杂质(如部分阴离子等),造成所得粉体纯度不够。近年来,超声、微波辐射、电弧放电、共沸蒸馏等物理技术的引入,使普通液相法制备纳米粉体得到了新的发展。液相法大致可分为以下几种方法。 1.2.1溶胶-凝胶法(Sol-Gel) 溶胶-凝胶法是近期发展起来的,能代替高温固相合成反应制备陶瓷、玻璃和许多固体材料的新方法。作为低温或温和条件下合成无机化合物或无机材料的重要方法,在软化学合成中已

纳米二氧化锡项目投资方案(立项申请报告)

纳米二氧化锡项目 投资方案 一、项目概况 (一)项目名称 纳米二氧化锡项目 全市地区生产总值增长8%(预计数,下同);规模以上工业增加 值增长8.8%;固定资产投资增长10%;社会消费品零售总额增长10%;地方一般公共预算收入增长8%;全体居民人均可支配收入增长8.8%, 高质量发展取得重大进展。今年是全面建成小康社会和“十三五”规 划收官之年,长沙的未来机遇和挑战同在,发展与风险并存。从机遇看,我国经济稳中向好、长期向好的基本趋势没有改变,国家坚持宏 观政策要稳、微观政策要活、社会政策要托底的政策框架,逆周期调 节力度不断加大,技术创新、减税降费等方面的政策支持将会叠加发。从挑战看,我国正处在转变发展方式、优化经济结构、转换增长动力 的攻关期,结构性、体制性、周期性问题相互交织,受“三期叠加”、经济下行压力加大和三大攻坚战任务仍然艰巨等影响,长沙推动经济 高质量发展与生态高水平保护的统筹需要持续加强,防范债务风险和 稳定投资增长的矛盾需要重点破解,应对先进城市竞争与带动区域共

同发展的关系需要协同推进。我们一定要保持定力、激发活力、创新 动力、形成合力,积极应对各种风险挑战,保持高质量发展良好势头,加快现代化长沙建设进程,努力展现省会城市更大担当、彰显幸福长 沙更大作为。全市经济社会发展的主要目标是:地区生产总值增长8% 左右;固定资产投资增长9%;规模以上工业增加值增长8.5%左右;社 会消费品零售总额增长10%;地方一般公共预算收入增长6.5%;全体 居民人均可支配收入增长8%;单位地区生产总值能耗下降2%,税收占 财政收入比重、减排任务完成省定指标;城镇登记失业率控制在4%以内,居民消费价格指数103.5左右。 (二)项目建设单位 xxx科技公司 (三)项目咨询规划单位 xxx泓域咨询 (四)项目选址 某某产业示范基地 (五)项目用地规模 项目总用地面积14413.87平方米(折合约21.61亩)。 (六)项目用地控制指标

金属氧化物纳米材料的电化学合成与形貌调控研究进展

[Review] https://www.docsj.com/doc/1615623010.html, doi:10.3866/PKU.WHXB 201209145 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.-Chim.Sin.2012,28(10),2436-2446 October Received:August 30,2012;Revised:September 10,2012;Published on Web:September 14,2012.? Corresponding author.Email:dsxu@https://www.docsj.com/doc/1615623010.html,;Tel:+86-10-62760360. The project was supported by the National Natural Science Foundation of China (51121091,21133001,61176004),National Key Basic Research Program of China (973)(2007CB936201,2011CB808702),and Science and Technology on Electro-optical Information Security Control Laboratory,China (9140C150304110C1502). 国家自然科学基金(51121091,21133001,61176004),国家重点基础研究发展规划项目(973)(2007CB936201,2011CB808702)和国家光电信息控制和安全技术重点实验室基金(9140C150304110C1502)资助 ?Editorial office of Acta Physico-Chimica Sinica 金属氧化物纳米材料的电化学合成与形貌调控研究进展 焦淑红1 徐东升1,2,*许荔芬1张晓光2 (1北京大学化学与分子工程学院,分子动态与稳态结构国家重点实验室,北京分子科学国家实验室,北京100871; 2 光电信息控制和安全技术重点实验室,河北三河065201) 摘要:金属氧化物纳米材料因其丰富的形貌、独特的性能、广泛的应用成为材料合成领域研究的热点.调控金 属氧化物纳米材料的形貌对于调变其性能、拓展其应用空间具有重要意义.电化学方法由于操作简单易控、方法灵活多变,因此成为调控金属氧化物形貌的常用方法.本文综述了近年来我们在金属氧化物纳米材料的电化学合成与形貌调控方面已取得的研究结果;总结了不同金属氧化物在电化学过程中晶体生长机制和形貌调控的规律,为实现功能材料的定向合成奠定了基础.关键词: ZnO;金属氧化物;形貌调控;电沉积;纳米管;多级结构 中图分类号: O646 Recent Progress in Electrochemical Synthesis and Morphological Control of Metal Oxide Nanostructures JIAO Shu-Hong 1 XU Dong-Sheng 1,2,* XU Li-Fen 1 ZHANG Xiao-Guang 2 (1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China ;2Science and Technology on Electro-optical Information Security Control Laboratory,Sanhe 065201,Hebei Province,P .R.China ) Abstract:There has been considerable focus on the synthesis of metal oxide nanostructures because of their extensive structures,unique properties,and wide applications.The morphological control of metal oxide nanostructures is of interest for tuning their performance and expanding their range of applications.Electrochemical methods have become a common way of controlling the morphologies of metal oxides,owing to their simple operation,ease of control,and flexible modes.This paper presents a brief overview of our research in the electrochemical synthesis and morphological control of metal oxide nanostructures.We will also discuss the crystal growth mechanism and the morphology control of different metal oxides during the electrochemical deposition process,which lays the foundation for orientation design and fabrication of functional materials. Key Words:ZnO;Metal oxide;Morphological control; Electrodeposition; Nanotube; Hierarchical structure 2436

氧化锡基纳米材料的制备及应用

氧化锡基纳米材料的制备及应用 应化081(10082072)X明辉 摘要:纳米氧化锡因其独特的性质,在诸多领域中都具有广阔的应用前景,如导电填料,气敏传感器、催化剂、变阻器、陶瓷、透明导电氧化物薄膜和隔热涂料等,是一种极具发展潜力的新型导电材料。本文按照固相法、液相法、气相法综述了目前常见的纳米二氧化锡合成方法,比较了各种方法的优缺点,并简要介绍了其表征。 关键词:纳米材料,氧化锡,制备方法 1 研究背景 纳米材料是指在三维空间中至少有一维处于纳米尺寸X围(1-100nm),或者以它们作为基本单元构成的材料。按纳米材料的几何特征,人们常将其分为零维纳米材料(如纳米团簇、纳米微粒、人造原子)、一维纳米材料(如纳米碳管、纳米纤维、纳米同轴电缆)、二维纳米材料(纳米薄膜)和纳米晶体等。纳米材料尺寸小,比表面积大,具有量子尺寸效应,表面效应和宏观量子隧道效应,因此在光、热、电、声、磁等物理性质以及其他宏观性质方面都发生了显著地变化。所以人们试图通过纳米材料的运用来改善材料的性能。 SnO 2是一种重要的宽禁带n型半导体材料,带宽X围为3.6eV-4.0eV。SnO 2 是重要的 电子材料、陶瓷材料和化工材料。在电工、电子材料工业中,SnO 2 及其掺杂物可用于导电 材料、荧光灯、电极材料、敏感材料、热反射镜、光电子器件和薄膜电阻器等领域。在陶 瓷工业,SnO 2 用作釉料及陶瓷的乳浊剂,由于其难溶于玻璃及釉料中,还可用做颜料的载 体;在化学工业中,主要是作为催化剂和化工原料。SnO 2 是目前最常见的气敏半导体材 料,它对许多可燃性气体都有相当高的灵敏度。利用SnO 2 制成的透明导电材料可应用在 液晶显示、光探测器、太阳能电池、保护涂层等技术领域[1-3]。正是由于SnO 2 纳米材料的 广泛的应用背景,所以,纳米SnO 2 的制备技术已成为人们研究的热点之一。 2 文献综述 2.1 固相法合成SnO 2 纳米材料

氧化锆纳米粉体的制备及其烧结性能研究

氧化锆纳米粉体的制备及其烧结性能研究

目录 第1章前言 (1) 1.1纳米材料概述 (1) 1.2纳米氧化锆及其陶瓷材料概述 (2) 1.2.1二氧化锆的结构与性质 (2) 1.2.2氧化锆纳米材料的研究进展 (5) 1.2.3纳米氧化锆粉体的制备 (6) 1.2.4氧化锆陶瓷材料的成型 (9) 1.2.5氧化锆陶瓷的烧结 (10) 1.2.6纳米氧化锆及其陶瓷的应用 (12) 1.3本课题研究目的及主要研究内容 (14) 1.3.1课题研究目的 (14) 1.3.2课题研究内容 (14) 第2章实验材料及方法 (16) 2.1实验试剂与仪器 (16) 2.2粉体制备实验步骤与流程 (17) 2.2.1实验步骤 (17) 2.2.2实验流程 (18) 2.3氧化锆陶瓷试样的制备 (20) 2.4纳米氧化锆粉体的测试与表征手段 (20) 2.4.1物相组成(X射线衍射)分析 (21) 2.4.2热重-差热(TG-DTA)分析 (21) 2.4.3红外光谱(FT-IR)分析 (21) 2.4.4形貌(TEM)分析 (22) 2.5烧结试样的性能测试 (22) 2.5.1密度的测定 (22) 2.5.2收缩率的测定 (22) 2.5.3抗弯强度的测定 (23) 2.5.4显微结构分析 (23) 第3章氧化锆纳米粉体合成工艺条件的研究与机理分析 (24) 3.1常压水热法制备氧化锆纳米粉体 (24) 3.1.1实验内容 (24)

3.1.2实验结果与讨论 (25) 3.2有机网络凝胶法制备ZrO2纳米粉体 (34) 3.2.1实验内容 (34) 3.2.2实验原理 (34) 3.2.3实验结果与讨论 (35) 3.3本章小结 (46) 第4章氧化锆纳米粉体的烧结性能研究 (47) 4.1烧结试样的密度测试与分析 (48) 4.2烧结试样收缩率的测试与分析 (50) 4.3烧结试样的抗弯强度测试与分析 (51) 4.4烧结试样的显微结构测试与分析 (52) 4.5本章小结 (57) 第5章结论 (58) 参考文献 (59) 致谢 (63) 攻读硕士期间发表论文及专利情况 (65)

金属纳米材料研究进展

金属纳米材料研究进展 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:…………. 金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词:纳米材料水热合成金属氧化物 Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ; 引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 纳米材料概述

氧化锆粉体制备及其应用

氧化锆粉体制备及其应用摘要: 本文重点介绍了氧化锆陶瓷原料制备工艺和性能覆其在蛄构瓷、功 能瓷、颜料与宝石、涂层、纤堆和耐火材料等方面的应用。对如何使氧化铬畸瓷产 业化远一问题,提出了自己的见解。 关键词:氧化锆;高性能陶瓷;制备;应用 Abstract:This paper focuses on the zirconia ceramic material preparation process and performance review of its structure in the mantis porcelain, functional ceramics, pigments and precious stones, coating, fiber and other aspects of heap and refractory applications. Chromium oxide on how to make porcelain produced abnormal Much a problem of industry, put forward their own views. Keywords: zirconia; high-performance ceramics; preparation; application 一、引言 随着科学技术的发展,人们对材料的需求也在不断地提高。当今世界新型陶瓷的发展趋向是:原料超细化(含纳米级细度),发展了材料复台、成型与烧结工艺、制品的后处理(包括制品后加工及其与其他材料联接等)和相应的测试方法。氧化锆陶瓷也与其他新型陶瓷一样,随着新工艺、新技术的运用,进一步充分发挥了它高熔点、比重大、耐腐蚀、耐磨损、低导热、半导体及相变等特点,世界各国都给予高度重视,在功能和结构等各个领域中,都起着重大作用。下面就ZrO2陶瓷材料及倒品的有关情材料多功能化、轻质高强化和材料结构梯度化。为此也相应地况作简单概述,供有关人士参阅。 ZrO2具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。上个世纪二十年代开始就被用来作为熔化玻璃、冶炼钢铁等的耐火材料,从上个世纪七十年代以来,随着对ZrO2有了更深刻的了解,人们进一步研究开发ZrO2作为结构材料和功能材料。1975年澳大利亚R.G.Garvie以CaO为稳定剂制得部分稳定氧化锆陶瓷(Ca-PSZ),并首次利用ZrO2马氏体相变的增韧效应提高了韧性和强度,极大的扩展了ZrO2在结构陶瓷领域的应用。1973年美国R.Zechnall, G.Baumarm,H.Fisele制得ZrO2电解质氧传感器,此传感器能正确显示汽车发动机的空气、燃料比,1980年把它应用于钢铁工业。1982年日本绝缘子公司和美国Cummins发动机公司共同开发出ZrO2节能柴油机缸套。自此,ZrO2高性能陶瓷的研究和开发获得了许多进展。 二、ZrO2粉体的制备方法 2.1 微粉制备

纳米金属氧化物的制备及应用研究的若干进展

纳米金属氧化物的制备及应用研究的若干进展 汪信陆路德 综述了氧化物及复合氧化物纳米晶的各种制备方法及特点,重点介绍了有机配合物前驱体法-聚乙二醇法、明胶法和硬脂酸法制备氧化物纳米晶的原理、特点以及在磁性材料、电磁波吸收材料、催化剂和塑料改性方面的若干应用。 关键词:纳米材料氧化物软化学 分类号:O611.12 Progress of Preparation and Applications of Metal Oxide Nanocrystallines WANG Xin LU Lu-De (Materials Chemistry Laboratory, Nanjing University of Science and Technology,Nanjing 210094) The preparative methods of nanostructured metal oxides are reviewed. Particularly the principles and features of the organic coordination precursor methods, including polyethylene glycol, gelatin and stearic acid methods, are discussed. The oxide nanocrystals has been used as magnetic and microwave-absorbing materials, catalysts and strengthening fillers for modification of plastics. Keywords: nanostructured material oxide soft chemistry 一九七八年十月我们有幸作为文革后第一批研究生来到南京大学配位化学研究所学习。开学不久,戴安邦教授为全体研究生作了题为“无机化学的进展”的学术报告,把我们带入了内容极为丰富的科学领域。虽然我们离开南京大学已有多年,虽然戴先生今年已离我们而去,但他的学术思想、治学态度和为人品格无时无刻都在影响着我们,是我们进步的一种动力。十多年来我们一直把从南京大学学到的知识和理工科大学的教学、科研结合起来,取得了一些成果,下面主要介绍一些无机纳米材料的研究工作。 1 复合氧化物纳米晶的制备方法 传统的复合氧化物的制备通常是以固态的氧化物或金属碳酸盐为原料,球磨后经高温固相反应,再粉碎得到复合氧化物的粉体。由于是高温反应,不仅制备的产物粒径大、分布宽,而且某些组分易于挥发或发生偏析,这种方法一般不宜用来制备纳米氧化物。纳米复合氧化物的制备通常是采用软化学法,即通过反应原料的液相混合使各金属元素高度分散,从而可以在较低的反应温度和较温和的化学环境下制备纳米材料。采用的方法主要有共沉淀法、溶胶-凝胶法、有机配合物前驱体法等。 1.1 共沉淀法 共沉淀法是液相化学反应合成金属氧化物纳米颗粒最早采用的方法。沉淀法成本较低,但有如下问题:沉淀物通常为胶状物,水洗、过滤较困难;沉淀剂作为杂质易混入;沉淀过程中各种成分可能发生偏析,水洗时部分沉淀物发生溶解。此外由于大量金属不容易发生沉淀反应,因此

相关文档