文档视界 最新最全的文档下载
当前位置:文档视界 › 基于最优潮流的分布式小水电无功考核方法_乔蕾

基于最优潮流的分布式小水电无功考核方法_乔蕾

基于最优潮流的分布式小水电无功考核方法_乔蕾
基于最优潮流的分布式小水电无功考核方法_乔蕾

关于电力系统经济调度的潮流计算分析

关于电力系统经济调度的潮流计算分析 发表时间:2016-05-24T15:57:29.347Z 来源:《电力设备》2016年第2期作者:秦先威 [导读] (国网山东省电力公司烟台市牟平区供电公司山东烟台 264100)随着经济的快速发展和科技的不断进步,社会各行业对电力资源的需求量越来越大,我国的电力系统建设规模也越来越大。 (国网山东省电力公司烟台市牟平区供电公司山东烟台 264100) 摘要:潮流计算是电力调度中最重要也是最基本的计算之一,它应用于电力系统中实时电价计算、输电权分配、网络阻塞管理等多方面。 关键词:电力系统;经济调度;潮流计算 前言 随着经济的快速发展和科技的不断进步,社会各行业对电力资源的需求量越来越大,我国的电力系统建设规模也越来越大。电力调度对电力系统的正常运行有很大的影响,而潮流计算则是电力调度中最重要的基本计算方法,潮流计算对电价计算、输电分配、电网线路管理有十分重要的影响。随着经济的快速发展,我国的电力企业得到了飞速的发展,与此同时,人们对供电质量的要求也越来越高,为满足人们的用电需求,电力系统在运行过程中,必须保证电力调度的合理性、科学性,潮流计算是电力系统经济调度最重要的计算方法之一,潮流计算的结果准确性很高,科学性很强,潮流计算对电力系统经济调度有十分重要的作用。 一、潮流计算的概述 1.1 潮流计算的概述 潮流计算是指利用已知的电网接线方式、参数、运行条件,将电力系统的各个母线电压、支路电流、功率、网损计算出来。通过潮流计算能判断出正在运行的电力系统的母线电压、支路电流、功率是否在允许范围内运行,如果超出允许范围,就需要采用合理的措施,对电力系统的进行方式进行调整。在电力系统规划过程中,采用潮流计算,能为电网供电方案、电气设备的选择提供科学的依据,同时潮流计算还能为自动装置定整计算、继电保护、电力系统稳定计算、故障计算提供原始数据。 1.2 潮流计算的电气量 潮流计算是根据电力系统接线方式、运行条件、参数等已知条件,将稳定状态下电力系统的电气量计算出来。一般情况下,给出的条件有电源、负荷节点的功率、平衡节点的电压、相位角、枢纽点的电压,需要计算的电气量有各节点的电压、相位角、各支路通过的电流、功率、网络的功率损耗等。 1.3 传统的潮流计算方法 传统的潮流计算方法,包括很多不同的内容,具有一定的优点和缺点。例如,传统的潮流计算方法,包括非线性规划法、二次规划法和线性规划法等。在电力系统经济调度的过程中,应用传统的潮流计算方法,优点是:可以根据目标函数的导数信息,确定需要进行搜索的方向,因此在计算的时候,具有较快的速度和清晰的计算过程。而且,可信度比较高。 1.5 智能的潮流计算方法 潮流计算中人工智能方法的优点是:随机性:属于全局优化算法,跳出局部极值点比较容易;与导数无关性:在工程中,一些优化问题的目标函数处于不可导状态。如果进行近似和假设,会对求解的真实性造成影响;内在并行性:操作对象为一组可行解,在一定程度上可以克服内在并发性开放中性能的不足。而其缺点,主要是:需要按照概率进行操作,不能保证可以完全获取最优解;算法中的一些控制参数需要根据经验人文地给出,对专家经验和一定量的试验要求比较高;表现不稳定,在同一问题的不同实例中应用算法会出现不同的效果。 二、潮流计算的分类 根据电力系统的运行状态,潮流计算可以分为离线计算和在线计算两种方法,离线计算主要用于电力系统规划设计和电力系统运行方式安排中;在线计算主要用于电力系统运行监控和控制中;根据潮流计算的发展,潮流计算可以分为传统方法和人工智能方法两种情况,下面分别对这两种方法进行分析。 2.1 潮流计算的传统方法 潮流计算的传统方法有非线性规划法、线性规划法、二次规划法等几种情况,潮流计算的传统方法具有计算速度快、解析过程清晰、结果真实可靠等优点,但传统方法对目标函数有一定的限制,需要简化处理,这样求出来的值有可能不是最优值。 2.2 潮流计算的人工智能方法 潮流计算的人工智能方法是一种新兴的方法,人工智能方法不会过于依赖精确的数学模型,它有粒子群优化算法、遗传法、模拟退火法等几种情况,人工智能方法的计算结果和导数没有关系,其操作对象是一组可行解,能克服内在并行性存在的问题,但人工智能方法表现不太稳定,在计算过程中,有的控制参数需要根据经验得出,因此,采用人工智能方法进行计算时,需要计算人员有丰富的经验。 三、潮流计算在电力系统经济调度中的应用 3.1 在输电线路线损计算的应用 在进行输电线路线损计算过程中,通过潮流计算能得出经济潮流数据。潮流程度能根据线路的功率因数、有功负荷、无功负荷等参数,计算出潮流线损,例如一条长为38.1km,型号为LGJ—150的导线,当潮流为20MW、功率因数为0.9时,该线路线损为0.24MW,线损率为1.18%;当潮流为30MW、功率因数为0.9时,该线路线损为0.57MW,线损率为1.91%;潮流为50MW、功率因数为0.9时,该线路线损为1.95MW,线损率为3.90%;由此可以看出,潮流小于30MW时,线损率小于2%,潮流超过50MW时,线损率将超过4%,因此,该输电线路的经济输送潮流为30MW以下。调度人员可以根据计算结果,编制线路经济运行方案,从而实现节能调度。 3.2 在变压器变损中的应用 调度人员可以利用潮流计算程序,将变压器在不同负荷下的损耗、变损率计算出来,从而为变压器控制提供依据。例如一台40MVA双

《计算方法》模拟试题4

模拟试题 四 一、选择题 ( 每小题3分,共15分) 1. x = 1.234, 有3位有效数字,则相对误差限 ε r ≤( ). (A).0.5×10 -1; (B). 0.5×10 -2; (C). 0.5×10 -3; (D). 0.1×10 -2 . 2. 用紧凑格式对矩阵4222 222 3 12A -?? ?? =-????--?? 进行的三角分解,则22r =( ) 3. 过点(x 0,y 0), (x 1,y 1),…,(x 5,y 5)的插值多项式P(x)是( )次的多项式。 (A). 6 (B).5 (C).4 (D).3. 4. 设求方程f (x )=0的根的弦截法收敛,则它具有( )次收敛。 A .线性 B .平方 C .超线性 D .三次 5. 当a ( )时,线性方程组??? ??2 9=+4-238=3+7+-27=3--10321 321321...ax x x x x x x x x 的迭代解一定收敛. (A) >=6 (B) =6 (C) <6 (D) >6. 二、填空题(每小题3分,共15分) 1. 二阶均差f (x 0, x 1, x 2) = _________________________________. 2. 在区间[],a b 上内插求积公式的系数01,,A A ┅,n A 满足01A A ++┅+n A = . 3. 已知n=3时,科茨系数8 3= 8 3= 8 1= 32 31 30 ) () () (,,C C C ,那么) (33C =_________. 4. 标准四阶龙格-库塔法的绝对稳定域的实区间为 . 5. 高斯消去法能进行到底的充分必要条件为__________________________。 三、计算题(每小题12分,共60分) 1. 写出梯形公式、辛卜生公式,并分别用来计算积分12 11dx x +? . 2. ⑴. 若用二分法求f (x) = 0在 [1,2]之间近似根,精确到0.01,求二分的次数n+1. ⑵. 设f (x) = x 3+x 2-11, 若用牛顿法求解,请指出初值应取1还是2,为什么? 3. 已知方程组123832204 111336 3 1236x x x -?????? ? ?????-=?????????????????? (1) 证明雅可比法收敛 (2) 写出雅可比迭代公式 (3) 取初值() ()00,0,0T X =,求出() 1X 4. 已知微分方程

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

基于内点法的最优潮流计算

基于内点法的最优潮流计 算 Prepared on 24 November 2020

摘要 内点法是一种能在可行域内部寻优的方法,即从初始内点出发,沿着中心路径方向在可行域内部直接走向最优解的方法。其中路径跟踪法是目前最具有发展潜力的一类内点算法,该方法鲁棒性强,对初值的选择不敏感,在目前电力系统优化问题中得到了广泛的应用。本文采用路径跟踪法进行最优求解,首先介绍了路径跟踪法的基本模型,并且结合具体算例,用编写的Matlab程序进行仿真分析,验证了该方法在最优潮流计算中的优越性能。 关键词:最优潮流、内点法、路径跟踪法、仿真

目次

0、引言 电力系统最优潮流,简称OPF(Optimal Power Flow)。OPF问题是一个复杂的非线性规划问题,要求满足待定的电力系统运行和安全约束条件下,通过调整系统中可利用控制手段实现预定目标最优的系统稳定运行状态。针对不同的应用,OPF模型课以选择不同的控制变量、状态变量集合,不同的目标函数,以及不同的约束条件,其数学模型可描述为确定一组最优控制变量u,以使目标函数取极小值,并且满足如下等式和不等式。 {min u f(x,u) S.t.?(x,u)=0 g(x,u)≤0 (0-1)其中min u f(x,u)为优化的目标函数,可以表示系统运行成本最小、或者系统运行网损最小。S.t.?(x,u)=0为等式约束,表示满足系统稳定运行的功率平衡。g(x,u)≤0为不等式约束,表示电源有功出力的上下界约束、节点电压上下线约束、线路传输功率上下线约束等等。 电力系统最优潮流算法大致可以分为两类:经典算法和智能算法。其中经典算法主要是指以简化梯度法、牛顿法、内点法和解耦法为代表的基于线性规划和非线性规划以及解耦原则的算法,是研究最多的最优潮流算法, 这类算法的特点是以一阶或二阶梯度作为寻找最优解的主要信息。智能算法主要是指遗传算法和模拟退火发等,这类算法的特点是不以梯度作为寻优信息,属于非导数的优化方法。 因此经典算法的优点是能按目标函数的导数信息确定搜索方向,计算速度快,算法比较成熟,结果可信度高。缺点是对目标函数及约束条件有一定的限

PL对模拟量数据的计算方法(114)

PLC对模拟量数据的计算方法 可编程控制器(简称PLC) 是专为在工业环境中应用而设计的一种工业控制用计算机, 具有抗干扰能力强、可靠性高、体积小等优点, 是实现机电一体化的理想装置, 在各种工业设备上得到了广泛的应用, 在机床的电气控制中应用也比较普遍, 这些应用中常见的是将PLC 用于开关量的输入和输出控制。 随着PLC技术的发展, 它在位置控制、过程控制、数据处理等方面的应用也越来越多。本文将谈论利用PLC处理模拟量的方法, 以对机床液压系统工作压力的检测处理为例, 详细介绍PLC处理模拟量的各重要环节, 特别是相关软件的设计。为利用PLC全面地实现对机床系统工作参数的检测打下技术基础; 为机床故障的判断、故障的预防提供重要的数据来源。 1 PLC采集、处理模拟量的一般过程 在PLC组成的自动控制系统中, 对物理量(如温度、压力、速度、振动等) 的采集是利用传感器(或变送器) 将过程控制中的物理信号转换成模拟信号后, 通过PLC提供的专用模块, 将模拟信号再转换成PLC可以接受的数字信号, 然后输入到PLC中。由于PLC保存数据时多采用BCD码的形式, 所以经过A /D专用模块的转换后, 输入到PLC的数据存储单元的数据应该是一个BCD 码。整个数据传送过程如图1所示。 图1 PLC采集数据的过程图 PLC对模拟量数据的采集, 基本上都采用专用的A /D模块和专用的功能指令相配合, 可以让设计者很方便地实现外部模拟量数据的实时采集, 并把采集的数据自动存放到指定的数据单元中。经过采集转换后存入到数据单元中的BCD码数字, 与物理量的大小之间有一定的函数关系, 但这个数字并不与物理量的大小相等, 所以, 采集到PLC中的数据首先就需 要进行整定处理, 确定二者的函数关系, 获得物理量的实际大小。通过整定后的数据, 才是实时采集的物理量的实际大小, 然后才可以进行后序的相关处理, 并可根据需要显示输出数据, 整个程序设计的流程图如图2所示。

机器学习中常见的几种优化方法

机器学习中常见的几种优化方法 阅读目录 1. 梯度下降法(Gradient Descent) 2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods) 3. 共轭梯度法(Conjugate Gradient) 4. 启发式优化方法 5. 解决约束优化问题——拉格朗日乘数法 我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等。最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。随着学习的深入,博主越来越发现最优化方法的重要性,学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。常见的最优化方法有梯度下降法、牛顿法和拟牛顿法、共轭梯

度法等等。 回到顶部 1. 梯度下降法(Gradient Descent) 梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下 降法越接近目标值,步长越小,前进越慢。梯度下降法的搜索迭代示意图如下图所示: 牛顿法的缺点: (1)靠近极小值时收敛速度减慢,如下图所示; (2)直线搜索时可能会产生一些问题; (3)可能会“之字形”地下降。 从上图可以看出,梯度下降法在接近最优解的区域收敛速度明显变慢,利用梯度下降法求解需要很多次的迭代。 在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。

潮流计算的基本算法及其使用方法

潮流计算的基本算法及使用方法 一、 潮流计算的基本算法 1. 牛顿-拉夫逊法 1.1 概述 牛顿-拉夫逊法是目前求解非线性方程最好的一种方法。这种方法的特点就是把对非线 性方程的求解过程变成反复对相应的线性方程求解的过程,通常称为逐次线性化过程,就是牛顿-拉夫逊法的核心。 牛顿-拉夫逊法的基本原理是在解的某一邻域内的某一初始点出发,沿着该点的一阶偏 导数——雅可比矩阵,朝减小方程的残差的方向前进一步,在新的点上再计算残差和雅可矩阵继续前进,重复这一过程直到残差达到收敛标准,即得到了非线性方程组的解。因为越靠近解,偏导数的方向越准,收敛速度也越快,所以牛顿法具有二阶收敛特性。而所谓“某一邻域”是指雅可比方向均指向解的范围,否则可能走向非线性函数的其它极值点,一般来说潮流由平电压即各母线电压(相角为0,幅值为1)启动即在此邻域内。 1.2 一般概念 对于非线性代数方程组 ()0=x f 即 ()0,,,21=n i x x x f Λ ()n i Λ,2,1= (1-1) 在待求量x 的某一个初始计算值() 0x 附件,将上式展开泰勒级数并略去二阶及以上的高 阶项,得到如下的线性化的方程组 ()()()() ()0000=?'+x x f x f (1-2) 上式称之为牛顿法的修正方程式。由此可以求得第一次迭代的修正量 ()() ()[]()()0 1 00x f x f x -'-=? (1-3) 将() 0x ?和() 0x 相加,得到变量的第一次改进值()1x 。接着再从() 1x 出发,重复上述计算 过程。因此从一定的初值() 0x 出发,应用牛顿法求解的迭代格式为 ()()()()() k k k x f x x f -=?' (1-4) ()()()k k k x x x ?+=+1 (1-5) 上两式中:()x f '是函数()x f 对于变量x 的一阶偏导数矩阵,即雅可比矩阵J ;k 为迭代

材料结构与性能模拟计算理论与方法简介

材料结构与性能模拟计算理论与方法简介 [使用电脑对材料模拟计算的优缺点] 优点:(一)不受实验条件的限制、(二)简化研究的原因 缺点:必须使用足够精确的物理定律 因此,目前电脑模拟的材料设计走向两个趋势: (一)采取微观尺度(因为物质由原子组成)、 (二)使用量子力学(才能正确描述电子行为以及由其所决定的机械、传输、光学、磁学等性质) 也就是说,原子之间的作用力以及材料所表现的物性,我们都希望能(不借助实验结果)透过第一原理方法来达到。 [密度泛函理论简介] 自从20世纪60年代密度泛函理论(DFT,Density Functional Theory)建立并在局域密度近似(LDA)下导出著名的Kohn-Sham(KS)方程以来,DFT一直是凝聚态物理领域计算电子结构及其特性最有力的工具。近几年来DFT同分子动力学方法相结合,在材料设计、合成、模拟计算和评价诸多方面有明显的进展,成为计算材料科学的重要基础和核心技术。特别在量子化学计算领域,根据INSPEC数据库的记录显示,1987年以前主要用Hartree-Fock(HF)方法,1990~1994年选择DFT方法的论文数已同HF方法并驾齐驱,而1995年以来,用DFT的工作继续以指数律增加,现在已经大大超过用HF方法研究的工作。W. Kohn因提出DFT获得1998年诺贝尔化学奖,表明DFT在计算量子化学领域的核心作用和应用的广泛性。 DFT适应于大量不同类型的应用,因为电子基态能量与原子核位置之间的关系可以用来确定分子或晶体的结构,而当原子不处在它的平衡位置时,DFT可以给出作用在原子核位置上的力。因此,DFT可以解决原子分子物理中的许多问题,如电离势的计算,振动谱研究,化学反应问题,生物分子的结构,催化活性位置的特性等等。在凝聚态物理中,如材料电子结构和几何结构,固体和液态金属中的相变等。现在,这些方法都可以发展成为用量子力学方法计算力的精确的分子动力学方法。DFT的另一个优点是,它提供了第一性原理或从头算的计算框架。在这个框架下可以发展各式各样的能带计算方法,如LDA,GGA,meta-GGA,hybrid等方法。

潮流计算问答题

1.什么是潮流计算?潮流计算的主要作用有哪些? 潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。 对于正在运行的电力系统,通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。潮流计算还可以为继电保护和自动装置整定计算、电力系统故障计算和稳定计算等提供原始数据。 2.潮流计算有哪些待求量、已知量? (已知量: 电力系统网络结构、参数; 决定系统运行状态的边界条件 待求量:系统稳态运行状态 例如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等)通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。 待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。 3.潮流计算节点分成哪几类?分类根据是什么? (分成三类:PQ节点、PV节点和平衡节点,分类依据是给定变量的不同) PV节点(电压控制母线):有功功率Pi和电压幅值Ui为给定。这种类型节点相当于发电机母线节点,或者相当于一个装有调相机或静止补偿器的变电所母线。 PQ节点:注入有功功率Pi和无功功率Qi是给定的。相当于实际电力系统中的一个负荷节点,或有功和无功功率给定的发电机母线。 平衡节点:用来平衡全电网的功率。平衡节点的电压幅值Ui和相角δi是给定的,通常以它的相角为参考点,即取其电压相角为零。 一个独立的电力网中只设一个平衡节点。 4.教材牛顿-拉夫逊法及有功-无功分解法是基于何种电路方程?可否采用其它类型方程? 基于节点电压方程,还可以采用回路电流方程和割集电压方程等。但是后两者不常用。

有关电力系统三种潮流计算方法的比较.docx

电 力 系 统 三 种 潮 流 计 算 方 法 的 比 较 一、高斯 -赛德尔迭代法: 以导纳矩阵为基础, 并应用高斯 -- 塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用。 将所求方程 f ( x ) 0 改写为 x ( x ) 不能直接得出方程的根,给一个猜测值 x 0 得 x 1( x 0 ) 又可取 x1 为猜测值,进一步得: x 2 ( x 1 ) 反复猜测 x k 1 迭代 则方程的根 ( x k ) 优点: 1. 原理简单,程序设计十分容易。 2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。 3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包 含的节点数成正比关系。 缺点: 1. 收敛速度很慢。 2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负 荷系统、包含有负电抗支路 (如某些三绕组变压器或线路串联电容等 )的系统、具有较长的辐射形线路的系统、长线路与短线路接在同一节点上,而且长短 线路的长度比值又很大的系统。 3. 平衡节点所在位置的不同选择,也会影响到收敛性能。 二、牛顿 -拉夫逊法: 求解 f ( x ) 0 设 x x 0 x ,则 按牛顿二项式展开: 当 △x 不大,则取线性化(仅取一次项) 则可得修正量 对 得: 作变量修正: x k 1x k x k ,求解修正方程 20 世纪 牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。自从 60 年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了其他方法,成为直到目前仍被广泛采用的方法。 优点: 1. 收敛速度快,若选择到一个较好的初值,算法将具有平方收敛特性,一般迭 代 4—5 次便可以收敛到一个非常精确的解。而且其迭代次数与所计算网络的规模基本无关。 2. 具有良好的收敛可靠性, 对于前面提到的对以节点导纳矩阵为基础的高斯一 塞德尔法呈病态的系统,牛顿法均能可靠地收敛。 3. 牛顿法所需的内存量及每次迭代所需时间均较前述的高斯一塞德尔法为多, 并与程序设计技巧有密切关系。 缺点:

《计算方法》模拟试题3

模拟试卷三 一、 单项选择题(每小题3分,共15分) 1. 以下误差公式不正确的是( ) A .()1212x x x x ?-≈?-? B .()1212x x x x ?+≈?+? 2. 已知等距节点的插值型求积公式 ()()3 5 2 k k k f x dx A f x =≈∑?,那么3 k k A ==∑( ) A .1 B. 2 C. 3 D. 4 3. 辛卜生公式的余项为( ) A .()()3 2880 b a f η-''- B .()()3 12 b a f η-''- C .()()()5 4 2880 b a f η-- D .()( ) ()4 52880 b a f η-- 4.对矩阵4222222312A -?? ??=-????--?? 进行的三角分解,则u 22 =( ) 5. 用一般迭代法求方程()0f x =的根,将方程表示为同解方程()x x ?=的,则()0f x = 的根是( ) A . y x =与()y x ?=的交点 B . y x =与与x 轴的交点的横坐标的交点的横坐标 C . y x =与()y x ?=的交点的横坐标 D . ()y x ?=与x 轴的交点的横坐标 二、 填空题(每小题3分,共15分) 1. 2. 3. 龙贝格积分法是将区间[],a b 并进行适当组合而得出的积分近似值的求法。

4.乘幂法可求出实方阵A 的 特征值及其相应的特征向量. 5. 欧拉法的绝对稳定实区间为 。 三、 计算题(每小题12分,共60分) 1. 已知函数2 1 1y x = +的一组数据: 求分段线性插值函数,并计算()1.5f 的近似值. 2. 求矩阵101010202A -????=????-?? 的谱半径. 3. 已知方程组 123210113110121x x x ????????????=-?????????????????? (1) 证明高斯-塞德尔法收敛; (2) 写出高斯-塞德尔法迭代公式; (3) 取初始值() ()00,0,0T X =,求出()1X 。 4. 4n =时,用复化梯形与复化辛卜生公式分别计算积分 1 20 4 x dx x +? . 5. 用改进平方根法求解方程组1233351035916591730x x x ????????????=?????????????????? 四.证明题(每小题5分,共10分) 证明向量X 的范数满足不等式 (1)2 X X ∞ ∞≤≤ (2)111 X X X n ∞ ≤≤

完整word版潮流计算方法

由于本人参加我们电气学院的电气小课堂,主讲的是计算机算法计算潮流这章,所以潜心玩了一个星期,下面整理给大家分享下。 本人一个星期以来的汗水,弄清楚了计算机算法计算潮流的基础,如果有什么不懂的可以发信息到邮箱:zenghao616@https://www.docsj.com/doc/1310658161.html, 接下来开始弄潮流的优化问题,吼吼! 电力系统的潮流计算的计算机算法:以MATLAB为环境 这里理论不做过多介绍,推荐一本专门讲解电力系统分析的计算机算法的书籍---------《电力系统分析的计算机算法》—邱晓燕、刘天琪编著。 这里以这本书上的例题【2-1】说明计算机算法计算的过程,分别是牛顿拉弗逊算法的直角坐标和极坐标算法、P-Q分解算法。主要是简单的网络的潮流计算,其实简单网络计算和大型网络计算并无本质区别,代码里面只需要修改循环迭代的N即可,这里旨在弄清计算机算法计算潮流的本质。代码均有详细的注释. 其中简单的高斯赛德尔迭代法是以我们的电稳教材为例子讲,其实都差不多,只要把导纳矩阵Y 给你,节点的编号和分类给你,就可以进行计算了,不必要找到原始的电气接线图。 理论不多说,直接上代码: 简单的高斯赛德尔迭代法: 这里我们只是迭代算出各个节点的电压值,支路功率并没有计算。 S_ij=P_ij+Q_ij=V_i(V_i* -V_j*) * y_ij* 可以计算出各个线路的功率 在显示最终电压幅角的时候注意在MATLAB里面默认的是弧度的形式,需要转化成角度显示。clear;clc; %电稳书Page 102 例题3-5 %计算网络的潮流分布 --- 高斯-赛德尔算法 %其中节点1是平衡节点 %节点2、3是PV节点,其余是PQ节点 % 如果节点有对地导纳支路 %需将对地导纳支路算到自导纳里面 %------------------------------------------------% %输入原始数据,每条支路的导纳数值,包括自导和互导纳; y=zeros(5,5); y(1,2)=1/(0.0194+0.0592*1i); y(1,5)=1/(0.054+0.223*1i); y(2,3)=1/(0.04699+0.198*1i); y(2,4)=1/(0.0581+0.1763*1i); 由于电路网络的互易性,导纳矩阵为对称的矩阵%. for i=1:1:5 for j=1:1:5

2021年潮流计算的基本算法及使用方法

潮流计算的基本算法及使用方法 一、 欧阳光明(2021.03.07) 二、 潮流计算的基本算法 1. 牛顿-拉夫逊法 1.1 概述 牛顿-拉夫逊法是目前求解非线性方程最好的一种方法。这种方法的特点就是把对非线性方程的求解过程变成反复对相应的线性方程求解的过程,通常称为逐次线性化过程,就是牛顿-拉夫逊法的核心。 牛顿-拉夫逊法的基本原理是在解的某一邻域内的某一初始点出发,沿着该点的一阶偏导数——雅可比矩阵,朝减小方程的残差的方向前进一步,在新的点上再计算残差和雅可矩阵继续前进,重复这一过程直到残差达到收敛标准,即得到了非线性方程组的解。因为越靠近解,偏导数的方向越准,收敛速度也越快,所以牛顿法具有二阶收敛特性。而所谓“某一邻域”是指雅可比方向均指向解的范围,否则可能走向非线性函数的其它极值点,一般来说潮流由平电压即各母线电压(相角为0,幅值为1)启动即在此邻域内。 1.2一般概念 对于非线性代数方程组 即 ()0,,,21=n i x x x f ()n i ,2,1= (1-1) 在待求量x 的某一个初始计算值()0x 附件,将上式展开泰勒级数并

略去二阶及以上的高阶项,得到如下的线性化的方程组 ()()()() ()0000=?'+x x f x f (1-2) 上式称之为牛顿法的修正方程式。由此可以求得第一次迭代的修正量 ()() ()[]()()0 1 00x f x f x -'-=? (1-3) 将()0x ?和()0x 相加,得到变量的第一次改进值()1x 。接着再从()1x 出 发,重复上述计算过程。因此从一定的初值()0x 出发,应用牛顿法求解的迭代格式为 ()()()() ()k k k x f x x f -=?' (1-4) ()()()k k k x x x ?+=+1 (1-5) 上两式中:()x f '是函数()x f 对于变量x 的一阶偏导数矩阵,即雅可比矩阵J ;k 为迭代次数。 由式(1-4)和式子(1-5)可见,牛顿法的核心便是反复形成 求解修正方程式。牛顿法当初始估计值()0x 和方程的精确解足够接近时,收敛速度非常快,具有平方收敛特性。 1.3潮流计算的修正方程 运用牛顿-拉夫逊法计算潮流分布时,首先要找出描述电力系统的非线性方程。这里仍从节点电压方程入手,设电力系统导纳矩阵已知,则系统中某节点(i 节点)电压方程为 从而得 ∑=* *? ?=n j j ij i i U Y U S 1 进而有 ()01 =-+* =* ? ∑j n j ij i i i U Y U jQ P (1 -6)

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

潮流计算简答题

潮流计算数学模型与数值方法 1. 什么是潮流计算?潮流计算的主要作用有哪些? 潮流计算,电力学名词,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。 潮流计算是电力系统非常重要的分析计算,用以研究系统规划和运行中提出的各种问题。对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。 2. 潮流计算有哪些待求量、已知量? (已知量:1、电力系统网络结构、参数 2、决定系统运行状态的边界条件 待求量:系统稳态运行状态 例如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等) 3. 潮流计算节点分成哪几类?分类根据是什么? (分成三类:PQ 节点、PV 节点和平衡节点,分类依据是给定变量的不同) 4. 教材牛顿-拉夫逊法及有功-无功分解法是基于何种电路方程?可否采用其它类型方程? 答:基于节点电压方程,还可以采用回路电流方程和割集电压方程等。但是后两者不常用。 5. 教材牛顿-拉夫逊法是基于节点阻抗方程、还是基于节点导纳方程进行迭代计算的?试阐述这两种方程的优点与缺点。 1.不能由等值电路直接求出 2.满秩矩阵内存量大 3.对角占优矩阵。。 节点导纳矩阵的特点:1.直观容易形成2.对称阵3.稀疏矩阵(零元素多):每一行的零元素个数=该节点直接连出的支路数。 6. 说出至少两种建立节点导纳矩阵的方法,阐述其中一种方法的原理与过程。 方法:1.根据自导纳和互导纳的定义直接求取2.运用一节点关联矩阵计算3.阻抗矩阵的逆矩阵 节点导纳矩阵的形成:1.对角线元素ii Y 的求解)1,,0(=≠==i j I i ii U i j U U I Y 【除i 外的其他节点接地,0=j U ,只在i 节点加单位电压值】解析ii Y 等于与i 节点直接相连的的所有支路导纳和2.互导纳),0,1(j k U U U I Y k j j i ij ≠===,ji ij Y Y =(无源网络导纳之间是对称的)解析:ij Y 等于j i ,节点之间直接相连的支路导纳的负值。 7. 潮流计算需要考虑哪些约束条件? 答: 为了保证系统的正常运行必须满足以下的约束条件:

计算方法模拟题2

模拟题(二) 西安电子科技大学网络教育 2010学年上学期期末考试试题 课程名称:__ 计算方法 考试形式: 开 卷 学习中心:_________ 考试时间: 120分钟 姓 名:_____________ 学 号: 一 选 择(每题3分,合计42分) 1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、0.5 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量) 0(x 及常向量g ,迭代过程g x B x k k +=+)() 1(收敛的充 分必要条件是_ _。 A 、11

5. 用列主元消去法解线性方程组,消元的第k 步,选列主元) 1(-k rk a ,使得)1(-k rk a = 。 A 、 ) 1(1max -≤≤k ik n i a B 、 ) 1(max -≤≤k ik n i k a C 、 ) 1(max -≤≤k kj n j k a D 、 ) 1(1max -≤≤k kj n j a 6. 设?(x)= 5x 3-3x 2+x +6,取x 1=0,x 2=0.3,x 3=0.6,x 4=0.8,在这些点上关于?(x)的插值多项式为3()P x ,则?(0.9)-3(0.9)P =__________。 A 、0 B 、0.001 C 、0.002 D 、0.003 7. 用简单迭代法求方程f (x )=0的实根,把方程f (x )=0转化为x =?(x ),则f (x )=0的根是: 。 A 、y =x 与y =?(x )的交点 B 、 y =x 与y =?(x )交点的横坐标 C 、y =x 与x 轴的交点的横坐标 D 、 y =?(x )与x 轴交点的横坐标 8. 已知x 0=2,f (x 0)=46,x 1=4,f (x 1)=88,则一阶差商f [x 0, x 1]为 。 A 、7 B 、20 C 、21 D 、42 9. 已知等距节点的插值型求积公式 ()()4 6 3 k k k f x dx A f x =≈∑?,那么 4 k k A ==∑_____。 A 、0 B 、2 C 、3 D 、9 10. 用高斯消去法解线性方程组,消元过程中要求____。

五种最优化方法

精心整理 五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3 4 1.2 2. 2.1 1 2 3 2.2 3. 3.1 1 2 3 3.2 4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降

方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤 5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min(f_1(x),f_2(x),...,f_k(x)) s.t.g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。 6.1遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。 种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 6.2遗传算法基本流程 遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤 步1在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;

电力系统潮流计算方法分析

电力系统潮流分析 —基于牛拉法和保留非线性的随机潮流 , 姓名:*** 学号:***

1 潮流算法简介 常规潮流计算 常规的潮流计算是在确定的状态下。即:通过已知运行条件(比如节点功率或网络结构等)得到系统的运行状态(比如所有节点的电压值与相角、所有支路上的功率分布和损耗等)。 常规潮流算法中的一种普遍采用的方法是牛顿-拉夫逊法。当初始值和方程的精确解足够接近时,该方法可以在很短时间内收敛。下面简要介绍该方法。 牛顿拉夫逊方法原理 对于非线性代数方程组式(1-1),在待求量x 初次的估计值(0)x 附近,用泰勒级数(忽略二阶和以上的高阶项)表示它,可获得如式(1-2)的线性化变换后的方程组,该方程组被称为修正方程组。'()f x 是()f x 对于x 的一阶偏导数矩阵,这个矩阵便是重要的雅可比矩阵J 。 12(,,,)01,2, ,i n f x x x i n == (1-1) (0)'(0)(0)()()0f x f x x +?= (1-2) ' 由修正方程式可求出经过第一次迭代之后的修正量(0)x ?,并用修正量(0)x ?与估计值(0) x 之和,表示修正后的估计值(1)x ,表示如下(1-4)。 (0)'(0)1(0)[()]()x f x f x -?=- (1-3) (1)(0)(0)x x x =+? (1-4) 重复上述步骤。第k 次的迭代公式为: '()()()()()k k k f x x f x ?=- (1-5) (1)()()k k k x x x +=+? (1-6) 当采用直角坐标系解决潮流方程,此时待解电压和导纳如下式: i i i ij ij ij V e jf Y G jB =+=+ (1-7) 假设系统的网络中一共设有n 个节点,平衡节点的电压是已知的,平衡节点表示如下。 n n n V e jf =+ (1-8) }

相关文档
相关文档 最新文档