文档视界 最新最全的文档下载
当前位置:文档视界 › 空间曲线积分的计算方法

空间曲线积分的计算方法

空间曲线积分的计算方法
空间曲线积分的计算方法

空间曲线积分的计算方法

(1)曲线积分的计算例1 计算,其中为平面被三个坐标平面所截三角形的边界,若从轴正向看去,定向为逆时针方向.方法一根据第二型曲线积分的定义化为定积分计算根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数.解法一:设,则,,,则.由曲线积分的定义,有.同理可得:

.所以.方法二将空间曲线积分转化为平面曲线积分后用格林公式计算

格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系.解法二:设,,则,是围成的区域.代入原积分由格林公式得原式.化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算.方法三根据对称性求曲线积分.

轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮

助.我们主要在讨论单轮换对称的情形.解法三:由题目特征可知该积分及曲线都具有轮换对称性,因此由对称性知原式.同样由对称性知原式.方法四根据公式求曲线积分

公式建立了空间曲线积分和曲面积分之间的联系,从而将曲线积分和曲面积分有机联系起来.

解法四: 设,方向为上侧,曲面上一点的外法线向量的方向余弦为由公式化为第一型曲面积分得原式.为解法一中所设的点组成的三角形.另解: 根据上面解法中所设,并设为在面上的投影.用公式化为第二型曲面积分得原式

.用公式将曲线积分化为曲面积分时,若曲面为平面化为第一型曲面积分较简单.

曲线计算公式

一、曲线要素计算 已知:JDZH 、JDX 、JDY 、R 、L S1、L S2、L H 、T 、A 1、A 2(L H =L S1+L S2+圆曲线长) 1、求ZH 点(或ZY 点)坐标及方位角 ?? ? ??-=-=-=11sin cos A T JDY ZHY A T JDX ZHX T JDZH ZHZH 2、求HZ 点(或YZ 点)坐标及方位角 ?? ? ??+=+=+-=22sin cos A T JDY HZY A T JDX HZX L T JDZH HZZH H 3、求解切线长T 、外距E 、曲线长L (1)圆曲线 ?? ? ??=-==180/)1)2/cos(/1()2/tan( απααR L R E R T (2)缓圆曲线 )2/(2/)2/cos(/)(2180/)21()2/tan( )(02 0R l l l Rl l R p R E l R L q p R T s s s H s H H ===?????-+=+?-=+?+=ββαπβα时当其中 二、直线上各桩号坐标及方位角计算 已知:ZH 、X 、Y 、A ??? ??+=+==-=A L Y DY A L X DX A T ZH DZH L sin cos 三、第一缓和曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ?? ? ???-+=?++=??-==-=-=1111121132 125cos sin sin cos /180)2/() 6/()40/(A y i A x ZHY DY A y i A x ZHX DX Rl l i A T Rl L y l R L L x ZHZH DZH L s s s π 四、圆曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ?? ? ???-+=?++=?+?-=?? ???=-==++-=-++=--=11111212311102 1123 1111 cos sin sin cos /180)/2/(24/240/2/2/24/)]/2/cos(1[240/2/)/2/sin(A y i A x ZHY DY A y i A x ZHX DX R L R l i A T R l p R l l q R l R l R L R l R y R l l R L R l R x ls ZHZH DZH L s s s s s s s s s s πβ其中 五、第二缓和曲线上个桩号坐标及方位角计算 已知:HZZH 、HZX 、HZY 、A2、R 、L S2、i (Z+1Y-1) ??????--=?+-=??+==-=-=222222223 2 225cos sin sin cos /180)2/()6/() 40/(A y i A x HZY DY A y i A x HZX DX Rl l i A T Rl L y l R L L x DZH HZZH L s s s π 六、边桩坐标求解 已知:DZH 、X 、Y 、T 、BZJL (Z+Y-)、DLJJ 、N (距中桩距离,左正右负) ?? ? ??-=-=+=T N Y BDY T N X BDX T T sin cos α 七、纵断面高程计算 (1) 直线段上高程计算 已知:直线上任一点桩号(ZH )、高程(H )、纵坡(i ) )(*ZH DZH i H DH -+= (2) 竖曲线上高程计算 已知:竖曲线起点桩号(ZH )、起点高程(H )、竖曲线半径R 、起点坡度(i )、k (凸曲线+1、凹曲线-1) ) 2/(2 R l k il H DH ZH DZH l ?-+=-= 注: JDZH 、JDX 、JDY :交点桩号、交点X 、Y 坐标 R 、L S1、L S2:半径、缓和曲线1、缓和曲线2 LH :缓和曲线1长 +圆曲线长+ 缓和曲线2长 A1、A2:方位角1、方位角2 T :在曲线要素中代表切线长;在坐标计算中代表被求解点的坐标方位角。 DLJJ :道路交角(右夹角α)。 BZJL :边桩距中桩距离:左为正值,右为负值 DZH 、DX 、DY 、DH 、BDX 、BDY :被求解点桩号、点X 值、点Y 值、点高程值、边桩点X 值、边桩点Y 值 i (Z+1Y-1):JD 处道路转向:左转时+1,右转时为-1

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分.

(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=??L L f x ds f y ds . (3)若积分曲面∑关于xOy 面对称,则 1 0 (,,)2(,,)f z f x y z dS R x y z dS f z ∑ ∑?? =????? ??对为奇函数对为偶函数 1 0 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分. 若积分曲面∑关于yOz 面对称,则 1 0 (,,)2(,,)f x f x y z dS R x y z dS f x ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分. 若积分曲面∑关于zOx 面对称,则 1 0 (,,)2(,,)f y f x y z dS R x y z dS f y ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分. (4)若曲线弧() :()()αβ=?≤≤?=? x x t L t y y t ,则 [ (,)(),()()β α αβ=

空间曲线积分的计算方法

空间曲线积分的计算方法 (1)曲线积分的计算例1 计算,其中为平面被三个坐标平面所截三角形的边界,若从轴正向看去,定向为逆时针方向.方法一根据第二型曲线积分的定义化为定积分计算根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数.解法一:设,则,,,则.由曲线积分的定义,有.同理可得: .所以.方法二将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系.解法二:设,,则,是围成的区域.代入原积分由格林公式得原式.化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算.方法三根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮

助.我们主要在讨论单轮换对称的情形.解法三:由题目特征可知该积分及曲线都具有轮换对称性,因此由对称性知原式.同样由对称性知原式.方法四根据公式求曲线积分 公式建立了空间曲线积分和曲面积分之间的联系,从而将曲线积分和曲面积分有机联系起来. 解法四: 设,方向为上侧,曲面上一点的外法线向量的方向余弦为由公式化为第一型曲面积分得原式.为解法一中所设的点组成的三角形.另解: 根据上面解法中所设,并设为在面上的投影.用公式化为第二型曲面积分得原式 .用公式将曲线积分化为曲面积分时,若曲面为平面化为第一型曲面积分较简单.

第二类曲线积分的计算

第二类曲线积分的计算 Jenny was compiled in January 2021

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为 }{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量 形式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿 空间有向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的

平曲线要素计算公式(给学生用的)

第三节 竖曲线 纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线采用抛物线拟合。 一、竖曲线要素的计算公式 (2)曲线主点桩号计算: ZH(桩号)=JD(桩号)-T HY(桩号)=ZH(桩号)+l s QZ(桩号)=HZ(桩号)-L/2 YH(桩号)=HY(桩号)+L y HZ(桩号)=YH(桩号)+l s JD(桩号)=QZ(桩号)+J/2 30-3 336629-3 4028)-(3 )(227-3 2 sec )(26-3 225-3 2ls 180)2(m 18024) -(3 2 )(23) -(3 9022)-(3 23842421)-(3 )( 24023 4202 30003 422 3m R l R l y m R l l x m L T J m R p R E m l L L R l R L m q tg p R T R l m R l R l p m R l l q s s s s s Y s s s s s s -=-=-=-?+=-=+??-=+??=+?+=???=-=-=α π βααπα πβ

相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1 ω为正时,是凹曲线;ω为负,是凸曲线。 2.竖曲线诸要素计算公式 竖曲线长度或竖曲线半径R: (前提:ω很小) L=Rω 竖曲线切线长:T=L/2=Rω/2 竖曲线上任一点竖距h: 竖曲线外距: [例1]、某山岭区二级公路,变坡点桩号为K5+,标高为,变坡点桩号的地面高程为,i1=+5%,i2=-4%,竖曲线半径R=2000m。试计算竖曲线诸要素以及桩号为K5+和K5+处的设计高程,BPD的设计高程与施工高。 解:1.计算竖曲线要素 ω= |i2-i1|= | =,为凸型。 曲线长L=Rω=2000×=180m 切线长T=L/2=180/2=90m

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时, 求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

曲线积分的计算法

曲线积分 第一类 ( 对弧长 ) 第二类 ( 对坐标 ) ? ??转化 定积分 (1) 选择积分变量 用参数方程 用直角坐标方程 用极坐标方程 (2) 确定积分上下限 第一类: 下小上大 第二类: 下始上终 对弧长曲线积分的计算 定理 ) ()()()](),([),(,],[)(),()(),(), (, ),(22βαψ?ψ?βαψ?βαψ?β α <'+'=≤≤? ? ?==?? dt t t t t f ds y x f t t t t y t x L L y x f L 且 上具有一阶连续导数在其中的参数方程为上有定义且连续在曲线弧设注意: ;.1βα一定要小于上限定积分的下限. ,,),(.2而是相互有关的不彼此独立中y x y x f 特殊情形 . ) (:)1(b x a x y L ≤≤=ψ. )(1)](,[),(2dx x x x f ds y x f b a L ?? '+=ψψ. )(:)2(d y c y x L ≤≤=?. )(1]),([),(2dy y y y f ds y x f d c L ?? '+=??

).(, sin ,cos :,象限第椭圆求I ? ? ?===?t b y t a x L xyds I L 解 dt t b t a t b t a I 2220 )cos ()sin (sin cos +-?=?π dt t b t a t t ab 222220 cos sin cos sin +=?π ?-= a b du u b a ab 22 2) cos sin (2222t b t a u +=令. ) (3) (22b a b ab a ab +++=例2 . )2,1()2,1(,4:, 2 一段到从其中求-==?x y L yds I L x y 42=解 dy y y I 222)2 (1+=?-. 0=例3 ) 20(., sin ,cos :, πθθθθ≤≤===Γ=?Γ 的一段其中求k z a y a x xyzds I 解 θ θθθd k a k a 222sin cos +?? =π 20 I . 2 1 222k a ka +-=π例4 ?? ?=++=++Γ=?Γ . 0, , 22 2 2 2z y x a z y x ds x I 为圆周其中求解 由对称性, 知 . 22 2 ???Γ ΓΓ==ds z ds y ds x ?Γ ++=ds z y x I )(312 22故例1

二重积分的计算方法(1)

1 利用直角坐标系计算 1.1 积分区域为X 型或Y 型区域时二重积分的计算 对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数(,)f x y 在积分区域D 上连续时,若D 为x 型区域(如图1),即 {}12(,)()(),D x y x x x a x b ??=≤≤≤≤,其中12(),()x x ??在[,]a b 上连续,则有 21() () (,)(,)b x a x D f x y d dx f x y dy ??σ=?? ?? ; (1) 若D 为y 型区域(如图2),即{}12(,)()(),D x y y y y c y d ψψ=≤≤≤≤,其中12(),()y y ψψ在[,]c d 上连续,则有 21() () (,)(,)d y c y D f x y d dy f x y dx ψψσ=?? ?? .[1] (2) 例1 计算2 2D y dxdy x ?? ,其中D 是由2x =,y x =,及1xy =所围成. 分析 积分区域如图3所示,为x 型区域()1D=,12,x y x y x x ?? ≤≤≤≤????.确定了积分区域然后可以 利用公式(1)进行求解. 解 积分区域为x 型区域 ()1D=,12,x y x y x x ?? ≤≤≤≤???? 则 2 2 21221x x D y y dxdy dx dy x x =???? y y=x xy=1 D2 D1 x O 2 1 1 2 图3 图1

32 121 3x x y dx x ??= ???? 2 51 133x dx x ?? =- ???? 221412761264x x ??=+= ??? 1.2 积分区域非X 型或Y 型区域二重积分的计算 当被积函数的原函数比较容易求出,但积分区域并 不是简单的x 型或y 型区域,不能直接使用公式(1)或者(2)进行计 算,这是可以将复 杂的积分区域划分为若干x 型或y 型区域,然后利用公式 1 2 3 (,)(,)(,)(,)D D D D f x y d f x y d f x y d f x y d σσσσ=++???????? (3) 进行计算, 例2 计算二重积分D d σ??,其中D 为直线2,2y x x y ==及3x y +=所围成的区域. 分析:积分区域D 如图5所示,区域D 既不是x 型区域也不 是y 型区域,但是将可D 划分为 ()(){}12,01,22,13,23x D x y x y x D x y x y y x ??=≤≤≤≤?? ??=≤≤≤≤-均为x 型区 域,进而通过公式 (3)和(1)可进行计算. 解 D 划分为 ()1,01,22x D x y x y x ??=≤≤≤≤???? , (){}2,13,23D x y x y y x =≤≤≤≤- 则 1 2 D D D d d d σσσ=+??????12230 12 2 x x x x dx dy dx dy -=+?? ?? 1 20112322x x dx x dx ? ???=-+-- ? ???? ??? 1 2 22013333442x x x ??? ?=+-=??????? ? 1.3 被积函数较为复杂时二重积分的计算 3D o x y 1 D 2D 图 4 y x O x=2y y=2x x+y=3 图5

公路工程常用公式

公路工程常用公式 一、三角函数公式: 1)、在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么 ○1三边之间的关系为(勾股定理) ○2锐角之间的关系为∠A+∠B=90° ○3边角之间的关系为 (4)其他有关公式 面积公式:(hc为c边上的高) 2)、正弦公式,即为正弦定理 在一个三角形中,各边和它所对角的正弦的比相 等。 即a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形 中是恒量,是此三角形外接圆的半径的两倍) 这一定理对于任意三角形ABC,都有 (1)a/sinA=b/sinB=c/sinC=2R R为三角形外接圆半径 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB;sinC = a : b : c; 3)任意三角形余弦公式:a2=b2+c2-2bc(cosA) ;cosA=(b2+c2-a2)/2bc 二、弧长公式:n∏r/180;扇形面积公式:n∏r2/360 公路测量常用公式: 一、圆曲线:曲线要素的计算若已知:转角α 及半径 R ,则:切线长:;曲线长: 外距:;切曲差: (1)主点里程的计算 ZY 里程 =JD 里程 -T ; YZ 里程 =ZY 里程 +L ;

QZ 里程 =YZ 里程 -L/2 ; JD 里程 =QZ 里程 +D/2 (用于校核) 二、缓和曲线 (spiral) 的测设 1、概念:为缓和行车方向的突变和离心力的突然产生与消失,需要在直线(超高为 0 )与圆曲线(超高为 h )之间插入一段曲率半径由无穷大逐渐变化至圆曲线半径的过渡曲线(使超高由 0 变为 h ),此曲线为缓和曲线。主要有回旋线、三次抛物线及双纽线等。 2、回旋型缓和曲线基本公式 ——缓和曲线全长。 (1)切线角公式:——缓和曲线长所对应的中心角。 (2)缓和曲线角公式:——缓和曲线全长所对应的中心角亦称缓和曲线角。 (3)缓和曲线的参数方程: (4)圆曲线终点的坐标:

缓和曲线常用计算公式

一、缓和曲线常数 1、 内移距P : 3420268824R l R l P n -= 2、 切垂距m : 2 302402R l l m -= 3、缓和曲线基本角: R l R l πβ000902== 3、 缓和曲线偏角: R l R l πδ000306== 5、缓和曲线反偏角: R l R l b π000603== 缓和曲线常数既有线元素,又有角元 素,且均 为圆曲线半径R 和缓和曲线 长0l 的函数。线元素要计算到mm ,角元素要计算到秒。 二、缓和曲线综合要素 切线长:()m P R T +?? ? ??+=2tan α 曲线长:()0022l R L +-=βα 外视距:R P R E -?? ? ??+=2cos 0α 切曲差:L T q -=2 曲线综合要素均为线元素,且均为转向角 α、圆曲线半径R 和缓和曲线长0 l 的函数。曲线综合要素计算到cm 。 三、缓和曲线任意点偏角计算

2020202902306Rl l Rl l Rl l Rl l t t t t t t πβπδ==== 0202603Rl l Rl l b t t t π== 实际应用中,缓和曲线长0l 均选用10m 的倍数。 四、偏角法测设缓和曲线遇障碍 ()()T B B T l l l l Rl 2610 +-=βδ ()()()()T F T F T F T F F l l l l Rl l l l l Rl 23026100 +-=+-= πδ —B l 为靠近ZH(HZ)点的缓和曲线长; —T l 为置镜点的缓和曲线长; —F l 为远离ZH(HZ)点的缓和曲线长。 五、直角坐标法 1、缓和曲线参数方程: 520 2401a a a l l R l x -= 30 373033661l R l l Rl y a a a -= 2、圆曲线 m R x b b +=αsin ()P R y b b +-=αcos 1 式中,b α为圆心O 到切线的垂线方向和到B 的半径方向所形成的圆心角,按 下式计算:

缓和曲线计算公式

当前的位置】:工程测量→第十一章→ 第四节圆曲线加缓和曲线及其主点测设 第四节圆曲线加缓和曲线及其主点测设 §11—4 圆 曲线加缓 和曲线及 其主点测 设 一、缓和曲 线的概念 二、缓和曲线方程 三、缓和曲线常数 四、圆曲线加缓和曲线的综合要素及主点测设 一、缓和曲线的概念 1、为什麽要加入缓和曲线? (1)在曲线上高速运行的列车会产生离心力,为克服离心力的影响,铁路在曲线部分采用外轨超高的办法,即把外轨抬高一定数值.使车辆向曲线内倾斜,以平衡离心力的作用,从而保证列车安全运行。 图11-10(a).(b)为采用外轨超高前、后的情况。 外轨超高和内轨加宽都是逐渐完成,这就需要在直线与圆曲线之间加设一段过渡曲线——缓和曲线. 缓和曲线: 其曲率半径ρ 从∞逐渐变化到圆曲线的半径R 。 2、缓和曲线必要的前提条件(性质): 在此曲线上任一点P 的曲率半径ρ与曲线的长度l成反比,如图11-12所示,以公式表示为: ρ ∝1l 或ρ. l = C (11-4) 式中: C 为常数,称曲线半径变更率。 当l= l o时,ρ= R ,按(11-4)式,应有 C = ρ.l= R .l o (11-5) 符合这一前提条件的曲线为缓和曲线,常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。 3、加入缓和曲线后的铁路曲线示意图(见图11-J)

二、缓和曲线方程 1、加入缓和曲线后的切线坐标系 坐标原点:以直缓(ZH)点或缓直(HZ)点为原点; X坐标轴:直缓(ZH)点或缓直(HZ)点到交点(JD)的切线方向; Y坐标轴:过直缓(ZH)点或缓直(HZ)点与切线垂直的方向。 其中:x、y 为P点的坐标;x o、y o为HY点的坐标; ρ 为P 点上曲线的曲率半径;R 为圆曲线的曲率半径 l 为从ZH点到P 点的缓和曲线长;l o为从ZH点到HY点的缓和曲线总长; 2、缓和曲线方程式: 根据缓和曲线必要的前提条件推导出缓和曲线上任一点的坐标为 实际应用时, 舍去高次项, 代入C=R*l o,采用下列公式:

第二类曲线积分的计算

第二类曲线积分的计算 Revised as of 23 November 2020

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式 2011-09-13 15:19:36| 分类:默认分类|字号订阅 第九章道路工程测量(圆曲线缓和曲线计算公式) 学习园地2010-07-29 13:10:53阅读706评论0 字号:大中小订阅 [教程]第九章道路工程测量(圆曲线缓和曲线计算公式)未知2009-12-09 19:04:30 广州交通技术学院第九章道路工程测量(road engineering survey) 内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的

计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设一、道路工程测量概述 分为:路线勘测设计测量(route reconnaissance and design survey) 和道路施工测量(road construction survey) 。(一)勘测设计测量(route reconnaissance and design survey) 分为:初测(preliminary survey) 和定测(location survey) 1、初测内容:控制测量(control survey) 、测带状地形图(topographical map of a zone) 和纵断面图(profile) 、收集沿线地质水文资

空间曲线积分的计算方法

空间曲线积分的计算方法. (1)曲线积分的计算 例1 计算222222()()()C I y z dx z x dy x y dz =-+-+-?,其中C 为平面 1=++z y x 被三个坐标平面所截三角形的边界,若从x 轴正向看去,定向为逆时针方向. 方法一 根据第二型曲线积分的定义化为定积分计算 根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数. 解法一:设(1,0,0),(0,1,0),(0,0,1)A B D ,则0,1:==+z y x ,:1,0BD y z x +==,:1,0DA x z y +==,则:C AB BD DA ++.由曲线积分的定义,有 dz y x dy x z dx z y AB )()()(222222-+-+-? 32])1[(0122-=+-= ?dx x x . 同理可得: 222222()()()BD y z dx z x dy x y dz -+-+-? 2222222()()()3 DA y z dx z x dy x y dz =-+-+-=-?. 所以 2AB BD DA I =++=-???. 方法二 将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系. 解法二:设)0,0,0(O ,OA BO AB L ++:1,则dy dx dz y x z --=--=,1,D 是1L 围成的区域.代入原积分由格林公式得 原式))((])1[(])1([2222221dy dx y x dy x y x dx y x y L ---+---+---=? ??-=-=D dxdy 24. 化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算. 方法三 根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮助.我们主要在讨论单轮换对称的情形. 解法三:由题目特征可知该积分及曲线C 都具有轮换对称性,因此由对称性知 原式dz y x dy x z dx z y )()()(3222222-+-+-=?

公路缓和曲线段原理及缓和曲线计算公式

程序使用说明 Fx9750、9860系列 程序包含内容介绍:程序共有24个,分别是: 1、0XZJSCX 2、1QXJSFY 3、2GCJSFY 4、3ZDJSFY 5、4ZDGCJS 6、5SPJSFY 7、5ZDSPFY 8、5ZXSPFY 9、6ZPJSFY 10、7ZBZFS 11、8JLHFJH 12、9DBXMJJS 13、9DXPCJS 14、9SZPCJS 15、GC-PQX 16、GC-SQX 17、PQX-FS 18、PQX-ZS 19、 ZD-FS 20、ZD-PQX 21、ZD-SQX 22、ZD-ZS 23、ZDSP-SJK 24、ZXSP-SJK 其中,程序2-14为主程序,程序15-24为子程序。每个主程序都可以单独运算并得到结果,子程序不能单独运行,它是配合主程序运行所必需的程序。刷坡数据库未采用串列,因为知道了窍门,数据库看起很多,其实很少。 程序1为调度2-8程序; 程序2为交点法主线路(含不对称曲线)中边桩坐标正反计算及极坐标放样程序; 程序3为主线路中边桩高程计算及路基抄平程序; 程序4为线元法匝道中边桩坐标正反计算及极坐标放样程序; 程序5为匝道线路中边桩高程计算及路基抄平程序; 程序6为任意线型开口线及填筑边线计算放样程序; 程序7专为主线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序8专为匝道线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序9为桥台锥坡计算放样程序; 程序10为计算两点间的坐标正反算程序; 程序11为距离后方交会计算测站坐标程序;

第一类曲线积分

§1 第一类曲线积分的计算 设函数(),,f x y z 在光滑曲线l 上有定义且连续,l 的方程为 ()()() ()0x x t y y t t t T z z t =?? =≤≤?? =? 则 ()()()() ,,,,T l t f x y z ds f x t y t z t =??? ?。 特别地,如果曲线l 为一条光滑的平面曲线,它的方程为()y x ?=,()a x b ≤≤,那么有 ((,) , ()b l a f x y ds f x x ?=? ?。 例:设l 是半圆周t a y t a x sin , cos ==, π≤≤t 0。求22 ()l x y ds +? 。 例:设l 是曲线x y 42 =上从点) 0 , 0 (O 到点) 2 , 1 (A 的一段,计算第一类曲线积分l yds ?。 例:计算积分2l x ds ? ,其中l 是球面2222a z y x =++被平面0=++z y x 截得的圆周。 例:求()l I x y ds =+?,此处l 为连接三点()0,0O ,()1,0A ,()1,1B 的直线段。 §2 第一类曲面积分的计算 一 曲面的面积 (1)设有一曲面块S ,它的方程为 (),z f x y =。 (),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。则该 曲面块的面积为 xy S σ=。 (2)若曲面的方程为 () ()() ,,,x x u v y y u v z z u v =?? =?? =?

令 222u u u E x y z =++,u v u v u v F x x y y z z =++,222 v v v G x y z =++, 则该曲面块的面积为 S ∑ =。 例:求球面2 2 2 2 x y z a ++=含在柱面()220x y ax a +=>内部的面积。 例:求球面2 2 2 2 x y z a ++=含在柱面()220x y ax a +=>内部的面积。 二 化第一类曲面积分为二重积分 (1)设函数(),,x y z φ为定义在曲面S 上的连续函数。曲面S 的方程为(),z f x y =。(),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。则 ()( ),,,,,xy S x y z dS x y f x y σφφ=??????。 (2)设函数(),,x y z φ为定义在曲面S 上的连续函数。若曲面的方程为 () ()() ,,,x x u v y y u v z z u v =?? =?? =? 令 222u u u E x y z =++,u v u v u v F x x y y z z =++,222 v v v G x y z =++, 则 ()()()( ),,,,,,,S x y z dS x u v y u v z u v φφ∑ =??????。 例:计算 ()S x y z dS ++?? ,S 是球面2222 x y z a ++=,0z ≥。 例:计算 S zdS ??,其中S 为螺旋面的一部分:

第一类曲线积分的计算

第一类曲线积分的计算 1、定义 定义1 :设L 为平面上可求长度的曲线段,)y ,x (f 为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段)n ,,2,1i (L i ,i L 的弧长记为i s ,分割T 的细度为i n i 1s max T ,在i L 上任取一点(i , ).n ,,2,1i )(i 若存在极限J s ),(f lim i i n 1 i i 0T 且J 的值与分割T 及点),(i i 的取法无关,则称此极限为)y ,x (f 在L 上的第一型曲线积分,记作 .ds )y ,x (f L (1) 定义2: 若L 为空间可求长曲线段,)y ,x (f 为定义在L 上的函数,则可类似地 定义)z ,y ,x (f 在空间曲线L 上的第一型曲线积分为J s ),,(f lim i i i n 1 i i 0T , (此处i s 为i L 的弧长,i n i 1s max T , J 为一常数),并且记作 L .ds )z ,y ,x (f (2) 2、物理意义 (1)设某物体的密度函数f (P )是定义在 上的连续函数.当 是直线段时,应用定积分就能计算得该物体的质量。现在研究当 是平面上某一可求长度的曲线段时物体的质量的计算问题.首先对 作分割,把 分成n 个可求长度的小曲线段i (i=1,2,…,n),并在每一个i 上任取一点P i 由于f (P )为 上的连续函数,故当i 的弧长都很小时,每一小段i 的质量可近似地等于f (P i ) i ,其中 i 为小曲线段i 的长度.于是在整个 上的质量就近似地等于和式 i n 1 i i )P (f

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε ,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和 都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且 ()12 ,D D f x y d σ?? ()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d c f x y dy ?存 在,则累次积分(),b d a c dx f x y dy ??也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}12 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ??()()() 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

相关文档
相关文档 最新文档