文档视界 最新最全的文档下载
当前位置:文档视界 › 无机粉体表面改性的目的、原理及方法及改性剂的选择

无机粉体表面改性的目的、原理及方法及改性剂的选择

无机粉体表面改性的目的、原理及方法及改性剂的选择

无机粉体表面改性的目的、原理及方法及改性剂的选择

虽然无机粉体表面改性的目的因应用领域的不同而异,但总的目的是通过粉体改性剂改善或提高粉体材料的应用性能或赋予其新的功能以满足新材料、新技术发展或者新产品开发的需要。

无机粉体改性的目的是什么呢

1.使无机矿物填料由一般增量填料变为功能性填料;

2.提高涂料或油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性和保色性等;

3.在无机/无机复合粉料中,提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料;

4.通过对层状粉体进行插层改性,制备新型的层间插层矿物材料;

5.对于吸附和催化材料,提高其吸附和催化活性以及选择性、稳定性、机械强度等性能

6.超细和纳米粉体制备中的抗团聚;

粉体表面改性的原理和方法

1.表面或界面性质与其应用性能的关系

2.表面或界面与表面改性剂或者处理剂的作用机理和作用模型

3.各种表面改性方法的基本原理或者理论基础,包括表面改性处理过程中的热力学和动力学,模拟和化学计算等。

粉体表面改性设备介绍

粉体表面改性设备

中国粉体表面改性设备种类很多,例如高速混合机、捏合机、密炼机、开炼机、单螺杆挤出机、双螺杆挤出机等,但这些设备大多从化工机械借用过来。存在许多严重问题,针对这些问题,近年来有了许多改进和进展,本文重点介绍引进国外机型和对高冷搅机组进行的改进。 现状粉体表面改性设备,主要担负三项职责,一是混合,二是分散,三是表面改性剂在设备中熔化和均匀分散到物料表面,并产生良好的结合。由于混合物的种类和性质各不相同,混合、分散和表面改性要求的质量指标也不相同,因而出现多种性质不同的改性设备,而这些设备又多为借用,因而并不能很好地完成改性任务。主要使用的改性设备为: •。重力混合器 •。气动混合器 •。转鼓式混合机 •。v型混合机 •。Z型混合机 •。高速混合机及高速混合机和冷却混合机组(简称高冷搅机组) •。开炼机 •。密炼机 •。混炼型单螺杆挤出机,布斯混炼机 •。双螺杆挤出机以及静态混合器,空腔混合器,和拉伸混合器等。 这些设备存在的主要问题是: ①多数是间歇式的,连续式设备如单、双螺杆挤出机大都是直线运动式,混合效果差。存在产量低,能耗大,工人劳动强度高,易造成环境污染等问题。

②升温慢,改性时间长,相反改性剂用量大,改性效果差。 ③比较而言,高冷搅机组价格低、耐用、易操作、改性效果好。 ④与国外设备相比,差距明显,主要表现在连续性和改性效果方面。 可以说,中国的粉体表面改性设备的落后,严重制约表面改性深加工技术的发展。已经到了非改不可的地步。 从90年代开始,一些科技人员就着手对改性设备进行改革、到2002年已经取得阶段性成果。 这些阶段成果包含两个方面: ①引进国外连续改性机型 ②对高冷搅机组进行改革 引进国外机型 引进、吸收、消化国外先进设备,是现阶段我们的主要手段之一。改性设备也不例外,现在由大专院校、科研单位与生产企业共同引进开发的改性设备已经问世,且价格大大低于直接购买的国外同类设备。 1、PS系列粉体表面改性机 由原武汉工业大学北京研究生部非矿所和青岛青矿矿山设备有限公司共同开发研制成功的PSC系列粉体表面改性机是表面化学改性的专用设备,它具有设计先进,科学,能连续生产,产量高,能耗低,自动化程度高,工人劳动强度低,无粉尘污染,且表面改性剂用量少,包覆率高等特点。 ①PSC表面改性性能结构特征: 本机由给料输送、主机、改性剂供给、排料、成品输送、成品收集仓、加热、给风、除尘等系统构成。

中国碳酸钙资源概况及其地理分布澳达粉体表面改性剂

中国碳酸钙资源概况及其地理分布 中国是世界上石灰岩矿资源丰富的国家之一。除上海、香港、澳门外,在各省、直辖市、自治区均有分布。据原国家建材局地质中心统计,全国石灰岩分布面积达43.8万KM2(未包括西藏和台湾),约占国土面积的1/20,其中能供做水泥原料的石灰岩资源量约占总资源量的1/4~1/3。为了满足环境保护、生态平衡,防止水土流失,风景旅游等方面的需要,特别是随着我国小城镇建设规划的不断完善和落实,可供水泥石灰岩的开采量还将减少。全国已发现水泥石灰岩矿点七、八千处,其中已有探明储量的有1286处,其中大型矿床257处、中型481处、小型486处(矿石储量大于8000万吨为大型、4000~8000万吨为中型、小于4000万吨为小型),共计保有矿石储量542亿吨,其中石灰岩储量504亿吨,占93%;大理岩储量38亿吨,占7%。保有储量广泛分布于除上海市以外29个省、直辖市、自治区,其中陕西省保有储量49亿吨,为全国之冠;其余依次为安徽省、广西自治区、四川(含重庆市)省,各保有储量34~30亿吨;山东、河北、河南、广东、辽宁、湖南、湖北7省各保有储量30~20亿吨;黑龙江、浙江、江苏、贵州、江西、云南、福建、山西、新疆、吉林、内蒙古、青海、甘肃13省各保有储量20~10亿吨;北京、宁夏、海南、西藏、天津5省各保有储量5~2亿吨。 一、澳达粉体表面改性剂技术指标 1、外观:无色透明液体; 2、粘度:12 ±2mPa.S (25℃);

3、PH值:6-7; 4、比重:1.11±0.01g/ml; 5、溶解性:与水以任意比例混溶。 二、澳达粉体表面改性剂适用范围 本品适用于各种无机粉体,如轻钙、重钙、硫酸钙、炭黑、滑石粉、白炭黑、硫酸钡、晶须钙、高岭土、氢氧化铝、氢氧化镁、氧化铝、氧化镁、氧化铈、云母粉、二氧化硅、纳米碳管、氮化硼、碳化硼、二氧化硼、颜料、复合粉等。 三、澳达粉体表面改性剂性能特点: 1、本品是较低分子量的聚合物, 集助磨、改性、润滑、偶联、分散等功能于一体,每 个分子有多个极性基团,它在无机粉体表面的吸附是部分极性基团朝无机粉体表面,另一部分则朝溶液,并通过分子间力或氢键与溶液产生缔合,从而形成立体屏障防止颗粒间接触聚集,起到粒子间分散作用。 2、本品具有优良的活化改性,助磨分散,偶联作用,能大幅度降低粉体吸油量,并使粉体具有优良的亲水亲油特性,与水性树脂体系相容性更好,降低树脂用量,从而达 到纸张、涂料生产中高填充、低粘度的加工要求。 3、经本品处理后的重质粉体填料,白度保持好,润湿分散性佳,完全能达到造纸,涂料等行业降低水性树脂用量,降低成本的要求;在造纸、涂布方面,用改性粉体具有 比表面积大、表面活性高、强度和硬度高等特点,所以有助于提高涂布纸的质量。改 性粉体用作涂布加工纸的原料,特别是用于高级板纸,可代替部分陶土,有效地提高 纸的白度和不透明性,改进纸的平滑度、柔软度,改善纸张的吸收性能,提高保留率;用于造纸,可增加用量,提高纸张的白度、蔽光性、吸油性,改善纸张的印刷性能和光学 性能,使纸张更加均匀平整,减小对纸机的磨损,还能增加纸张对油墨、彩色颜料的附着力,使印刷品鲜艳、逼真、美观。在涂料方面,能让涂料膜白度增加,光泽度高,而遮盖力 却不降低,这一性能使其在涂料工业被大量推广应用。改性粉体作为填料使用,在涂料中起骨架和对底材(钢材,木材)的填平作用,使底层涂料膜沉积性和渗透性增强。改性粉体用作高档轿车底盘PVC漆的功能性填料,可以改变PVC漆的触变性,提高喷漆固化速度 和PVC漆的抗冲击强度。另外,用改性粉体填充涂料可以大大提高其柔韧性、硬度、 流平性、储存稳定性以及光泽度。 4、可使改性粉体填料在树脂乳液液中有持久的分散防沉性,避免出现分层现象。

非金属矿物粉体表面改性技术探讨

非金属矿物粉体表面改性技术探讨 发表时间:2018-07-26T10:08:10.707Z 来源:《基层建设》2018年第15期作者:张仕奇张君杰张扬[导读] 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 内蒙古科技大学内蒙古自治区包头市昆都仑区 014010 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 关键词:非金属矿物;表面改性;技术 随着新型复合材料的兴起,非金属矿物表面改性技术也得到了快速的发展,表面改性是非金属矿物材料必须的加工技术,通过表面改性能够使材料的性能和应用价值得到极大的提升。 1 表面改性方法 表面改性的方法很多,能够改变非金属矿物粉体表面或界面的物理化学性质的方法,如表面物理涂覆、化学包覆、无机沉淀包覆或薄膜、机械力化学、化学插层等可称为表面改性方法。目前工业上非金属矿物粉体表面改性常用的方法主要有表面化学包覆改性法、沉淀反应改性法和机械化学改性法及复合法。 (1)表面化学包覆改性法:是目前最常用的非金属矿物粉体表面改性方法,这是一种利用有机表面改性剂分子中的官能团在颗粒表面吸附或化学反应对颗粒表面进行改性的方法。所用表面改性剂主要有偶联剂(硅烷、钛酸酯、铝酸酯、锆铝酸酯、有机络合物、磷酸酯等)、表面活性剂(高级脂肪酸及其盐、高级胺盐、非离子型表面活性剂、有机硅油或硅树脂等)、有机低聚物及不饱和有机酸等。改性工艺可分为干法和湿法两种。 (2)沉淀反应法:是利用化学沉淀反应将表面改性物沉淀包覆在被改性颗粒表面,是一种“无机/无机包覆”或“无机纳米/微米粉体包覆”的粉体表面改性方法。粉体表面包覆纳米Ti02、ZnO、CaC03等无机物的改性,就是通过沉淀反应实现的,如云母粉表面包覆TiO2制备珠光云母颜料、钛白粉表面包覆Si02和A1203。 (3)机械力化学改性法:是利用超细粉碎过程及其他强烈机械力作用有目的地激活颗粒表面,使其结构复杂或无定形化,增强它与有机物或其他无机物的反应活性。机械化学作用可以增强颗粒表面的活性点和活性基团,增强其与有机基质或有机表面改性剂的使用。以机械力化学原理为基础发展起来的机械融合技术,是一种对无机颗粒进行复合处理或表面改性,如表面复合、包覆、分散的方法。 (4)化学插层改性法:是指利用层状结构的粉体颗粒晶体层之间结合力较弱(如分子键或范德华键)或存在可交换阳离子等特性,通过化学反应或离子交换反应改变粉体的性质的改性方法。因此,用于插层改性的粉体一般来说具有层状或似层状晶体结构,如蒙脱土、高岭土等层状结构的硅酸盐矿物或粘土矿物以及石墨等。用于插层改性的改性剂大多为有机物,也有无机物。 (5)复合改性法:是指综合采用多种方法(物理、化学和机械等)改变颗粒的表面性质以满足应用的需要的改性方法。目前应用得复合改性方法主要有物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆等。 2 表面改性工艺 表面改性工艺依表面改性的方法、设备和粉体制备方法而异。目前工业上应用的表面改性工艺丰要有干法工艺、湿法工艺、复合工艺三大类。干法工艺根据作业方式的不同又可以分为间歇式和连续式;湿法工艺又可分有机改性工艺和无机改性工艺;复合工艺又可分为物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆工艺等。 (1)干法工艺:是一种应用最为广泛的非金属矿物粉体表面改性工艺。目前对于非金属矿物填料和颜料,如重质碳酸钙和轻质碳酸钙、高岭土与煅烧高岭土、滑石、硅灰石、硅微粉、玻璃微珠、氢氧化铝和轻氧化镁、陶土、陶瓷颜料等,大多采用干法表面改性工艺。原因是干法工艺简单,作业灵活、投资较省以及改性剂适用性好等特点。其中,间歇式干法工艺的特点是可以在较大范围内灵活调节表面改性的时间(即停留时间),但颗粒表面改性剂难以包覆均匀,单位产品药剂耗量较多,生产效率较低,劳动强度大,有粉尘污染,难以适应大规模工业化生产,一般应用于小规模生产。连续式改性工艺的特点是粉体与表面改性剂的分散较好,颗粒表面包覆较均匀,单位产品改性剂耗量较少,劳动强度小,生产效率高,适用于大规模工业化生产。连续式干法表面改性工艺常常置于干法粉体制备工艺之后,大批量连续生产各种非金属矿物活性粉体,特别是用于塑料、橡胶、胶粘剂等高聚物基复合材料的无机填料和颜料。 (2)湿法表面有机改性工艺:与干法工艺相比具有表面改性剂分散好、表面包覆均匀等特点,但需要后续脱水(过滤和干燥)作业。一般用于可水溶或可水解的有机表面改性剂以及前段为湿法制粉(包括湿法机械超细粉碎和化学制粉)工艺而后段又需要干燥的场合,如轻质碳酸钙(特别是纳米碳酸钙)、湿法细磨重质碳酸钙、超细氢氧化铝与氢氧化镁、超细二氧化硅等的表面改性,这是因为化学反应后生成的浆料即使不进行湿法表面改性也要进行过滤和干燥,在过滤和干燥之前进行表面改性,还可使物料干燥后不形成硬团聚,改善其分散性。无机沉淀包覆改性也是一种湿法改性工艺。它包括制浆、水解、沉淀反应和后续洗涤,脱水、煅烧或焙烧等工序或过程。 (3)机械力化学/化学包覆复合改性工艺:是在机械力作用或细磨、超细磨过程中添加表面改性剂,在粉体粒度减小的同时对颗粒进行表面化学包覆改性的工艺。这种复合表面改性工艺的特点是可以简化工艺,某些表面改性剂还具有一定程度的助磨作用,可在一定程度上提高粉碎效率。不足之处是温度不好控制;此外,由于改性过程中颗粒不断被粉碎,产生新的表面,颗粒包覆难以均匀,要设计好表面改性剂的添加方式才能确保均匀包覆和较高的包覆率;此外,如果粉碎设备的散热不好,强烈机械力作用过程中局部的过高温升可能使部分表面改性剂分解或分子结构被破坏。 (4)无机沉淀反应/化学包覆复合改性工艺:是在沉淀反应改性之后再进行表面化学包覆改性,实质上是一种无机/有机复合改性工艺。这种复合改性工艺已广泛用于复合钛白粉表面改性,即在沉淀包覆SiO2或A1203薄膜的基础上,再用钛酸酯、硅烷及其他有机表面改性剂对Ti02/Si02或A1203复合颗粒进行表面有机包覆改性。 (5)物理涂覆/化学包覆复合改性工艺:是一种物理涂覆的方式,在进行金属镀膜或者覆膜之后,在通过有机化学进行改性的工艺。 参考文献: [1] 刘伯元.中国粉体表面改性(塑料填充改性)的最新进展[C]// 中国建筑材料及非金属矿物加工与检测技术交流大会.建筑材料工业技术情报研究所,2009. [2] 郑水林.粉体表面改性工艺设备及其选择[C]// 中国白色工业矿物技术与市场交流大会.2009.

岗石粉体助磨改性剂,降低20%的吸油值

岗石粉体助磨改性剂,降低20%的吸油值 人造岗石用的微粉填料主要是一种重质碳酸钙,通常使用立磨粉碎大理石矿石获得,也称为立磨粉,但是立磨粉本身是亲水性粉体,在岗石原料树脂中的相容性和分散效果不足,故使用前需要采用专用的碳酸钙助磨改性剂对其进行改性处理,才能得到优质的立磨粉。 人造岗石用碳酸钙助磨改性剂是较低分子量的聚合物, 集助磨、改性、润滑、偶联、分散等功能于一体,每个分子有多个极性基团,它在无机粉体表面的吸附是部分极性基团朝无机粉体表面,另一部分则朝油性溶液,并通过分子间力或氢键与油性溶液产生缔合,从而形成立体屏障防止颗粒间接触聚集,起到粒子间分散作用。

一、物理性能: 碳酸钙助磨改性剂通常呈乳白色液体状,粘度15 ±2mPa.S (25℃),PH值:8-9,比重:1.014± 0.02g/ml,易溶于水。 碳酸钙助磨改性剂它有优良的活化改性,助磨分散,偶联作用,能大幅度降低粉体吸油量,并使粉体具有优良的亲水亲油特性,与不饱和树脂体系相容性更好,从而达到人造石生产中高填充、低粘度的加工要求。使用这种碳酸钙助磨改性剂改性的碳酸钙吸油值理想状态下可下降10-20%。还可以使岗石粉填料在不饱和树脂液中有持久的分散防沉性,使得制品不会出现气孔、起皮、龟裂等现象;制品表面发色均匀、自然、光亮。 二、碳酸钙助磨改性剂应用范围 它适用于各种无机粉体,如重质碳酸钙、轻质碳酸钙、高岭土、二氧化硅、滑石粉、炭黑、颜料和其他粉体的表面分散改性;改性后的粉体特别适合人造石行业客户的使用。

三、碳酸钙助磨改性剂用法及用量: 1.用法与一般粉体的改性方法相同,也可与其他表面活性剂或助剂混用,但通常不能同时加入,需先加入碳酸钙助磨改性剂,再加入其它组分。以粉体固含量计算,加入量约占粉体的0.1%—0.5%。 2.使用计量泵,将1-20倍稀释好的助剂计量喷雾在二次破碎的原矿表面,矿石通过螺旋进料或皮带输送进研磨主机,进行干法研磨加工。 3.为达到最佳效果,在生产过程中可单独补加水,以利于助剂对钙粉的充分润湿和包覆。补水量根据设备的排水能力而定,以产品水分合格为准。 粉体改性是现代无机粉体,几乎都离不开粉体表面改性这个重要课题,因为通过改性后的粉体,在各项性能方面都有一个质的提升,在人造岗石领域是一个大势所趋的课题。

无机纳米粉体表面改性研究进展

摘要: 由于纳米粒子易团聚, 对其进行表面改性是很必要的。本文综述了纳米粒子表面改性的主要方法, 介绍了国内外表面改性的一些实例, 并对纳米粒子表面改性的一些新发展和应用前景作了说明。 关键词: 纳米粉体; 团聚; 表面改性;表征 Abstract:Accumulation is one of the most important problems to be resolved in the application of nanosize power.Surface modification can efficiently resolve this problem.In this aricle,the author discuss the cause of the accumulation,the way of surface medication and the manifestion of surface modification. Key words: nanosizes power, accumulation, surface modification, manifetation 1、引言 物质经微纳米化后, 尤其是处于纳米状态时, 其尺寸介于原子、分子与块状材料之间, 故有人称之为物质的第四状态。由于纳米粒子具有大比表面积, 随着粒子半径的减小, 其表面能和表面张力都急剧增大,此外还具有小尺寸效应、量子尺寸效应和量子隧道效应, 因而纳米材料具有独特的力学、光、热、电、磁、吸附、气敏等性质, 在传统材料中加入纳米粉体将大大改善其性能或带来意想不到的性质。 目前, 纳米材料在信息、能源、环境和生物技术等高科技产业中的应用已取得了初步成果。但是在应用过程中, 由于纳米粒子粒径小, 表面活性高, 使其易发生团聚而形成尺寸较大的团聚体[1], 严重地阻碍了纳米粉体的应用和相应的纳米材料的制备。 2、纳米粒子的团聚 所谓纳米粉体的团聚是指原生的纳米粉体颗粒在制备、分离、处理及存放过程中相互连接、由多个颗粒形成较大的颗粒团簇的现象。 从热力学上, 纳米粒子的分散体系具有巨大的比表面积, 表面能很大, 系统会自动朝着表面积减小的方向变化, 导致纳米粒子发生团聚。粉末的团聚分为软团聚和硬团聚。软团聚主要是由于颗粒之间的范德华力和库仑力所致, 该团聚可通过施加机械能能消除粉末的硬团聚体内除了颗粒之间的范德华力和库仑力之外, 还存在化学键作用, 目前人们对粉末的硬团聚机理存在不同的看法, 其中最有代表性的是晶桥理论、毛细管吸附理论、氢键作用理论和化学键作用理论[2]。 图1 纳米粒子的团聚机理示意图 Fig1 agglomeration mechanism schematic diagram of nano2particles 为了解决纳米粉体的团聚问题以及改善粉体粒子表面活性,就需要对粉体粒子进行表面改性。

《粉体材料表面改性》课程教学大纲

《粉体材料表面改性》课程教学大纲 课程代码:050542002 课程英文名称:Surface Modification of powder (A2) 课程总学时:24 讲课:24 实验:0 上机:0 适用专业:粉体科学与工程专业 大纲编写(修订)时间:2017.3 一、大纲使用说明 (一)课程的地位及教学目标 粉体表面改性是粉体科学与工程专业方向课,为选修课。本门课程讲授粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、各行业典型粉体及纳米粉体饿表面改性方法、实践及改性产品的检测及表征方法。通过本课程的学习,不仅让学生掌握粉体表面改性的相关理论,同时培养学生发现、分析与解决问题的能力和精密进行科学研究的技能。为学生将来从事粉末材料、粉体工程领域的生产、科研打下坚实的理论和实践基础。 通过本课程的学习,学生将达到以下要求: 1.掌握粉体材料表面改性工艺的方法和原理; 2.使学生掌握目前工业表面改性典型设备; 3.使学生了解表面改性剂的种类、性质、使用条件; 4.掌握粉体改性前后的物性变化及相关的检测方法; 5. 进一步结合创新创业培养目标,加强学生创新能力的培养,使学生具备独立进行粉体表面原位修饰工艺设计与设备选型的能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握粉体表面改性一般知识,包括粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、改性产品的检测及表征方法等。 2.基本理论和方法:掌握粉体表面的物性,粉体表面改性的基本原理、掌握粉体表面改性工艺设计和设备;了解常见工业粉体的表面改性方法及应用。 3.基本技能:掌握粉体改性工艺设计计算、独立进行设备选型的技能等。了解特种粉体的生产工艺、制备技术及行业发展趋势。具备制备、加工特种粉体的必要的基础知识和基本技能。 (三)实施说明 本课程安排在第七学期学习,共24学时,其中理论讲课24学时。根据教学的需要,有针对性地对教学内容适当增减,各部分学时数可适当调整2学时。 1.教学方法:课堂讲授中重点对基本概念、基本原理和基本方法的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;积极增加课堂教学的趣味性和互动性,充分调动学生学习的主观能动性;注意培养学生独立进行科学研究的能力。讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于专业课,涉及到许多物粉体表面改性的设备,因此在教学中采用ppt与课堂讲授相结合的教学手段,培养学生浓厚的学习兴趣,确保在有限的学时内,高质量地完成课程教学任务。 (四)对先修课的要求

粉体表面改性复习要点(精简版)

第2章 纳米粉体的分散 1.粉体分散的三个阶段(名词解释) 润湿 是将粉体缓慢加入混合体系形成的漩涡,使吸附在粉体表面的空气或其它杂质被液体取代的过程。 ?解团聚 是指通过机械或超声等方法,使较大粒径的聚集体分散为较小颗粒。 ?稳定化 是指保证粉体颗粒在液体中保持长期的均匀分散 2.常用的分散剂种类 (1)表面活性剂 空间位阻效应 (2)小分子量无机电解质或无机聚合物 吸附--提高颗粒表面电势 (3)聚合物类(应用最多) 空间位阻效应、静电效应 (4)偶联剂类 3.聚电解质(名词解释) 是指在高分子链上带有羧基或磺酸基等可离解基团的水溶性高分子 4.对不同pH 值下PAA 在ZrO 2表面的吸附构型进行分析。 图.不同pH 值下PAA 在ZrO 2 表 面的吸附构型 a.当pH<4时,PAA 几乎不解离,以线团方式存在于固液界面上,吸附层很薄,几乎无位阻作用 δ δδ

b.随pH值增加,链节间静电斥力使其伸展开 c.ZrO2表面电荷减小直至由正变负,PAA的负电荷量增加,其间斥力增加, 使得PAA链更加伸展,可在较远范围提供静电位阻作用 5.用聚电解质分散剂分散纳米粉体时,影响浆料稳定性的各种因素有哪些? 1、聚电解质的分子量 当聚电解质分子量过小,在粉体表面的吸附较弱,吸附层也较薄,影响位阻作用的发挥。 分子量过大,易发生桥连或空位絮凝,使团聚加重,粘度增加。 2、分散剂用量 适宜的分散剂用量才可以使分散体系稳定。 用量过低,粉体表面产生不同带电区域,相邻颗粒因静电引力发生吸引,导致絮凝。 用量过高,离子强度过高,压缩双电层,减小静电斥力;同时,还易发生桥连或空缺絮凝,稳定性下降。 3、温度 研究表明,为了获得较好的分散效果(以最低粘度为衡量标准),随温度的升高,所需分散剂的用量随之增加 6.结合下图,分析煅烧为什么能够改善纳米Si3N4粉体的分散性? 煅烧改善纳米Si3N4粉体的可分散性 ?此前提到,球磨可有效降低粉体的粒度。但球磨过程可能造成分散介质与粉体发生化学反应。 ?以乙醇为介质球磨Si3N4粉体时,表面的Si-OH可能与乙醇反应生成酯。 ?酯基的生成对粉体的分散性影响很大: a、酯基是疏水基团 b、屏蔽负电荷,影响分散剂的吸附 ?采取煅烧去除酯基,可改善其分散性 第3章纳米粉体表面改性(功能化) 1.表面改性有哪些重要应用? 改善纳米粉体的润湿和附着特性。 改善纳米粉体在基体中的分散行为,提高其催化性能。 改善粉体与基体的界面结合能等。 2.纳米粉体的表面改性方法? 气相沉积法 机械球磨法 高能量法

无机分体表面改性方法综述

无机粉体表面改性方法综述 唐亚峰 (南华大学化学化工学院无机非金属材料系湖南衡阳) 摘要:表面改性是无机粉体的主要加工技术之一,表面改性对提高无机粉体的应用性能起着关键的作用。改性后的无机粉体分散性提高,同时也改善了粉体和有机高聚物的相容性。本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型改性方法,并对无机粉体表面改性方法进行展望。 关键词:无机粉体;表面改性;改性方法;新型方法; 前言 无机粉体具有很高的应用性能和应用价值,添加到聚合物材料当中不仅能降低其生产成本,还提高了复合材料的力学性能和综合性能,甚至赋予其绝缘、阻燃等特殊的物理化学性质。 无机粉体一般为微米或纳米级颗粒,由于其粒径小、比表面积大、表面能高,容易发生团聚,难以在复合材料中均匀分散,影响添加效果。无机粉体的表面性质和聚合物有机体系相差甚远,这也使得无机粉体不能很好的分散到材料中。因此,当无机粉体添加到高聚物复合材料时,首先要对无机粉体进行表面改性,使其粒子表面有机化,改善其亲油性和与基体的相容性,增强界面结合能力,从而发挥无机粉体的功能[1]。 本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型的改性的方法,并分析了这些方法各自的优缺点。最后对无机粉体表面改性方法进行了展望。 1 无机粉体表面改性的机理 由于无机矿物材料是极性或强极性的亲水矿物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材

(澳达)粉体表面改性剂降低粉体吸油值说明书

一、(澳达)牌粉体表面改性剂适用范围 本品适用于各种无机粉体,如重质碳酸钙、轻质碳酸钙、高岭土、二氧化硅、滑石粉、炭黑、颜料和其他粉体的表面分散改性,改性后的粉体特别适合人造石、塑胶、橡胶等行业客户的使用。用本品改性的碳酸钙吸油值下降10-20% 二、(澳达)粉体表面改性剂性能特点: 1、本品是较低分子量的聚合物, 集助磨、改性、润滑、偶联、分散等功能于一体,每个分子有多个极性基团,它在无机粉体表面的吸附是部分极性基团朝无机粉体表面,另一部分则朝溶液,并通过分子间力或氢键与溶液产生缔合,从而形成立体屏障防止颗粒间接触聚集,起到粒子间分散作用。 2、本品具有优良的助磨分散、改性作用,适用于重钙干法研磨生产过程中的改性加工,能大幅度降低粉体吸油量,并使粉体具有优良的亲水亲油特性,与树脂体系相容性更好,从而达到人造石、塑胶、橡胶生产中高填充、低粘度的加工要求。 3、经本品处理后的重钙填料,白度保持好,润湿分散性佳,完全能达到人造石、塑胶、橡胶等行业低吸油量要求,并且在搅拌固化过程中,抑制产生大量搅拌热,从而使树脂混合液流动性好,后固化过程充分。 4、可使重钙填料在不饱和树脂液中有持久的分散防沉性,制品不会出现气孔、起皮、龟裂等现象,制品表面发色均匀、自然、光亮。 5、本品可通过包覆,降低碳酸钙吸油值,碳酸钙表面被表面张力较低的有机活性剂分子包覆,其比表面能较未活化改性产品低,颗粒之间的黏滞阻力降低,颗粒的流动性能提高,因此粉体具有类似于液体的流动性。 三、温馨提示: 1、如与其他助剂一起使用,应先加入本品,再加其他组分。 2、本品所述技术性能及应用方法仅供专业人士参考,而并非对使用效果之承诺,凡新使用产品及改变工艺,须先做严格的可行性测试,以求最佳使用效果。

粉体表面改性

粉体表面改性学习报告 前言:粉体是无数个细小固体粒子集合体的总称。根据固体粒子的尺寸不同可以将固体粒子分为颗粒、微米颗粒、亚微米颗粒、超微颗粒、纳米颗粒。通常粉体是尺度界于10-9m到10-3m范围的颗粒。随着颗粒尺寸的减小相应的各种性质也随着尺寸的改变而改变。 因此小尺寸颗粒有如下几个特征: 1.比表面积增大促进溶解性和物质活性的提高,易于反应处理。 2.颗粒状态易于流动,具有与液体相类似的流动性。 3.实现分散、混合、均质化控制材料的组成与构造。 4.易于成分分离,有效地从天然资源或废弃物中分离有用成分。 5. 由于比表面积大,因此粉体粒子容易聚集,吸附。 6. 具有与气体相类似的压缩性,具有固体的抗变形能力。 因此,利用这些特点,对矿物粉体进行表面改性,然后运用于农业、化工、造纸、塑料、橡胶、涂料等产品中。特别是经过改性的矿物粉体用于有机物填料不仅可以降低材料的成本,而且还可以改善材料的各方面性能。常用的矿物填料有碳酸钙、云母、硅灰石、滑石、高岭土、等因为具有独特的物理化学性质,能改善聚合物的物理性能、力学性能、加工性能和热性能,在聚合物中的应用发展很快。无机填料在聚合物中的作用,概括起来就是增量、增强和赋予新功能,但是由于无机填料与高聚物的相容性差,如果直接添加,会造成分散不均,甚至引起应力集中,降低材料的力学性能,这些弊端不但限制了填料在聚合物中的添加量,而且还严重影响制品性能,所以通过对无机填料进行表面改性,改变了无机填料原有的表面性质,改善无机填料与聚合物的亲合性,相容性,以及加工的流动性,分散性,还可以提高填料与聚合物相界面之间的结合力,使聚合物材料的综合性能得到显著提高,从而使非功能的无机填料转变为功能无机填料。近年来,随着聚合物的迅猛发展无机填料的表面改性也受到了前所未有的关注。 一、无机粉体表面改性机理 由于无机矿物材料是极性或强极性的亲水旷物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材料、新工艺和新产品开发的重要内容,通过粉体表面改性可以提高粉体材料的附加价值、扩大产品的用途并且开发新的产品。如滑石粉可作为塑料填料,提高塑料制品的电绝缘性、抗酸性耐火性等; 云母可作为塑料增强填料,提高塑料制品的弯曲弹性模量和拉伸弹性模量;高岭土具有优良的电绝缘性能和一定的阻燃作用,可作为聚氯乙烯等聚烯烃绝缘电线包皮; 石英对热塑性树脂和热固性树脂具有较高的补强作用,并且能提高制品的刚硬度,对提高塑料制品的电绝缘性也能起一定的作用; 金红石型二氧化钛作为塑料填料可增大光的反射率,起到光屏蔽剂的作用。赤泥、粉煤灰均为塑料填料,既可消除污染,又可降低成本。目前无机粉体表面改性技术在保证改性效果的前提下力求降低成本,并根据无机粉体的具体情况,如粒度大小、颗粒分布、表面极性、浸润性、电性、酸碱性以及应用目的和要求等来选择适当的表面改性剂和相应的改性工艺。由于无机粉体种类的多样性以及表面改性剂的不断更新,无机粉体改性的方法很多。根据表面改性剂和粉体粒子之间有没有发生化学反应,可以将无

无机粉体的硅烷偶联剂改性

无机粉体的硅烷偶联剂改性 硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物,其通式为RSiX3,式中R代表与聚合物分子有亲和力或反应能力的活性官能团,如氧基、硫基、乙烯基、环氧基、酰胺基、氨丙基等;X代表能够水解的烷氧基,如卤素、烷氧基、酰氧基等。 在进行偶联时,首先X基与水形成硅醇,然后与无机粉体颗粒表面上的羟基反应,形成氢键并缩合成-SiO-M共价键(M表示无机粉体颗粒表面)。同时,硅烷各分子的硅醇又相互缔合齐聚形成网状结构的膜覆盖在粉体颗粒表面,使无机粉体表面有机化。 1、硅烷偶联剂种类及适用对象 (1)硅烷偶联剂种类 根据分子结构中R基的不同,硅烷偶联剂可分为氨基硅烷、环氧基硅烷、硫基硅烷、甲基丙烯酰氧基硅烷、乙烯基硅烷、脲基硅烷以及异氰酸酯基硅烷等。 (2)硅烷偶联剂适用对象 硅烷偶联剂可用于许多无机粉体,如填料或颜料的表面处理,其中对含硅酸成分较多的石英粉、玻璃纤维、白炭黑等效果最好,对高岭土、水合氧化铝、氧化镁等效果也比较好,对不含游离酸的钛酸钙效果欠佳。 (3)硅微偶联剂选择 选择硅烷偶联剂对无机粉体进行表面改性处理时,一定要考虑聚合物基料的种类,也即一定要根据表面改性后无机粉体的应用对象和目的来仔细选择硅烷偶联剂。

2、硅烷偶联剂使用方法及用量 (1)硅烷偶联剂使用方法: 应用硅烷偶联剂的方法有两种: 一种是将硅烷配成水溶液,用它处理无机粉体后再与有机高聚物或树脂基料混合,即预处理方法,该方法表面改性处理效果好,是常用的表面改性方法。 另一种方法是将硅烷与无机粉体(如填料或颜料)及有机高聚物基料混合,即迁移法。 多数硅烷偶联剂在使用之前要配成水溶液,即使其预先水解。水解时间依硅烷偶联剂的品种和溶液的pH值不同而异,从几分钟到几十分钟不等。配置时水溶液的pH值一般控制在3-5之间,pH值高于5或低于3将会促进聚合物的生成。因此,已配置好的、已水解的硅烷偶联剂不能放置太久,否则会自行缩聚而失效。 (2)硅烷偶联剂用量计算: 硅烷偶联剂用量与偶联剂的品种及填料的比面积有关,假设为单分子层吸附,可按下式进行计算: 硅烷偶联剂用量=(填料质量×填料比表面积)/硅烷偶联剂最小包覆面积 硅烷偶联剂最小包覆面积以硅烷偶联剂的品种不同而异。一般来说,实际用量要小于用上述公式计算的用量。当不知道无机粉体的比表面积数据或硅烷偶联剂的最小包覆面积时,可将硅烷偶联剂用量选定为无机粉体质量的0.10%-1.5%。 大多数硅烷偶联剂既可以用于干法表面改性,也可以用于湿法表面改性。

粉体表面改性的研究进展

粉体表面改性技术的研究进展 姓名:黄政杰 学号:200839110324 专业:无机非金属材料 班级:0803班 早在20世纪50年代,研究人员就已经注意到,对无机颜料,如钛白粉,用二氧化硅或三氧化铝等进行表面复合或者包膜处理可以改善其保光性和耐候性。但是作为技术加工研究表面改性是在近一二十年的事情,尤其是现代有机/无机复合材料、无机/无机复合材料、涂料或涂层材料、吸附与催化材料、环境材料以及超细粉体和纳米粉体的制备和应用具有重要意义。 粉体表面改性的研究进展 粉体工程表面改性或者表面处理与很多学科,如粉体工程,物理化学,表面与胶体化学,有机化学,无机化学,高分子化学,无机非金属材料,高分子材料,复合材料,结晶学,光学,电学磁学等学科密切相关。可以说,粉体表面改性是粉体工程或者颗粒制备技术与其他众多学科相关的边缘学科。粉体工程改性主要包括四个方面。 1粉体改性的原理和方法 2 表面改性剂 3表面改性工艺与设备 4粉体表面改性产品的检测与表征 一粉体表面改性的原理 利用物理、化学机、械等方法对颗粒表面进行处理,根据应用的需要有目的地改变颗粒表面的物理化学性质,如表面晶体结构和官能团表面能、界面润湿性、电性、表面吸附和反应特性等,以满足现代新材料,新工艺和新技术发展的需要。 二表面改性方法 表面改性的方法很多,能够改变非金属矿物粉体表面或界面的物理化学性质的方法,如表面物理涂覆、化学包覆、微胶囊包覆、机械力化学、等可称为表面改性方法。目前工业上非金属矿物粉体表面改性常用的方法主要有表面化学包覆改性法、微胶囊包覆改性法和机械化学改性法及原位聚合改性法。

(1)表面化学包覆改性法:是目前最常用的非金属矿物粉体表面改性方法,这是一种利用有机表面改性剂分子中的官能团在颗粒表面吸附或化学反应对颗粒表面进行改性的方法。所用表面改性剂主要有偶联剂(硅烷、钛酸酯、铝酸酯、锆铝酸酯、有机络合物、磷酸酯等)、表面活性剂(高级脂肪酸及其盐、高级胺盐、非离子型表面活性剂、有机硅油或硅树脂等)、高分子分散剂改性和接枝改性。 (2)微胶囊包覆改性法 微胶囊的制备首先是将液体.固体或者气体囊心物质分细,然后以这些微粒为核心,使聚合物成膜材料在其上沉积.涂成形成一层膜,将囊心微粒包覆。依据囊壁形成机制合成囊条件,微胶囊化方法大致分为三类,即化学法(界面聚合法,原位聚合法,锐孔法),物理法(喷雾干燥法,空气悬浮法,真空蒸发沉积法,静电结合法,溶剂蒸发法,包结络合物法,挤压法等)和物理化学法(水相分离法、油相分离法融化分散冷凝法等)。 (3)机械化学改性法 是利用超细粉碎过程及其他强烈机械力作用有目的地激活颗粒表面,使其结构复杂或无定形化,增强它与有机物或其他无机物的反应活性。机械化学作用可以强颗粒表面的活性点和活性基团,增强其与有机基质或有机表面改性剂的使用。以机械力化学原理为基础发展起来的机械融合技术,是一种对无机颗粒进行复合处理或表面改性,如表面复合、包覆、分散的方法。能够对颗粒进行激活的粉碎设备主要有各种类型的球磨机,气磨机和机械冲击式磨机等。 (4)原位聚合改性法 利用粉体在乳液单体中均匀分散,然后用引发剂引发聚合,从而形成带有弹性包覆层的核一壳结构的纳米粒子。由于外层是有机聚合物,所以可以提高粉体与有机物的亲和力再者它是一种内硬外软的核一壳结构的纳米粒子可以填充到塑料或者橡胶中时可以改变它们的力学性能原位聚合改性法可分为无皂乳液聚合包覆法,预处理乳液聚合法和微乳液聚合法等。 三表面改性剂 粉体的表面改性,主要是依靠表面改性剂在粉体颗粒表面的吸附、反应,包覆或包膜来实现的。因此,表面改性剂对于粉体的表面改性或表面处理具前应用的表面改性剂主要有偶联剂、表面活性剂、有机硅、不饱和有机酸及有机低聚物,超分散剂、水溶性高分子等。

粉体表面改性设备

粉体表面改性设备 中国粉体表面改性设备种类很多,例如高速混合机、捏合机、密炼机、开炼机、单螺杆挤出机、双螺杆挤出机等,但这些设备大多从化工机械借用过来。存在许多严重问题,针对这些问题,近年来有了许多改进和进展,本文重点介绍引进国外机型和对高冷搅机组进行的改进。 现状粉体表面改性设备,主要担负三项职责,一是混合,二是分散,三是表面改性剂在设备中熔化和均匀分散到物料表面,并产生良好的结合。由于混合物的种类和性质各不相同,混合、分散和表面改性要求的质量指标也不相同,因而出现多种性质不同的改性设备,而这些设备又多为借用,因而并不能很好地完成改性任务。主要使用的改性设备为: •重力混合器 •气动混合器 •转鼓式混合机 •v型混合机 •Z型混合机 •高速混合机及高速混合机和冷却混合机组(简称高冷搅机组) •开炼机 •密炼机 •混炼型单螺杆挤出机,布斯混炼机 •双螺杆挤出机以及静态混合器,空腔混合器,和拉伸混合器等。 这些设备存在的主要问题是: ①多数是间歇式的,连续式设备如单、双螺杆挤出机大都是直线运动式,混合效果差。存在产量低,能耗大,工人劳动强度高,易造成环境污染等问题。 ②升温慢,改性时间长,相反改性剂用量大,改性效果差。 ③比较而言,高冷搅机组价格低、耐用、易操作、改性效果好。 ④与国外设备相比,差距明显,主要表现在连续性和改性效果方面。 可以说,中国的粉体表面改性设备的落后,严重制约表面改性深加工技术的发展。已经到了非改不可的地步。

从90年代开始,一些科技人员就着手对改性设备进行改革、到2002年已经取得阶段性成果。 这些阶段成果包含两个方面: ①引进国外连续改性机型 ②对高冷搅机组进行改革 引进国外机型 引进、吸收、消化国外先进设备,是现阶段我们的主要手段之一。改性设备也不例外,现在由大专院校、科研单位与生产企业共同引进开发的改性设备已经问世,且价格大大低于直接购买的国外同类设备。 1、PS系列粉体表面改性机 由原武汉工业大学北京研究生部非矿所和青岛青矿矿山设备有限公司共同开发研制成功的PSC系列粉体表面改性机是表面化学改性的专用设备,它具有设计先进,科学,能连续生产,产量高,能耗低,自动化程度高,工人劳动强度低,无粉尘污染,且表面改性剂用量少,包覆率高等特点。 ①PSC表面改性性能结构特征: 本机由给料输送、主机、改性剂供给、排料、成品输送、成品收集仓、加热、给风、除尘等系统构成。 ②工作原理: 粉体原料经给料输送系统被送至主机上方的雾化室,在输送过程中,由给料输送机特设的加热装臵将粉体加热并干燥,与此同时固体状的改性剂在专用加热容器内也被加热熔化至液体状态后经输送管道送至雾化室。 雾化室内设有两组喷嘴,并均通人由给风系统送来之热压力气流,其中一组有四只喷嘴按不同位臵分布于雾化室内壁,其作用是将由给料输送系统送来的粉体物料吹散呈雾状,另一组有一只喷嘴同时与改性剂输送管道相通,将液状改性剂也吹散呈雾状。此时,原料和改性剂形成雾状,由于受到两组喷嘴从不同方向喷射出气流的作用,得以充分的混合,随即进人主机。 主机由高速旋转的主轴、搅拌棒、冲击锤、中间充满循环导热油的夹层简体等部分组成。进入主机内的雾化物料在搅拌棒的高速搅拌下,受到了冲击、摩擦、剪切等诸多力的作用使粉体颗粒与改性剂得到更充分接触、混合。主机夹层内循

碳酸钙表面改性的应用领域及粉体改性剂的类别

碳酸钙表面改性的应用领域及粉体改性剂的类别 粉体改性剂对碳酸钙表面改性目的在于通过粉体表面包覆改性,提升碳酸钙应用性能、拓宽碳酸钙的应用范围、市场以及引领一些新的应用领域以及蓝海市场,那么如今的改性碳酸钙的应用领域是哪些呢? 1.改性碳酸钙在聚氯乙烯(PVC)领域应用 改性碳酸钙与普通碳酸钙相比,颗粒以原生态粒子状态均匀分布,不团聚,与PVC树脂具有极好的相容性和分散性,易塑化,不粘辊,加工性能优良,有利于提高加工效率,而且制品的断裂强度及断裂伸长率明显提高,物理机械性能良好。 2、改性碳酸钙在聚丙烯(PP)领域应用 采用粉体表面改性剂对轻质碳酸钙表面进行改性,可使碳酸钙的吸油值降低到22%,接触角降低到68.6°。改性后的碳酸钙填充进聚丙烯,在聚丙烯中分散良好,能在一定程度上缓解拉伸强度的下降趋势,使复合材料的断裂伸长率达到28.47%、冲击强度达到6.7kJ/m2。 3、改性碳酸钙在高密度聚乙烯(HDPE)领域应用 采用粉体改性剂对重质碳酸钙进行机械化学改性,铝酸酯偶联剂在碳酸钙粒子表面发生了一定的键合作用,改性后碳酸钙颗粒分散性明显提高;随着高密度聚乙烯(HDPE)中改性碳酸钙用量的提高,复合材料磨耗量和摩擦功减小,抗摩擦性能提高;在用量为8phr时,复合材料力学性能最佳,拉伸强度和冲击强度分别提高了4.46%、24.57%。 4、改性碳酸钙在低密度聚乙烯(LDPE)领域应用 改性碳酸钙的活化指数为99.71%、吸油值为46.19mL/100g、最终的沉降体积为2.3mL/g、10g改性碳酸钙与100mL液体石蜡混合物的黏度为4.4Pa·s。将改性碳酸钙填充到低密度聚乙烯(LDPE)中,当改性碳酸钙含量为10%时,复合材料具有较好的力学性能。

表面改性剂

一粉体表面改性概念 粉体表面改性, 是指用物理、化学、机械等方法对粉体材料表面或界面进行处理,有目的地改变粉体材料表面的物理化学性质,如表面能、表面润湿性、电性、吸附和反应特性、表面结构和官能团、等等,以满足现代新材料,新工艺和新技术发展的需要。 二表面改性的目的 (1)改善粉体颗粒的分散性、稳定性和相容性。 (2)提高粉体颗粒的化学稳定性,如耐药性、耐 光性、耐候性等。 (3)改变粉体的物理性质,如光学效应、机械强 度等。 (4)出于环保和安全生产目的。 三粉体表面改性技术的应用 ?(1)有机/无机复合材料(塑料、橡胶等) ?改善无机填料(包括增量无机填料和功能性无机填料)与有机(高聚物)基料的相容性,提高其分散性及复合材料的综合性能 ?(2)油漆、涂料 ?提高涂料、油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性、保光性、保色性等 ?(3)无机/无机复合材料 ?提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料 ?(4)吸附与催化材料 ?提高选择性、活性和机械强度 ?(5)健康与环境保护 ?(6)超细和纳米粉体制备中的抗团聚 ?(7) 其它(插层改性) 四粉体表面改性的主要研究内容 ?(1)粉体表面改性的原理和方法 ?表面或界面性质与其应用性能的关系 ?表面或界面与表面改性剂或处理剂的作用机理和作用模型 ?各种表面改性方法的基本原理或理论基础,包括表面改性处理过程的热力学和动力学,模拟和化学计算等 ?(2)表面改性剂及其配方 ?种类、结构、分子量、活性基团与其应用性能或功能的关系 ?与粉体表面及复合材料的作用机理和作用模型 ?用量和使用方法 ?新型和专用表面改性剂的制备或合成 ?(3)表面改性工艺与设备 ?不同种类和不同用途粉体表面改性的工艺流程和工艺条件

相关文档
相关文档 最新文档