文档视界 最新最全的文档下载
当前位置:文档视界 › 高中数学知识点大全

高中数学知识点大全

高中数学知识点大全
高中数学知识点大全

高中数学常用公式及常用结论

1. 元素与集合的关系

U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式

();()U U U U U U C A B C A C B C A B C A C B == .

3.包含关系

A B A A B B =?= U U A B C B C A ????

U A C B ?=Φ U C A B R ?=

4.容斥原理

()()card A B cardA cardB card A B =+-

()()card A B C cardA cardB cardC card A B =++-

()()()()card A B card B C card C A card A B C ---+ .

5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n

–1

个;非空的真子集有2n

–2个.

6.二次函数的解析式的三种形式

(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2

()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式

()N f x M <

?|()|22M N M N f x +--

M f x ->- ?

11

()f x N M N

>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21

者的一个必要而不是充分条件.特别地, 方程)0(02

≠=++a c bx ax 有且只有一个实根在

),(21k k 内,等价于0)()(21

2211k k a b

k +<-

<,或0)(2=k f 且22122k a

b

k k <-<+. 9.闭区间上的二次函数的最值

二次函数)0()(2

≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在a

b

x 2-

=处及区间的两端点处取得,具体如下:

(1)当a>0时,若[]q p a b

x ,2∈-

=,则{}m i n m a x m a

x ()(),()(),()2b f x f f x f p f q

a

=-=;

[]q p a

b

x ,2?-

=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b

x ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若

[]q p a

b

x ,2?-

=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布

依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则

(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402

p q p m ?-≥?

?->??;

(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()040

2

f m f n p q p m n >??>??

?-≥?

?<-?或()0()0

f n af m =??>?; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402

p q p m ?-≥?

?-

11.定区间上含参数的二次不等式恒成立的条件依据

(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥?.

(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤?.

(3)0)(2

4>++=c bx ax x f 恒成立的充要条件是0

00a b c ≥??≥??>?

或2040a b ac

.

12.

13.

14.四种命题的相互关系

15.充要条件

(1)充分条件:若p q ?,则p 是q 充分条件.

(2)必要条件:若q p ?,则p 是q 必要条件.

(3)充要条件:若p q ?,且q p ?,则p 是q 充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性

(1)设[]2121,,x x b a x x ≠∈?那么

[]1212()()()0x x f x f x -->?

[]b a x f x x x f x f ,)(0)

()(2

121在?>--上是增函数;

[]1212()()()0x x f x f x --

[]b a x f x x x f x f ,)(0)

()(2

121在?<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.

17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.

18.奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.

19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.

20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=

;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2

b

a x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2

(a

对称; 若

)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.

22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性

多项式函数()P x 是奇函数?()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数?()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性

(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-

(2)()f a x f x ?-=.

(2)函数()y f x =的图象关于直线2

a b

x +=

对称()()f a mx f b mx ?+=- ()()f a b mx f mx ?+-=.

24.两个函数图象的对称性

(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b

x m

+=

对称. (3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.

25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.

26.互为反函数的两个函数的关系

a b f b a f =?=-)()(1.

27.若函数)(b kx f y +=存在反函数,则其反函数为])([11

b x f k

y -=

-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1

b x f k

y -=

的反函数. 28.几个常见的函数方程

(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.

(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.

(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.

(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.

(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,

()

(0)1,lim

1x g x f x

→==. 29.几个函数方程的周期(约定a>0)

(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,

或)0)(()(1

)(≠=+x f x f a x f , 或1

()()

f x a f x +=-(()0)f x ≠,

或[]1(),(()0,1)2

f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()

(1

1)(≠+-

=x f a x f x f ,则)(x f 的周期T=3a ; (4))

()(1)

()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =?≠<-<,则

)(x f 的周期T=4a ;

(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++

()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.

30.分数指数幂

(1)m n

a =

(0,,a m n N *>∈,且1n >). (2)1

m n

m n

a

a

-

=

(0,,a m n N *>∈,且1n >).

31.根式的性质 (1

)n a =.

(2)当n

a =; 当n

,0

||,0

a a a a a ≥?==?-

32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +?=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.

(3)()(0,0,)r r r ab a b a b r Q =>>∈.

注: 若a >0,p 是一个无理数,则a p

表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.

33.指数式与对数式的互化式

log b a N b a N =?=(0,1,0)a a N >≠>.

34.对数的换底公式

log log log m a m N

N a

=

(0a >,且1a ≠,0m >,且1m ≠, 0N >).

推论 log log m n

a a n

b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).

35.对数的四则运算法则

若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;

(2) log log log a

a a M

M N N

=-; (3)log log ()n a a M n M n R =∈.

36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42

-=?.若)(x f 的定义域为

R ,则0>a ,且0a ,且0≥?.对于0=a 的情形,需要

单独检验.

37. 对数换底不等式及其推广

若0a >,0b >,0x >,1

x a ≠

,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1

(,)a +∞上log ()ax y bx =为增函数.

, (2)当a b <时,在1(0,)a 和1

(,)a

+∞上log ()ax y bx =为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.

(2)2

log log log 2

a a a

m n

m n +<. 38. 平均增长率的问题

如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有

(1)x y N p =+.

39.数列的同项公式与前n 项的和的关系

11,

1,2

n n n s n a s s n -=?=?

-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式

*11(1)()n a a n d dn a d n N =+-=+-∈;

其前n 项和公式为

1()2n n n a a s +=

1(1)

2n n na d -=+ 211

()22d n a d n =+-. 41.等比数列的通项公式

1*11()n n

n a a a q q n N q

-==

?∈; 其前n 项的和公式为

11

(1)

,11,1n n a q q s q na q ?-≠?

=-??=?

或11

,11,1n n a a q

q q s na q -?≠?

-=??=?.

42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为

1(1),1(),11n n n b n d q a bq d b q d q q -+-=??

=+--?≠?-?

其前n 项和公式为

(1),(1)

1(),(1)111n n nb n n d q s d q d

b n q q q q +-=??=-?-+≠?---?

. 43.分期付款(按揭贷款)

每次还款(1)(1)1

n

n

ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,

)2

x π

∈,则sin tan x x x <<.

(2) 若(0,

)2

x π

,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.

45.同角三角函数的基本关系式

22sin cos 1θθ+=,tan θ=

θ

θ

cos sin ,tan 1cot θθ?=. 46.正弦、余弦的诱导公式

21

2(1)sin ,sin()2(1)s ,

n

n n co απαα-?

-?+=??-?

2

1

2(1)

s ,s ()2(1)s i n ,n

n co n co απαα+?-?+=??-?

47.和角与差角公式

sin()sin cos cos sin αβαβαβ±=±;

cos()cos cos sin sin αβαβαβ±= ;

tan tan tan()1tan tan αβ

αβαβ

±±= .

22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);

22cos()cos()cos sin αβαβαβ+-=-.

sin cos a b αα+

=

)α?+(辅助角?所在象限由点(,)a b 的象限决

定,tan b

a

?= ).

48.二倍角公式

sin 2sin cos ααα=.

2222cos 2cos sin 2cos 112sin ααααα=-=-=-.

22tan tan 21tan α

αα

=-.

49. 三倍角公式

3sin 33sin 4sin 4sin sin()sin()33ππ

θθθθθθ=-=-+.

3cos34cos 3cos 4cos cos()cos()33

ππ

θθθθθθ=-=-+.

323tan tan tan 3tan tan()tan()13tan 33

θθππ

θθθθθ-==-+-.

50.三角函数的周期公式

函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T π

ω

=

;函数tan()y x ω?=+,,2

x k k Z π

π≠+

∈(A,ω,?为常数,且A

≠0,ω>0)的周期T πω

=

.

51.正弦定理

2sin sin sin a b c

R A B C

===. 52.余弦定理

2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.

53.面积定理

(1)111

222a b c S ah bh ch =

==(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111

sin sin sin 222

S ab C bc A ca B ===.

(3)OAB S ?=54.三角形内角和定理

在△ABC 中,有()A B C C A B ππ++=?=-+

222

C A B π+?

=-222()C A B π?=-+. 55. 简单的三角方程的通解

sin (1)arcsin (,||1)k x a x k a k Z a π=?=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=?=±∈≤.

tan arctan (,)x a x k a k Z a R π=?=+∈∈.

特别地,有

sin sin (1)()k k k Z αβαπβ=?=+-∈.

s cos 2()co k k Z αβαπβ=?=±∈.

tan tan ()k k Z αβαπβ=?=+∈.

56.最简单的三角不等式及其解集

sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤?∈++-∈.

sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤?∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤?∈-+∈.

cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤?∈++-∈.

tan ()(arctan ,),2

x a a R x k a k k Z π

ππ>∈?∈++

∈.

tan ()(,arctan ),2

x a a R x k k a k Z π

ππ<∈?∈-

+∈.

57.实数与向量的积的运算律 设λ、μ为实数,那么

(1) 结合律:λ(μa )=(λμ)a ;

(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理

如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且

只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.

不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示

设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ?-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义

数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算

(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.

(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.

(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--

.

(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.

(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.

63.两向量的夹角公式

cos θ=

(a =11(,)x y ,b =22(,)x y ).

64.平面两点间的距离公式

,A B d

=||AB =

=11(,)x y ,B 22(,)x y ).

65.向量的平行与垂直

设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ?b =λa 12210x y x y ?-=. a ⊥b(a ≠0)?a ·b=012120x x y y ?+=. 66.线段的定比分公式

设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=

,则

121

211x x x y y y λλλλ+?=??+?

+?=?+?

?12

1OP OP OP λλ+=+ ?12

(1)OP tOP t OP =+- (1

1t λ

=+). 67.三角形的重心坐标公式

△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123

(

,)33

x x x y y y G ++++. 68.点的平移公式

''''

x x h x x h y y k y y k

??=+=-?????=+=-????'

'OP OP PP ?=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'

F 上的对应点为'''

(,)P x y ,且'

PP

的坐标为(,)h k .

69.“按向量平移”的几个结论

(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.

(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'

C ,则'

C 的函数解析式为()y f x h k =-+.

(3) 图象'

C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'

C 的函数解析式为()y f x h k =+-.

(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'

C 的方程为

(,)0f x h y k --=.

(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .

70. 三角形五“心”向量形式的充要条件

设O 为ABC ?所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则

(1)O 为ABC ?的外心222

OA OB OC ?== .

(2)O 为ABC ?的重心0OA OB OC ?++=

.

(3)O 为ABC ?的垂心OA OB OB OC OC OA ??=?=?

.

(4)O 为ABC ?的内心0aOA bOB cOC ?++=

.

(5)O 为ABC ?的A ∠的旁心aOA bOB cOC ?=+

.

71.常用不等式:

(1),a b R ∈?2

2

2a b ab +≥(当且仅当a =b 时取“=”号).

(2),a b R +∈?2

a b

+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>

(4)柯西不等式

22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈

(5)b a b a b a +≤+≤-. 72.极值定理

已知y x ,都是正数,则有

(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值

24

1s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.

(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.

73.一元二次不等式2

0(0)ax bx c ++><或2

(0,40)a b ac ≠?=->,如果a 与

2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之

间.简言之:同号两根之外,异号两根之间.

121212()()0()x x x x x x x x x <?--><或.

74.含有绝对值的不等式 当a> 0时,有

2

2x a x a a x a

22x a x a x a >?>?>或x a <-.

75.无理不等式 (1

()0()0

()()f x g x f x g x ≥??

>?≥??>?

. (2

2()0

()0()()0()0()[()]f x f x g x g x g x f x g x ≥?≥??

>?≥??

?>?

或. (3

2()0()()0

()[()]f x g x g x f x g x ≥??

??

. 76.指数不等式与对数不等式 (1)当1a >时,

()()()()f x g x a a f x g x >?>;

()0log ()log ()()0()()a a f x f x g x g x f x g x >??

>?>??>?

.

(2)当01a <<时,

()()()()f x g x a a f x g x >?<;

()0log ()log ()()0()()a a f x f x g x g x f x g x >??

>?>??

77.斜率公式

21

21

y y k x x -=

-(111(,)P x y 、222(,)P x y ).

78.直线的五种方程

(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).

(3)两点式

11

2121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).

(4)截距式 1x y

a b

+=(a b 、分别为直线的横、纵截距,0a b ≠、)

(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).

79.两条直线的平行和垂直

(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-.

(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①111

12222

||A B C l l A B C ?

=≠

②1212120l l A A B B ⊥?+=; 80.夹角公式

(1)21

21

tan |

|1k k k k α-=+.

(111:l y k x b =+,222:l y k x b =+,121k k ≠-)

(2)1221

1212

tan ||A B A B A A B B α-=+.

(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120

A A

B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2

π

.

81. 1l 到2l 的角公式

(1)21

21

tan 1k k k k α-=+.

(111:l y k x b =+,222:l y k x b =+,121k k ≠-)

(2)1221

1212

tan A B A B A A B B α-=+.

(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120

A A

B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2

π

.

82.四种常用直线系方程

(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线

0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.

(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.

(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是

参变量.

(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是

0Bx Ay λ-+=,λ是参变量.

83.点到直线的距离

d =

(点00(,)P x y ,直线l :0Ax By C ++=).

84. 或0<所表示的平面区域

设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.

若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.

85. 111222()()0A x B y C A x B y C ++++>或

0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠)

,则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:

111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.

86. 圆的四种方程

(1)圆的标准方程 222()()x a y b r -+-=.

(2)圆的一般方程 220x y Dx Ey F ++++=(2

2

4D E F +->0).

(3)圆的参数方程 cos sin x a r y b r θ

θ

=+??

=+?.

(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).

87. 圆系方程

(1)过点11(,)A x y ,22(,)B x y 的圆系方程是

1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=

1212()()()()()0x x x x y y y y ax by c λ?--+--+++=,其中0a x b y

c ++=是直线AB 的方程,λ是待定的系数.

(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.

(3) 过圆1C :221110x y D x E y F ++++=与圆2C :22

2220x y D x E y F

++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的

系数.

88.点与圆的位置关系

点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种

若d =

d r >?点P 在圆外;d r =?点P 在圆上;d r

89.直线与圆的位置关系

直线0=++C By Ax 与圆2

22)()(r b y a x =-+-的位置关系有三种:

0相离r d ; 0=???=相切r d ; 0>???<相交r d .

其中22B

A C

Bb Aa d +++=.

90.两圆位置关系的判定方法

设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21

条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

条公切线相交22121??+<<-r r d r r ; 条公切线内切121??-=r r d ; 无公切线内含??-<<210r r d .

91.圆的切线方程

(1)已知圆2

2

0x y Dx Ey F ++++=.

①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是

0000()()

022

D x x

E y y x x y y

F ++++

++=. 当00(,)x y 圆外时, 0000()()

022

D x x

E y y x x y y

F ++++

++=表示过两个切点的切点弦方程.

②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.

③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.

(2)已知圆222x y r +=.

①过圆上的000(,)P x y 点的切线方程为2

00

x x y y r +=;

②斜率为k 的圆的切线方程为y kx =±92.椭圆22

221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ

=??=?.

93.椭圆22

221(0)x y a b a b

+=>>焦半径公式

)(21c a x e PF +=,)(2

2x c

a e PF -=.

94.椭圆的的内外部

(1)点00(,)P x y 在椭圆22

221(0)x y a b a b +=>>的内部22

00

221x y a b ?

+<. (2)点00(,)P x y 在椭圆22

221(0)x y a b a b

+=>>的外部2200

221x y a b

?

+>. 95. 椭圆的切线方程

(1)椭圆22

221(0)x y a b a b

+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.

(2)过椭圆22

221(0)x y a b a b

+=>>外一点00(,)P x y 所引两条切线的切点弦方程是

00221x x y y

a b

+=. (3)椭圆22

221(0)x y a b a b

+=>>与直线0Ax By C ++=相切的条件是

22222A a B b c +=.

96.双曲线22

221(0,0)x y a b a b -=>>的焦半径公式

21|()|a PF e x c =+,2

2|()|a PF e x c

=-.

97.双曲线的内外部

(1)点00(,)P x y 在双曲线22

221(0,0)x y a b a b -=>>的内部2200

2

21x y a b ?

->. (2)点00(,)P x y 在双曲线22

221(0,0)x y a b a b

-=>>的外部2200

22

1x y a b ?

-<. 98.双曲线的方程与渐近线方程的关系

(1)若双曲线方程为12222=-b

y a x ?渐近线方程:22220x y a b -=?x a b

y ±=.

(2)若渐近线方程为x a b

y ±=?0=±b y a x ?双曲线可设为λ=-2222b

y a x .

(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22

22b

y a x (0>λ,焦点在x

轴上,0<λ,焦点在y 轴上).

99. 双曲线的切线方程

(1)双曲线22

221(0,0)x y a b a b

-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.

(2)过双曲线22

221(0,0)x y a b a b

-=>>外一点00(,)P x y 所引两条切线的切点弦方程是

00221x x y y

a b

-=. (3)双曲线22

221(0,0)x y a b a b

-=>>与直线0A x B y

C ++=相切的条件是22222A a B b c -=.

100. 抛物线px y 22=的焦半径公式

抛物线22(0)y px p =>焦半径02

p

CF x =+.

过焦点弦长p x x p

x p x CD ++=+++=21212

2.

101.抛物线px y 22

=上的动点可设为P ),2(2 y p

y 或或)2,2(2pt pt P P (,)x y ,其中

22y px = .

102.二次函数2

2

24()24b ac b y ax bx c a x a a

-=++=++(0)a ≠的图象是抛物线:(1)顶

点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a

-+-;(3)准线方程是2414ac b y a

--=.

103.抛物线的内外部

(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ?<>. 点00(,)P x y 在抛物线2

2(0)y px p =>的外部2

2(0)y px p ?>>. (2)点00(,)P x y 在抛物线2

2(0)y px p =->的内部2

2(0)y px p ?<->. 点00(,)P x y 在抛物线2

2(0)y px p =->的外部2

2(0)y px p ?>->. (3)点00(,)P x y 在抛物线2

2(0)x py p =>的内部2

2(0)x py p ?<>. 点00(,)P x y 在抛物线2

2(0)x py p =>的外部2

2(0)x py p ?>>. (4) 点00(,)P x y 在抛物线2

2(0)x py p =>的内部2

2(0)x py p ?<>. 点00(,)P x y 在抛物线2

2(0)x py p =->的外部2

2(0)x py p ?>->. 104. 抛物线的切线方程

(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.

(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.

105.两个常见的曲线系方程

(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是

12(,)(,)0f x y f x y λ+=(λ为参数).

(2)共焦点的有心圆锥曲线系方程22

2

21x y a k b k

+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.

106.直线与圆锥曲线相交的弦长公式 AB =

1212||||AB x x y y ==-=-(弦端点

A ),(),,(2211y x

B y x ,由方程??

?=+=0

)y ,x (F b kx y 消去y 得到02

=++c bx ax ,0?>,α为直线

AB 的倾斜角,k 为直线的斜率).

107.圆锥曲线的两类对称问题

(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是

2222

2()2()

(,)0A Ax By C B Ax By C F x y A B A B

++++-

-=++. 108.“四线”一方程

对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2

x ,用0y y 代2y ,用

002x y xy +代xy ,用02x x +代x ,用02

y y +代y 即得方程 0000000222

x y xy x x y y

Ax x B Cy y D E F ++++?++?+?+=,曲线的切线,切点弦,中点

弦,弦中点方程均是此方程得到.

109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.

110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.

111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.

112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;

(3)转化为线与另一线的射影垂直;

(4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径

(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.

115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .

(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .

116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.

117.共线向量定理

对空间任意两个向量a 、b (b ≠0 ),a ∥b ?存在实数λ使a =λb .

P A B 、、三点共线?||AP AB ?AP t AB = ?(1)OP t OA tOB =-+

.

||AB CD ?AB 、CD

共线且AB CD 、不共线?AB tCD = 且AB CD 、不共线.

118.共面向量定理

向量p 与两个不共线的向量a 、b 共面的?存在实数对,x y ,使p ax by =+.

推论 空间一点P 位于平面MAB 内的?存在有序实数对,x y ,使MP xMA yMB =+

或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++

.

119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++

(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ?平面ABC ,则P 、A 、B 、C 四点不共

面.

C A B 、、、

D 四点共面?AD 与AB 、AC 共面?AD xAB yAC =+

? (1)OD x y OA xOB yOC =--++

(O ?平面ABC ).

120.空间向量基本定理

如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .

推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实

数x ,y ,z ,使OP xOA yOB zOC =++

.

121.射影公式

已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'

A ,作B

点在l 上的射影'

B ,则

''

||cos A B AB = 〈a ,e 〉=a ·e

122.向量的直角坐标运算

设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);

(4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-

= 212121(,,)x x y y z z ---.

124.空间的线线平行或垂直

设111(,,)a x y z =r ,222(,,)b x y z =r

,则

a b r r P ?(0)a b b λ=≠r r r r ?12

121

2x x y y z z

λλλ=??

=??=?;

a b ⊥r r ?0a b ?=r r

?1212120x x y y z z ++=.

125.夹角公式

设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉

.

推论 2222222

112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.

126. 四面体的对棱所成的角

四面体ABCD 中, AC 与BD 所成的角为θ,则

2222|()()|

cos 2AB CD BC DA AC BD

θ+-+=?.

127.异面直线所成角

cos |cos ,|a b θ=r r

=||

||||a b a b ?=?r r

r r

(其中θ(090θ<≤o o

)为异面直线a b ,所成角,,a b r 分别表示异面直线a b ,的方向向量)

128.直线AB 与平面所成角

sin ||||

AB m arc AB m β?= (m

为平面α的法向量). 129.若ABC ?所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ?的两个内角,则

2222212sin sin (sin sin )sin A B θθθ+=+.

特别地,当90ACB ∠=

时,有

22212sin sin sin θθθ+=.

130.若ABC ?所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α

成的角分别是1θ、2θ,''

A B 、为ABO ?的两个内角,则

222'2'212tan tan (sin sin )tan A B θθθ+=+.

特别地,当90AOB ∠=

时,有

22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角

cos ||||m n arc m n θ?= 或cos ||||

m n

arc m n π?-

(m ,n 为平面α,β的法向量).

132.三余弦定理

设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.

133. 三射线定理

若夹在平面角为?的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ?θθθθθ?=+- ;

1212||180()θθ?θθ-≤≤-+ (当且仅当90θ= 时等号成立).

134.空间两点间的距离公式

若A 111(,,)x y z ,B 222(,,)x y z ,则

,A B d =||AB = =.

135.点Q 到直线l 距离

h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量

b =PQ ).

136.异面直线间的距离

||

||CD n d n ?=

(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).

137.点B 到平面α的距离

||||

AB n d n ?=

(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式

d

d =

d ='E AA F ?=--).

(两条异面直线a 、b 所成的角为θ,其公垂线段'

AA 的长度为h.在直线a 、b 上分别取两

点E 、F ,'

A E m =,AF n =,EF d =). 139.三个向量和的平方公式

2222()222a b c a b c a b b c c a ++=+++?+?+?

2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++?+?+?

140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分

别为123θθθ、、,则有

222

2123l l l l =++222123cos cos cos 1θθθ?++=222123sin sin sin 2θθθ?++=.

(立体几何中长方体对角线长的公式是其特例). 141. 面积射影定理

'

cos S S θ

=.

(平面多边形及其射影的面积分别是S 、'

S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面

已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则

①1S c l =斜棱柱侧. ②1V S l =斜棱柱.

143.作截面的依据

三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质

如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.

145.欧拉定理(欧拉公式)

2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).

(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:1

2

E n

F =

; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:1

2

E mV =. 146.球的半径是R ,则

其体积34

3

V R π=

, 其表面积2

4S R π=.

147.球的组合体

(1)球与长方体的组合体:

长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:

正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:

棱长为a ,. 148.柱体、锥体的体积

1

3V Sh =柱体(S 是柱体的底面积、h 是柱体的高).

1

3

V Sh =锥体(S 是锥体的底面积、h 是锥体的高).

149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =??? . 151.排列数公式

m

n

A =)1()1(+--m n n n =!

!)(m n n -.(n ,m ∈N *

,且m n ≤).

注:规定1!0=.

高中数学知识点总结(精华版)

高中数学必修+选修知识点归纳新课标人教A版 一、集合 1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。 2、只要构成两个集合的元素是一样的,就称这两个集合相等。 3、常见集合:正整数集合: 或 ,整数集合: ,有理数集合: ,实数集合: . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作 .

2、如果集合 ,但存在元素 ,且 ,则称集合A是集合B的真子集.记作:A B. 3、把不含任何元素的集合叫做空集.记作: .并规定:空集合是任何集合的子集. 4、如果集合A中含有n个元素,则集合A有 个子集, 个真子集. §1.1.3、集合间的基本运算 1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作: . 2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作: . 3、全集、补集? §1.2.1、函数的概念

1、设A、B是非空的数集,如果按照某种确定的对应关系 ,使对于集合A中的任意一个数 ,在集合B中都有惟一确定的数 和它对应,那么就称 为集合A到集合B的一个函数,记作: . 2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法: (1)定义法:设 那么 上是增函数; 上是减函数. 步骤:取值—作差—变形—定号—判断 格式:解:设

高中数学知识点完全总结(绝对全)

高中数学概念总结 一、 函数 1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。 二次函数c bx ax y ++=2的图象的对称轴方程是a b x 2-=,顶点坐标是??? ? ? ?--a b ac a b 4422,。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -?-=和n m x a x f +-=2)()( (顶点式)。 2、 幂函数n m x y = ,当n 为正奇数,m 为正偶数, m

),(y x P ,点P 到原点的距离记为r ,则sin α= r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=y r 。 2、同角三角函数的关系中,平方关系是:1cos sin 2 2 =+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ; 倒数关系是:1=?ααctg tg ,1csc sin =?αα,1sec cos =?αα; 相除关系是:αααcos sin = tg ,α α αsin cos =ctg 。 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如:=-)23sin( απαcos -,)2 15(απ -ctg =αtg ,=-)3(απtg αtg -。 4、 函数B x A y ++=)sin(?ω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ω π 2= T ,频 率是πω2= f ,相位是?ω+x ,初相是?;其图象的对称轴是直线)(2 Z k k x ∈+=+π π?ω,凡是该图象与直线B y =的交点都是该图象的对称中心。 5、 三角函数的单调区间: x y s i n =的递增区间是??? ?? ? + -222 2πππ πk k ,)(Z k ∈,递减区间是????? ? ++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是 ??? ? ? +-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。 6、=±)sin(βαβαβαsin cos cos sin ± =±)c o s (βαβαβαs i n s i n c o s c o s = ±)(βαtg β αβ αtg tg tg tg ?± 1 7、二倍角公式是:sin2α=ααcos sin 2? cos2α=αα2 2 sin cos -=1cos 22 -α=α2 sin 21- tg2α= α α 2 12tg tg -。

高中数学知识点总结(精华版)

高中数学知识点总结 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.

高中数学集合知识点(明细)

集合 1.集合的含义与表示 (1 的元素,则记作x∈A。 (2)集合中的元素有三个特征: a.确定性(集合中的元素必须是确定的) b.互异性(集合中的元素互不相同。例如:集合A={1,a},则a 不能等于1) c.无序性(集合中的元素没有先后之分。) (3)常见的集合符号表示: N:非负整数集合或自然数集合{0,1,2,3,…} N*或N+:正整数集合{1,2,3,…} Z:整数集合{…,-1,0,1,…} Q:有理数集合 Q+:正有理数集合 Q-:负有理数集合 R:实数集合(包括有理数和无理数) R+:正实数集合 R-:负实数集合 C:复数集合 ?:空集合(不含有任何元素的集合称为空集合,又叫空集) (4)表示集合的方法: a.列举法:{红,绿,蓝},A={a,b,c,d}··· b.描述法:B={x|x2=2},{代表元素|满足的性质}··· c.Venn 图:用一条封闭的曲线内部表示一个集合的方法。

(1)子集:对于两个集合A,B. 若任意a∈A,都有a∈B,则称集合A 被集合B 所 包含(或集合B 包含集合A),记做A?B,此时称集合A 是集合B的子 集。 (2)真子集:若A?B,且存在a∈B但a?A 则称集合A是集合B的真子集,记做 A?B. (3)由子集的定义可知子集有这样三条主要的性质: a.规定: 空集(不含任何元素的集合叫做空集,记为f)是任何集合的子集 b. 任何一个集合是它本身的子集. c. 子集具有传递性. 如果A?B, B?C ,那么A?C. *假设非空集合A中含有n个元素,则有: 1.A的子集个数为2n。 2.A的真子集的个数为2n-1。 3.A的非空子集的个数为2n-1。 4.A的非空真子集的个数为2n-2。

最全高中数学知识点总结(最全集)

最全高中数学知识点总结(最全集) 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。

高中数学知识点大全

高中数学常用公式及常用结论 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若

高一数学集合知识点总结归纳

高一数学集合知识点总结归纳 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:n,z,q,r,n* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈a都有x∈b,则a b(或a b); 2)真子集:a b且存在x0∈b但x0 a;记为a b(或,且 ) 3)交集:a∩b={x| x∈a且x∈b} 4)并集:a∪b={x| x∈a或x∈b} 5)补集:cua={x| x a但x∈u}

注意:①? a,若a≠?,则? a ; ②若,,则 ; ③若且,则a=b(等集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。 4.有关子集的几个等价关系 ①a∩b=a a b;②a∪b=b a b;③a b c ua c ub; ④a∩cub = 空集 cua b;⑤cua∪b=i a b。 5.交、并集运算的性质 ①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a; ③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub; 6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。 【例1】已知集合m={x|x=m+ ,m∈z},n={x|x= ,n∈z},p={x|x= ,p∈z},则m,n,p满足关系 a) m=n p b) m n=p c) m n p d) n p m 分析一:从判断元素的共性与区别入手。 解答一:对于集合m:{x|x= ,m∈z};对于集合n:{x|x= ,n ∈z} 对于集合p:{x|x= ,p∈z},由于3(n-1)+1和3p+1都

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高中数学知识点总结大全

高中数学知识点总结 1. 首先对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 要注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ? (答:,,)-??? ??? 1013 3. 注意下列性质: {} ()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 4. 请问你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 ()(∵,∴ ·∵,∴ ·,,)335 30 555 5015392522 ∈--

若为真,当且仅当、均为真p q p q ∧ 若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假?p p 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是 y x x x = --432 lg ()()() (答:,,,)022334 10. 如何求复合函数的定义域? [] 如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0 义域是_____________。 [] (答:,)a a - 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? ( ) 如:,求f x e x f x x +=+1(). 令,则t x t = +≥10 ∴x t =-2 1 ∴f t e t t ()=+--2 1 21 ()∴f x e x x x ()=+-≥-2 1 210

最新最全高一数学重要知识点汇总(精华)

高一数学重要知识点汇总

————————————————————————————————————————————————————————————————作者:日期: 2

必修 数学知识总结 必修一 一、集合 一、集合有关概念 1. 2. 集合的含义 集合的中元素的三个特性: (1) 元素的确定性如:世界上最高的山 (2) 元素的互异性如:由 HAPPY 的字母组成的集合 {H,A,P,Y} (3) 元素的无序性 : 如:{a,b,c} 和{a,c,b} 是表示同一个集合 3. 集合的表示: { } 如: { 我校的篮球队员 } ,{ 太平洋 , 大西洋 , 印度洋 , 北冰洋 } (1) 用拉丁字母表示集合: A={我校的篮球队员 },B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集) 记作: N 正整数集 N* 或 N+ 整数集 Z 有理数集 Q 实数集 R 1)列举法: {a,b,c } 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内 表示集合的方法。 {x R| x-3>2} ,{x| x-3>2} 3)语言描述法:例: { 不是直角三角形的三角形 } 4)Venn 图: 4、集合的分类: (1) 有限集 (2) 无限集 (3) 空集 含有有限个元素的集合 含有无限个元素的集合 不含任何元素的集合 2 例:{x|x =-5} 二、集合间的基本关系 1. “包含”关系—子集 注意: A B 有两种可能( 1) A 是 B 的一部分,;(2)A 与 B 是同一集合。 集合 A 不包含于集反之 : B, 或集合 B 不包含集合 A, 记作 AB 或 BA 2.“相等”关系: A=B (5 ≥ 5,且 5≤5,则 5=5) 2 实例: 设 A={x|x -1=0} B={-1,1} 等” “元素相同则两集合相 即:① 任何一个集合是它本身的子集。 A A ②真子集 : 如果 A B, 且 A B 那就说集合 A 是集合 B 的真子 集, 记作 A B( 或 B ③如果 A B, B A) C , 那么 A C ④ 如果 A B 同时 B A 那么 A=B Φ 3. 不含任何元素的集合叫做空集,记为 规定 : 集。 空集是任何集合的子集, 空集是任何非空集合的真子 n n-1 有 n 个元素的集合,含有 2 个子集, 2 个真子集 二、函数 1、函数定义域、值域求法综合 2. 、函数奇偶性与单调性问题的解题策略

高一数学集合知识点归纳

高一数学集合知识点归纳 高一数学的集合学习以及总结需要把集合相关知识点进行归纳,只有把知识点归纳好才可以学好高一数学集合,以下是我总结了高一数学的知识点,希望帮到大家更好地归纳好集合的知识点同时复习好集合。 一、知识点总结 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性、互异性和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则AB(或AB); 2)真子集:AB且存在x0∈B但x0A;记为AB(或,且) 3)交集:A∩B={x|x∈A且x∈B}

4)并集:A∪B={x|x∈A或x∈B} 5)补集:CUA={x|xA但x∈U} 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号。 4.有关子集的几个等价关系 ①A∩B=AAB;②A∪B=BAB;③ABCuACuB; ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。 5.交、并集运算的性质 ①A∩A=A,A∩B=B∩A;②A∪A=A,A∪B=B∪A; ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 二、集合知识点整合 集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。 集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。 集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称

高中数学知识点总结精华版

高中数学必修+选修知识点归纳 新课标人教A版

一、集合 1、 把研究的对象统称为元素,把一些元素组成的总 体叫做集合。集合三要素:确定性、互异性、无 序性。 2、 只要构成两个集合的元素是一样的,就称这两个 集合相等。 3、 常见集合:正整数集合:*N 或+N ,整数集合: Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、 一般地,对于两个集合A 、B ,如果集合A 中任 意一个元素都是集合B 中的元素,则称集合A 是 集合B 的子集。记作B A ?. 2、 如果集合B A ?,但存在元素B x ∈,且A x ?, 则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:?.并规定: 空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n 2个子 集,21n -个真子集. §1.1.3、集合间的基本运算 1、 一般地,由所有属于集合A 或集合B 的元素组成 的集合,称为集合A 与B 的并集.记作:B A Y . 2、 一般地,由属于集合A 且属于集合B 的所有元素 组成的集合,称为A 与B 的交集.记作:B A I . 3、全集、补集?{|,}U C A x x U x U =∈?且 §1.2.1、函数的概念 1、 设A 、B 是非空的数集,如果按照某种确定的对应 关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值 域.如果两个函数的定义域相同,并且对应关系完 全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法: (1)定义法:设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. 步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则: ()()21x f x f -=… (2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性 1、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f =-,那么就称函数()x f 为 偶函数.偶函数图象关于y 轴对称. 2、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f -=-,那么就称函数()x f 为 奇函数.奇函数图象关于原点对称. 知识链接:函数与导数 1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在 ))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方 程是))((000x x x f y y -'=-. 2、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ;

(完整word版)高中数学各章节知识点汇总

高中数学各章节知识点汇总

目录 第一章集合与命题 (1) 一、集合 (1) 二、四种命题的形式 (2) 三、充分条件与必要条件 (2) 第二章不等式 (1) 第三章函数的基本性质 (2) 第四章幂函数、指数函数和对数函数(上) (3) 一、幂函数 (3) 二、指数函数 (3) 三、对数 (3) 四、反函数 (4) 五、对数函数 (4) 六、指数方程和对数方程 (4) 第五章三角比 (5) 一、任意角的三角比 (5) 二、三角恒等式 (5) 三、解斜三角形 (7) 第六章三角函数的图像与性质 (8) 一、周期性 (8) 第七章数列与数学归纳法 (9) 一、数列 (9) 二、数学归纳法 (10) 第八章平面向量的坐标表示 (12) 第九章矩阵和行列式初步 (14) 一、矩阵 (14) 二、行列式 (14) 第十章算法初步 (16) 第十一章坐标平面上的直线 (17) 第十二章圆锥曲线 (19) 第十三章复数 (21)

第一章集合与命题 一、集合 1.1 集合及其表示方法 集合的概念 1、把能够确切指定的一些对象组成的整体叫做集合简称集 2、集合中的各个对象叫做这个集合的元素 3、如果a是集合A的元素,就记做a∈A,读作“a属于A” 4、如果a不是集合A的元素,就记做a ? A,读作“a不属于A” 5、数的集合简称数集: 全体自然数组成的集合,即自然数集,记作N 不包括零的自然数组成的集合,记作N* 全体整数组成的集合,即整数集,记作Z 全体有理数组成的集合,即有理数集,记作Q 全体实数组成的集合,即实数集,记作R 我们把正整数集、负整数集、正有理数、负有理数、正实数集、负实数集表示为Z+、Z-、Q+、Q-、R+、R- 6、把含有有限个数的集合叫做有限集、含有无限个数的集合叫做无限极 7、空集是指不用含有任何元素的集合,记作? 集合的表示方法 1、在大括号内先写出这个集合的元素的一般形式,再画一条竖线,在竖线之后写上集合中元素所共同具有的特性,这种集合的表示方法叫做描述法 1.2 集合之间的关系 子集 1、对于两个集合A和B,如果集合A中任何一个元素都属于集合B,那么集合A叫做集合B 的子集,记做A?B或B?A,读作“A包含于B”或“B包含A” 2、空集包含于任何一个集合,空集是任何集合的子集 3、用平面区域来表示集合之间关系的方法叫做集合的图示法,所用图叫做文氏图 相等的集合 1、对于两个集合A和B,如果A?B,且B?A,那么叫做集合A与集合B相等,记作“A=B”,读作“集合A等于集合B”,如果两个集合所含元素完全相同,那么这两个集合相等

高中数学-集合与简易逻辑知识点

集合与简易逻辑知识点 知识点内容典型题 元素与集合、集合与集合的关系 ①、∈只能表示元素与集合的关 系,而、、 ?、?、=只能表示集 合与集合的关系. ②0、{0}、的关系是常见题型, 如:数集{0}与空集的关系是() A.{0}= B.{0}∈ C.∈{0} D.?{0} ③常用数集:R、R*、R+、R + 、Q、 Z、N.(注意*、+、+的不同含义) ④是任何集合的子集,是任何非. 空.集合的真.子集. ⑤n个元素的集合的真子 ..集.个数 为:2n-1. 1.下列关系中正确的是() A.0 B.0∈ C.0= D.0≠ 2.已知a=-3,A={x│x2=9},则下 列关系正确的是() A.a A B.{a}A C.{a}∈A D.a A 3.下列命题为真命题的是() A.3{3} B. 3∈{3} C.3{1,2,3} D. 3∈ 4.若a=1,集合A={x│x<2},则下 列关系中正确的是() A.a A B.{a}A C.{a}∈A D.{a}A 集合的运算 ①掌握好求交、并、补集的基本含 义和方法,特别是C U A的含义. ②有限元素集之间的运算,常根据 定义解答,如: ⑴{0,1,2}∩{0,3,5}=. ⑵{x∈N│x<3}∩{x∈Z│0<x<10} =. ③无限元素集之间的运算,可用数 轴法,如: 设集合A={x│-1<x≤2},B= {x│-2<x≤1}则A∩B=. ④点集运算,常联立解方程组,如: A={(x,y)│x+y=2},B={(x , y)│x- y=1},则A∩B=. 5.设集合A={x∈Z│0<x<4},B= {2,3,4,5,6},则A∩B=. 6.已知集合A={x│x>0},B={x│x= 0},则A∩B是() A.{x│x≥0} B.{x│x>0} C.{0} D. 7.设M={x│2≤x≤5},N={x│-1≤ x≤3},则M∪N等于 . 8.设集合U=R,A={x│-2<x<3}, 则集合C U A=. 9.若全集U={x∈Z│x≥0},则C U N+ =. 10.已知全集U=N,集合A={x∈N│ x>10},B={x∈N│x≥3},则 C U(A∪B)=.

高中数学知识点汇总(最新版)

高中数学资料汇总 1、二次函数的解析式的三种形式 (1)一般式; (2)顶点式; (3)零点式. 2、四种命题的相互关系 原命题:与逆命题互逆,与否命题互否,与逆否命题互为逆否; 逆命题:与原命题互逆,与逆否命题互否,与否命题互为逆否; 否命题:与原命题互否,与逆命题互为逆否,与逆否命题互逆; 逆否命题:与逆命题互否,与否命题互逆,与原命题互为逆否 § 函数 1、若,则函数的图象关于点对称; 若,则函数为周期为的周期函数. 2、函数的图象的对称性 (1)函数的图象关于直线对称 .

(2)函数的图象关于直线对称 . 3、两个函数图象的对称性 (1)函数与函数的图象关于直线(即轴)对称. (2)函数与函数的图象关于直线对称. (3)函数和的图象关于直线y=x对称. 4、若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象. 5、互为反函数的两个函数的关系:. 6、若函数存在反函数,则其反函数为,并不是 ,而函数是的反函数. 7、几个常见的函数方程 (1)正比例函数,. (2)指数函数,. (3)对数函数,.

(4)幂函数,. (5)余弦函数,正弦函数,,§ 数列 1、数列的同项公式与前n项的和的关系 ( 数列的前n项的和为). 2、等差数列的通项公式;其前n项和公式为 . 3、等比数列的通项公式;其前n项的和公式为 或. 4、等比差数列:的通项公式为 ;其前n项和公式为 . § 三角函数

1、同角三角函数的基本关系式,=,. 2、正弦、余弦的诱导公式(奇变偶不变,符号看象限) 3、和角与差角公式 ; ; . (平方正弦公式); . =(辅助角所在象限由点的象限决 定, ). 4、二倍角公式 .

高一数学上册知识点整理:集合

高一数学上册知识点整理:集合 高一数学上册知识点整理:集合 集合概念 集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论: 集合是现代数学的基本概念,专门研究集合的理论叫做 集合论。康托(Cantor,G.F.P.,1845年—1918年,德 国数学家先驱,是集合论的创始者,目前集合论的基本 思想已经渗透到现代数学的所有领域。 集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。 集合是把人们的直观的或思维中的某些确定的能够 区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。 元素与集合的关系 元素与集合的关系有“属于”与“不属于”两种。 集合与集合之间的关系

某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集, 空集是不含任何元素的集,记做Φ。空集是任何集合的 子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。『说明一下:如果集合 A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符 号下加了一个≠符号(如右图),不要混淆,考试时还是 要以课本为准。所有男人的集合是所有人的集合的真子集。』 集合的几种运算法则 并集:以属于A或属于B的元素为元素的集合称为A 与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A 且属于B的元差集表示 素为元素的集合称为A与B的交(集),记作A∩B(或 B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3, 5}B={1,2,5}。那么因为A和B中都有1,5,所以 A∩B={1,5}。再来看看,他们两个中含有1,2,3,5 这些个元素,不管多少,反正不是你有,就是我有。那

相关文档
相关文档 最新文档