文档视界 最新最全的文档下载
当前位置:文档视界 › 浅谈四轮独立驱动控制在微型纯电动汽车上的应用

浅谈四轮独立驱动控制在微型纯电动汽车上的应用

浅谈四轮独立驱动控制在微型纯电动汽车上的应用
浅谈四轮独立驱动控制在微型纯电动汽车上的应用

电动汽车与传统汽车底盘对比

电动汽车新技术 基本结构及其工作原理 传统汽车底盘由传动系、行驶系、转向系和制动系四部分组成,底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。 电动车的基本结构主要可分为三个子系统,即主能源系统(电动源)、电力驱动系统、能量管理系统。其中电力驱动系统又由电控系统、电机、机械传动系统和驱动车轮等部分组成;主能源系统又由主电源和能量管理系统构成,能量管理系统是实现电源利用控制、能量再生、协调控制等功能的关键部件。电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。 电动汽车的工作原理:蓄电池——电流——电力调节器——电动机——动力传动系统——驱动汽车行驶。 纯电动汽车,相对燃油汽车而言,主要差别(异)在于四大部件,驱动电机,调速控制器、动力电池、车载充电器。 图1 电池组布置于底盘中间 能源供及系统 与内燃汽车相比,电动汽车的特点是结构灵活。内燃汽车的主要能源为汽油和柴油,而电动汽车是采用电力能源,由电动源和电动机驱动的,电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。传统内燃汽车的能量是通过钢性联轴器和转轴传递的,而电动车的能量是通过柔性的电线传输的。因此,电动汽车各部件的放置具有很大的灵活性。

传动系统 变速传动系统是电动车驱动子系统的一个重要部件,它指的是驱动电机转轴和车轮之间的机械连接部分。对于传统汽车来说,变速器是必要的部件,设计时主要考虑采用什么类型的变速器。但对于电动汽车则不同,由于驱动电动机的转矩和转速完全可以由电子控制器进行全范围的控制,因此变速系统的设计就可以有多种不同的选择。既可用传统的变速齿轮箱变速,还可以用电子驱动器控制电动机直接变速。究竟采用哪种方案,主要还应依据电动汽车的能量和经济性,也涉及到电机和控制器的设计。 为了提高电动汽车的传动效率,人们开发了电动汽车专用的电机和变速传动一体化的两速或三速自动传动桥。先进的两速电机/多速传动桥将变速齿轮组与高速异步电动机完全结合为一体,并且直接安装在电动汽车驱动轮的驱动轴上,构成重量轻、体积小、效率高、结构紧凑和成本低廉的传动系统。 动力系统 电动汽车经过近20年的快速发展,在能源动力系统方面形成了具特色的三大类动力系统结构技术特点。 纯电动汽车、油电混合动力汽车和燃料电池汽车是目前电动汽车领域的三大种类,油电混合动力汽车目前被国内外各大汽车企业最早列入产业化计划,并联混合动力和混联混合动力是被电动轿车广泛采用的主流动力系统结构。近几年,随着储能电池技术水平的飞速发展,以车载动力蓄电池提供电能驱动的纯电动汽车得到快速发展,多个电机驱动的动力分散结构的纯电动动力系统受到国内外研究机构的广泛关注。以氢和氧通过电极反应转换成电能驱动的燃料电池电动汽车,采用电-电混合动力结构,能量转换效果比内燃机高2~3倍,是未来清洁能源汽车的重要发展方向之一。 图2 多能源动力总成控制模块 底盘电子化、模块化与智能化

四轮独立转向四轮驱动电动汽车的研制

创新项目:四轮独立转向四轮驱动电动汽车的研制 信息调研概况表 信息调研主题了解四轮独立转向四轮驱动电动汽车的设计方案及研发现状 项目背景研究目的 设计出适合电动汽车的底盘系统,使电动汽车底盘实现电子化、 主动化,提高电动汽车性能。 研究内容 收集并分析国内外研究现状,为设计一种四轮独立转向四轮驱 动的电动汽车方案提供信息参考和数据支持。 信息收集参考书 [1]史文库主编. 现代汽车新技术. 北京市:国防工业出版社, 2011.02. [2]胡骅,宋慧主编. 电动汽车. 北京市:人民交通出版社, 2003. [3]苗丽芬主编. 青春创想曲深圳职业技术学院学生科技创新 优秀作品集. 广州市:华南理工大学出版社, 2008. [4]吴光强主编. 汽车理论. 北京市:人民交通出版社, 2007. (摘自图书信息调研结果,列举3-4个即可。) 收集到的信息类型 (必含类型)图书、期刊论文、专利、标准、网络信息;(可选 类型)其他 使用过的检索工具 人员分工 图书:期刊:专利:标准:网络信息:其他:调研结果简单总结 本次调研共收集标准**条;专利**条……根据信息调研结果,可得出初步结论:本项 目已有少量相关技术成果,但本项目方案仍存在优势,有发展空间。

信息类型图书 检索工具图书馆OPAC馆藏书目查询系统 检索式及检索结果检索项:题名关键词 检索式:电动汽车 检索结果:33条记录(如右图) (包括电动汽车原理、结构、技术、设计、测试、评价等) 检索项:题名关键词 检索式:四轮驱动 检索结果:1条记录(如右图) 信息调研详表 信息类型期刊论文 检索工具中国知网(CNKI)——期刊检索 检索式及检索结果检索项:关键词、篇名 检索式:电动汽车and(四轮转向or 全方位转向)and(四轮独立驱动or 四轮驱动) 匹配:精确 检索结果:3条记录(如右图)

比亚迪E6纯电动汽车动力系统的结构与检修

比亚迪E6纯电动汽车使用磷酸埋钻铁电池,200Ah的超大电池容量使车辆在综合工况下续驶里程超过300km,每100km的能耗在21度(1度=1 kWh)以内,每1 00km的加速时间为10s,最高车速可达160km/h以上。车辆充电比较方便,快充可以使用充电站的380V充电桩充电,慢充可需220V民用交流电源,慢充6~8小时可充满电池。 一、比亚迪E6纯电动汽车动力系统的结构 1.比亚迪E6纯电动汽车动力系统 比亚迪E6纯电动汽车动力系统结构及原理如图1所示,其主要由三大模块组成。

(1)电动车的控制模块可分为:电机控制器、DC-DC、动力配电箱、主控ECU、挡位控制器、加速踏板、电池管理单元。 (2)电动车的动力模块有:电动机总成、电池包体总成。

(3)电动车高压辅助模块有:车载慢充、漏电保护器、车载充电口、应急开关。 2.动力控制系统的工作原理 (1)充电过程 充电站的380V高压充电桩通过车辆上的充电口,或者220V市用电源通过车载充电器升压后输电给车上的配电箱,配电箱直接途径应急开关后对Hv电池组充电。在充电过程当中,电源管理器一直监控着HV电池组的温度和电压,如果发现HV电池组内部某单体温度或电压过高,就会切断配电箱给HV电池组的供电。 (2)放电过程 HV电池组在电源管理器和漏电保护器的监控下,通过应急开关输电给配电箱,配电箱根据车辆的实际用电情况分配电量。一部分电量流向电机控制器,另一部分电量流向DC-DC交换器。主控ECU根据驾驶员操作信息(接收加速踏板角度传感器和挡位控制器的信号)控制着电机控制器的工作,电机控制器主要控制流向电机的电量大小,以及控制电机正反转来驱动车辆前进或后退。另一部分从配电箱流向DC-DC交换器的电量,经过DC-DC交换器将高压直流电转化为低压直流电,为车辆电动液压助力转向系统提供42V的电源,同时还为整车用电设备提供12V的电源。 3.动力系统各部件的作用 (1)电机控制器:负责控制电机的前进、倒退、维持电动车的正常运转,关键零部件为IGBT。IGBT实际为大电容,目的是为了控制电流的工作,保证能够按照我们的意愿输出合适的电流参数。 (2)DC-DC:负责将330V高压直流转低压提供给车载低压用电设备,如

纯电动汽车的基本结构和原理

纯电动汽车的基本结构和原理 与燃油汽车相比,纯电动汽车的结构特点是灵活,这种灵活性源于纯电动汽车具有以下几个独特的特点。首先,纯电动汽车的能量主要是通过柔性的电线而不是通过刚性联轴器和转动轴传递的,因此,纯电动汽车各部件的布置具有很大的灵活性。其次,纯电动汽车驱动系统的布置不同,如独立的四轮驱动系统和轮毂电动机驱动系统等,会使系统结构区别很大;采用不同类型的电动机,如直流电动机和交流电动机,会影响到纯电动汽车的重量、尺寸和形状;不同类型的储能装置,如蓄电池,也会影响纯电动汽车的重量、尺寸及形状。另外,不同的能源补充装置具有不同的硬件和机构,例如,蓄电池可通过感应式和接触式的充电机充电,或者采用更换蓄电池的方式,将替换下来的蓄电池再进行集中充电。 纯电动汽车的结构主要由电力驱动控制系统、汽车底盘、车身以及各种辅助装置等部分组成。除了电力驱动控制系统,其他部分的功能及其结构组成基本与传统汽车相同,不过有些部件根据所选的驱动方式不同,已被简化或省去了。所以电力驱动控制系统既决定了整个纯电动汽车的结构组成及其性能特征,也是纯电动汽车的核心,它相当于传统汽车中的发动机与其他功能以机电一体化方式相结合,这也是区别于传统内燃机汽车的最大不同点。 1、电力驱动控制系统 电力驱动控制系统的组成与工作原理如图5.1所示,按工作原理可划分为车载电源模块、电力驱动主模块和辅助模块三大部分。 1)车载电源模块 车载电源模块主要由蓄电池电源、能源管理系统和充电控制器三部分组成。

(1)蓄电池电源。蓄电池是纯电动汽车的唯一能源,它除了供给汽车驱动行驶所需的电能外,也是供应汽车上各种辅助装置的工作电源。蓄电池在车上安装前需要通过串并联的方式组合成所要求的电压一般为12V或24V的低压电源,而电动机驱动一般要求为高压电源,并且所采用的电动机类型不同,其要求的电压等级也不同。为满足该要求,可以用多个12V 或24V的蓄电池串联成96~384V高压直流电池组,再通过DC/DC转换器供给所需的不同电压。也可按所需要求的电压等级,直接由蓄电池组合成不同电压等级的电池组,不过这样会给充电和能源管理带来相应的麻烦。另外,由于制造工艺等因素,即使同一批量的蓄电池其电解液浓度和性能也会有所差异,所以在安装电池组之前,要求对各个蓄电池进行认真的检测并记录,尽可能把性能接近的蓄电池组合成同一组,这样有利于动力电池组性能的稳定和延长使用寿命。 (2)能源管理系统。能源管理系统的主要功能是在汽车行驶中进行能源分配,协调各功能部分工作的能量管理,使有限的能量源最大限度地得到利用。能源管理系统与电力驱动主模块的中央控制单元配合在一起控制发电回馈,使在纯电动汽车降速制动和下坡滑行时进行能量回收,从而有效地利用能源,提高纯电动汽车的续程能力。能源管理系统还需与充电控制器一同控制充电。为提高蓄电池性能的稳定性和延长使用寿命,需要实时监控电源的使用情况,对蓄电池的温度、电解液浓度、蓄电池内阻、电池端电压、当前电池剩余电量、放电时间、放电电流或放电深度等蓄电池状态参数进行检测,并按蓄电池对环境温度的要求进行调温控制,通过限流控制避免蓄电池过充、放电,对有关参数进行显示和报警,其信号流向辅助模块的驾驶室显示操纵台,以便驾驶员随时掌握并配合其操作,按需要及时对蓄电池充电并进行维护保养。 (3)充电控制器。充电控制器是把电网供电制式转换为对蓄电池充电要求的制式,即把交流电转换为相应电压的直流电,并按要求控制其充电电流。充电器开始时为恒流充电阶段。

纯电动汽车的结构和驱动系统性能比较资料

纯电动汽车的结构分析和驱动系统性能比较 摘要 纯电动汽车驱动形式有很多种,为了选择最合适的驱动系统,我们对不同驱动系统的结构特征进行了分析,在纯电动汽车上匹配不同的驱动系统后比较其动力性;以城市驾驶循环为例建立车辆能耗模型来比较其经济性。结果显示:单电机直接驱动系统虽然最简单,但其性能最差;装配两速变速器后,动力性显著改善,汽车行驶里程增加3.6%,但自动变速的功能难以解决;采用轮毂电机驱动系统可以改善汽车的动力性,但实际行驶效率不高;而双电机耦合驱动系统可以实现高效率行驶,其行驶里程比单电机直驱增加了7.79%,并且因为其具有结构简单,行驶效率高等特点,所以适用于现在的纯电动汽车。 绪论 作为核心部件,电力驱动系统的技术水平直接制约纯电动汽车的整体性能。如今,有多种驱动系统可以使用。根据车轮驱动扭矩的动力源,驱动系统的模式可分为整体式驱动和分布式驱动。整体式驱动系统的驱动扭矩由主减速器或次级减速器或差速器来调节,主要包括单电机直驱和主副电机耦合系统。在分布式驱动中,每个驱动轮都有一个单独的驱动系统,轮毂电机驱动系统是分布式驱动的主要形式。 整体式驱动的技术相对比较成熟,但驱动力通过差速器被大致平均分配到左、右半轴,单个驱动轮的转矩在大多数车辆中不能独立地调节。因此不安装其他的传感器和控制器,我们很难对汽车的运动和动力进行控制[1]。分布式驱动近几年飞速发展,由于大多数车轮和电动机之间的机械部件被替换,因此分布式驱动系统具有结构紧凑和传动效率高的优点[2]。 为了选取最适合纯电动汽车的驱动方式,本文对不同驱动系统的结构特征和动力性经济性比较进行了比较说明。本文结构如下:第二部分为驱动系统的结构特征分析,第三部分介绍驱动系统的参数和部件性能,第四部分比较不同驱动系统的动力性,第五部分比较不同驱动系统的经济性,第六部分得出结论。 结构分析 整体式驱动 整体式驱动系统被广泛应用于各类电动车辆,其主要结构如图1所示。其中M是电动机,R是固定速比减速器,T是变速器,D是主减速器,W是车轮。图1 a是单电机直驱系统,其扭矩由主减速器调节,通常称为直驱系统。图1 b和直驱系统十分相似,除了扭矩由变速器调节。因为驱动电机的速比调节范围比内燃机的更大,所以能以较少的齿轮数目的传动来满足在任何工况下的电动汽车需求。图1 c是另外一种整体式驱动形式,其采用两个驱动电机和主减速器,其中一个电机在大多数工况下作为汽车的动力来源,另外一个电机只有在需要附加功率时才会工作。

纯电动汽车的驱动电机系统详解

纯电动汽车的驱动电机系统详解 驱动电机系统是电动汽车三大核心系统之一,是车辆行驶的主要驱动系统,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。一、驱动电机系统介绍驱动电机系统由驱动电机、驱动电机控制器(MCU)构成,通过高低压线束、冷却管路与整车其他系统连接,如图1所示。整车控制器(VCU)根据加速踏板、制动踏板、挡位等信号通过CAN网络向电机控制器MCU发送指令,实时调节驱动电机的扭矩输出,以实现整车的怠速、加速、能量回收等功能。电机控制器能对自身温度、电机的运行温度、转子位置进行实时监测,并把相关信息传递给整车控制器VCU,进而调节水泵和冷却风扇工作,使电机保持在理想温度下工作。驱动电机技术指标参数,如表1所示,驱动电机控制器技术参数如表2所示。1、驱动电机永磁同步电机是一种典型的驱动电机(图2),具有效率高、体积小、可靠性高等优点,是动力系统的执行机构,是电能转化为机械能载体。它依靠内置旋转变压器、温度传感器(图3)来提供电机的工作状态信息,并将电机运行状态信息实时发送给MCU。旋转变压器检测电机转子位置,经过电机控制器内旋变解码器解码后,电机控制器可获知电机当前转子位置,从而控制相应的IGBT功率管导通,按顺序给定子三个线圈通电,驱

动电机旋转。温度传感器的作用是检测电机绕组温度,并提信息供给MCU,再由MCU通过CAN线传给VCU,进而控制水泵工作、水路循环、冷却电子扇工作,调节电机工作温度。驱动电机上有一个低压接口和三根高压线(V、U、W)接口,如图4所示。其中低压接口各端子定义如表3所示,电机控制器也正是通过低压端口获取的电机温度信息和电机 转子当前位置信息。2、驱动电机控制器驱动电机控制器MCU结构如图5所示,它内部采用三相两电平电压源型逆变器,是驱动电机系统的控制核心,称为智能功率模块,它以IGBT(绝缘栅双极型晶体管)为核心,辅以驱动集成电路、主控集成电路。MCU对所有的输入信号进行处理,并将驱动电机控制系统运行状态信息通过CAN2.0网络发送给整车控制器VCU。驱动电机控制器内含故障诊断电路,当电机出现异常时,达到一定条件后,它将会激活一个错误代码并发送给VCU整车控制器,同时也会储存该故障码和相关数据。驱动电机控制器主要依靠电流传感器(图6)、电压传感器、温度传感器来进行电机运行状态的监测,根据相应参数进行电压、电流的调整控制以及其它控制功能的完成。电流传感器用于检测电机工作实际电流,包括母线电流、三相交流电流。电压传感器用于检测供给电机控制器工作的实际电压,包括动力电池电压、12V蓄电池电压。温度传感器用于检测电机控制系统的工作温度,包括IGBT模块的温度。驱动电

四轮驱动电动汽车驱动方式控制系统设计

四轮驱动电动汽车驱动方式控制系统设计 摘要 作为电动汽车行业新颖的发展方向,四轮驱动电动汽车由于其理想的控制特性和良好的应用前景,受到学术和工程界的普遍关注,已经成为研究热点。首先,根据整车参数和动力性的要求,计算出电机的功率、转速等主要指标,选定轮毂式无刷直流电机型号并进行简单的动力匹配。再根据不同工况,选择适合电动汽车的驱动方式,构建四轮独立驱动电动车的驱动方式控制的系统模型。其次,根据电动汽车行驶路面的路况和所处的工况,采用一定的控制策略和驱动策略,由切换电动机的工作状态,使电动汽车既可以在不同的工况(例如启动、爬坡及转弯)选择适应的驱动方式,又可以在不同等级的路面下(例如城市路面、高速公路)选择最佳的驱动方式,即做到电动汽车的即时四驱,从而最大程度地发挥电动汽车驱动方式控制的优点。最后,本文通过建立数学模型,并利用matlab进行软件仿真,来对轮毂电机驱动力模型、整车模型以及控制策略模型这些模型进行仿真试验。以上研究表明:四轮驱动是一种理想可行的驱动方案;本文建立的仿真模型合理实用。 关键词:四轮驱动;驱动方式控制;不同工况;轮毂式无刷直流电机

DESIGN OF DRIVING FORMS CONTROL SYSTEM OF FOUR-WHEEL DRIVE ELECTRIC VEHICLE ABSTRACT The four-wheel drive(4WD) EV is one of the developing directions for further EV. Because of its perfect controlling performance and good application prospect in engineering, 4WD EV have been getting universal attention by both academicians and engineers.It also has become a research hotspot of research.Firstly,according to the requirements of the vehicle parameters and power performance,we need to calculate main indicators such as the motor power, rotational speed, and select the model for wheel-hub brushless DC motor. According to different working condition, we should choose suitable driving forms for EV, and build up the model of driving control system about four-wheel independent drive EV.Then,according to EV working condition of pavement, we need to adopt certain control strategy and drive strategy.By switching the working state of the motor, 4WD EV can not only work in different conditions (such as starting, climbing and turning) to choose adapted drive forms, but also under different levels of the road (such as urban roads, highways) to choose the best way of driving.Which achieve the real-time four-wheel drive for EV, so as to maximize the advantages of EV driving forms control.Finally,by establishing the mathematical models and using MATLAB to simulation,we can set up the simulation models for driving force models of wheel-hub motor, vehicle models and control strategy models. Above research shows that the 4WD is a kind of ideal and feasible driving form; the simulation models in this paper is reasonable and practical. Key words:Four-wheel drive;The control of driving forms;Different working conditions;Wheel brushless DC motor

纯电动车驱动控制系统

纯电动车驱动操纵系统 1驱动系统硬件设计 1.1制动能量回馈操纵过程能量回馈操纵主电路如图3所示,三相逆变电路采纳IGBT功率模块,模块中包括6个IGBT以及各开关管相对 应的续流二极管D1~D6[7-9]。本文采纳SVPWM磁链跟踪操纵技术,操纵PWM的开关时间,使逆变器的输出电压波形尽量接近正弦波,在 电机空间形成逼近圆形的旋转磁场。为了获得多边形旋转磁场逼近圆 形旋转磁场,在每个电压空间矢量的60°区间内能够有多个工作妆态。图4所示为第Ⅰ扇形区域,该扇形区内的T区间包括T0,T1,T2和T7对称分布,相对应的电压空间矢量为u0,u1,u2和u7,其功率开关管开关状态为000,100,110和111共4个状态[10]。该T区间内按 照开关序列输出的三相相电压波形如图5所示。状态1,给定电压空间矢量为u0(000),功率开关管T2、续流二极管D4和D6导通,构成三 相回路,制动时的能量一部分由定子电阻消耗,另一部分存储于定子 电感中,此过程的电流流向如图6(a)所示。状态2,开关状态从u0切 换到u1,功率开关管T2关断,但因为T1承受反压仍处于关断状态, 其续流二极管D1导通,b,c相下桥臂的D4和D6导通,构成三相回路;制动过程中,将电机电感释放的能量回馈到直流侧电容和蓄电池中, 达到制动能量回收的目的,如图6(b)所示。状态3,开关状态从u1切 换到u2,功率开关管T3、二极管D1和D6导通,制动时,电机a和c 相电感释放的能量储存有直流侧电容和电池,而b相电感储存能量, 电流流向如图6(c)所示。状态4,开关状态从u2切换到u7,功率开关管T3,T5以及二极管D1导通,制动过程中,一部分能量消耗在定子 电阻上,另一部分制动能量存储于定子电感中,电流流向如图6(d)所示。由上述对区间Ⅰ操纵过程的分析可得,制动过程中,给定电压空 间矢量为零矢量时,电机定子的电感处于储能状态且定子电阻消耗一 部分能量,电流不经过直流侧电容和电池;当给定电压空间矢量为非零 矢量时,电机将机械能转换成电能,利用三相逆变器的二极管将电能 反馈到直流侧,为电容和蓄电池充电,实现制动能量反馈功能。

纯电动汽车电机驱动系统分析word版

纯电动汽车电机驱动系统分析 当前推广的新能源汽车,包括燃料电池汽车、纯电动汽车和插电式混合动 力汽车。其中,纯电动汽车因为显著的环境效益和能源节约效益,尤其是在使 用过程中无大气污染物直接排放,所以受到国家层面的大力推动。纯电动汽车 主要由电机驱动系统、整车控制系统和电池系统3部分构成。其中,电机驱动系统的主要部件包括电机、功率转换器、控制器、减速器以及各种检测传感器等,功能是将电能直接转换为机械能。电机驱动系统作为纯电动车行使过程中的主 要执行结构,其驱动特性决定了主要驾驶性能指标[1]。因此,要改善纯电动汽 车的行驶性能,就需研究电机驱动系统的优化方案。 1电机驱动集成装置 纯电动汽车的电机驱动系统中,电机将电能转换为动能以产生驱动转矩, 而减速器与电机传动连接,在电机和执行机构之间起匹配转速和传递转矩的作用。目前,电机驱动系统的这3部分主要采用分体设计,然后由整车厂组装成为一个整体。这种组装形成的电机驱动装置,整体体积一般很大,因而对空间需 求也大。为使电机驱动装置能便利地在整车机舱布置,现有的一种解决方案是 集成关联的电机驱动部件。如图1所示,此新型装置由驱动电机、控制器、减速器和连接轴等主要部件集成。在电机驱动集成装置中,减速器位于驱动电机的 第一端,且与其延伸出的输出轴传动连接。连接轴与减速器传动连接,且沿驱 动电机的侧面向其第二端延伸。控制器位于连接轴的上方,与其连接的接线盒 用于容置驱动电机的电源线和控制线[2]。减速器的连接轴沿驱动电机的侧面延伸,使得整个电驱动装置的长宽尺寸相对较少。由于连接轴的尺寸远小于电机 的尺寸,且其所处位置的高度相对较低,将控制器直接设置在连接轴上方,就 实现整体高度的降低。相比于将控制器设置于电机的上方,此电机驱动集成装 置充分利用连接轴上方的空间,做到较小体积,因而对空间需求也小。b5E2RGbCAPklfHYJ6cEUqP AsthvQ VFNqwK3w9lbp Xh3ITF LbT LbiyTdmv cyAblH U2UOvE rzK0eX9MRyOv kWatvR DwH1XM AeBz8G。

北汽新能源纯电动汽车驱动电机控制系统故障维修

近年来,在我国作为技术的纯的研发与应用取得了突破性发展。这就客观要求行业提升维修 水平,升级故障维修手段,利用有效的电子诊断技术提升效率。本文以北汽纯的具体故障作 为切入点,通过故障分析及其排除过程,对关键技术进行相应的探究。 一、故障现象 一辆北汽生产的EV 160新能源纯,整车型号为:BJ7000B3D5-BEV,电机型号为: TZ20S02,电池型号为:29/135/220-80Ah,电池工作电压为320V。该车行驶里程为0.56万km,出现无法行驶且仪表报警灯常亮、报警音鸣叫的故障;故障发生时电机有沉闷的“咔、咔”声。 二、系统重要作用及其结构原理 驱动电机系统由驱动电动机(DM)、驱动电机控制器(MCU)构成,通过高低压线束与 整车其它系统作电气连接。驱动电机系统是纯三大核心部件之一,是车辆行驶的主要执行机构,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。 1.驱动电机系统工作原理 在驱动电机系统中,驱动电机的输出动作主要是执行控制单元给出的命令,即控制器输出 命令。如图1所示,控制器主要是将输入的直流电逆变成电压、频率可调的三相交流电,供 给配套的三相交流永磁同步电机使用。 整车控制器(VCU)根据驾驶员意图发出各种指令,电机控制器响应并反馈,实时调整驱 动电机输出,以实现整车的怠速、前行、倒车、停车、能量回收以及驻坡等功能。电机控制 器另一个重要功能是通信和保护,实时进行状态和故障检测,保护驱动电机系统和整车安全 可靠运行。 电机控制器(MCU)由逆变器和控制器两部分组成。驱动电机控制器采用三相两电平电 压源型逆变器。逆变器负责将动力电池输送的直流电电能逆变成三相交流电给汽车驱动电机 提供电源;控制器接受驱动电机和其它部件的信号反馈到仪表,当发生制动或者加速行为时,它能控制频率的升降,从而达到加速或减速的目的。 电机控制器是依靠内置旋转变压器、温度传感器、电流传感器、电压传感器等来提供电 机的工作状态信息,并将驱动电机运行状态信息实时发送给VCU。驱动电机系统的控制中心,又称智能功率模块,以绝缘栅双极型晶体管模块(IGBT)为核心,辅以驱动集成电路、主控集成电路,对所有的输入信号进行处理,并将驱动电机控制系统运行状态的信息通过 CAN2.0网络发送给整车控制器,同时也会储存故障码和数据。

电动汽车基本结构教案资料

电动汽车基本结构

电动汽车的结构 电动汽车的组成包括:电力驱动及控制系统、驱动力传动等机械系统、完成既定任务的工作装置等。电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。电力驱动及控制系统由驱动电动机、电源和电动机的调速控制装置等组成。电动汽车的其他装置基本与内燃机汽车相同。 1. 电源 电源为电动汽车的驱动电动机提供电能,电动机将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前,电动汽车上应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由于比能量较低,充电速度较慢,寿命较短,逐渐被其他蓄电池所取代。正在发展的电源主要有钠硫电池、镍镉电池、锂电池、燃料电池、飞轮电池等,这些新型电源的应用,为电动汽车的发展开辟了广阔的前景。 2. 驱动电动机 驱动电动机的作用是将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前电动汽车上广泛采用直流串激电动机,这种电机具有"软"的机械特性,与汽车的行驶特性非常相符。但直流电动机由于存在换向火花,比功率较小、效率较低,维护保养工作量大,随着电机技术和电机控制技术的发展,势必逐渐被直流无刷电动机(BCDM)、开关磁阻电动机(SRM)和交流异步电动机所取代。 3. 电动机调速控制装置

电动机调速控制装置是为电动汽车的变速和方向变换等设置的,其作用是控制电动机的电压或电流,完成电动机的驱动转矩和旋转方向的控制。 早期的电动汽车上,直流电动机的调速采用串接电阻或改变电动机磁场线圈的匝数来实现。因其调速是有级的,且会产生附加的能量消耗或使用电动机的结构复杂,现在已很少采用。目前电动汽车上应用较广泛的是晶闸管斩波调速,通过均匀地改变电动机的端电压,控制电动机的电流,来实现电动机的无级调速。在电子电力技术的不断发展中,它也逐渐被其他电力晶体管(入GTO、MOSFET、BTR及IGBT等)斩波调速装置所取代。从技术的发展来看,伴随着新型驱动电机的应用,电动汽车的调速控制转变为直流逆变技术的应用,将成为必然的趋势。 在驱动电动机的旋向变换控制中,直流电动机依靠接触器改变电枢或磁场的电流方向,实现电动机的旋向变换,这使得孔子哈电路复杂、可靠性降低。当采用交流异步电动机驱动时,电动机转向的改变只需变换磁场三相电流的相序即可,可使控制电路简化。此外,采用交流电动机及其变频调速控制技术,使电动汽车的制动能量回收控制更加方便,控制电路更加简单。 4. 传动装置 电动汽车传动装置的作用是将电动机的驱动转矩传给汽车的驱动轴,当采用电动轮驱动时,传动装置的多数部件常常可以忽略。因为电动机可以带负载启动,所以电动汽车上无需传统内燃机汽车的离合器。因为驱动电机的旋向可以通过电路控制实现变换,所以电动汽车无需内燃机汽车变速器中的倒档。当采用电动机无级调速控制时,电动汽车可以忽略传统汽车的变速

电动汽车基本结构

电动汽车的结构 电动汽车的组成包括:电力驱动及控制系统、驱动力传动等机械系统、完成既定任务的工作装置等。电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。电力驱动及控制系统由驱动电动机、电源和电动机的调速控制装置等组成。电动汽车的其他装置基本与内燃机汽车相同。 1.电源 电源为电动汽车的驱动电动机提供电能,电动机将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前,电动汽车上应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由于比能量较低,充电速度较慢,寿命较短,逐渐被其他蓄电池所取代。正在发展的电源主要有钠硫电池、镍镉电池、锂电池、燃料电池、飞轮电池等,这些新型电源的应用,为电动汽车的发展开辟了广阔的前景。 2.驱动电动机 驱动电动机的作用是将电源的电能转化为机械能,通过传动装置或直接驱动车轮 和工作装置。目前电动汽车上广泛采用直流串激电动机,这种电机具有”软"的机械特性,与汽车的行驶特性非常相符。但直流电动机由于存在换向火花,比功率较小、效率较低,维护保养工作量大,随着电机技术和电机控制技术的发展,势必逐渐被直流无刷电动机(BCDM )、开关磁阻电动机(SRM )和交流异步电动机所取代。 3.电动机调速控制装置 电动机调速控制装置是为电动汽车的变速和方向变换等设置的,动机的电 其作用是控制电 压或电流,完成电动机的驱动转矩和旋转方向的控制。 早期的电动汽车上,直流电动机的调速采用串接电阻或改变电动机磁场线圈的匝 数来实现。因其调速是有级的,且会产生附加的能量消耗或使用电动机的结构复杂,现在已很少采用。目前电动汽车上应用较广泛的是晶闸管斩波调速,通过均匀地改变电动机的端电压,控制电动机的电流,来实现电动机的无级调速。在电子电力技术的不断发展中,它也逐渐被其他电力晶体管(入 GTO、MOSFET、BTR及IGBT等) 斩波调速装置所取代。从技术的发展来看,伴随着新型驱动电机的应用,电动汽车的调速控制转变为直流逆变技术的应用,将成为必然的趋势。 在驱动电动机的旋向变换控制中,直流电动机依靠接触器改变电枢或磁场的电流 方向,实现电动机的旋向变换,这使得孔子哈电路复杂、可靠性降低。当采用交流异步电动机驱动时,电动机转向的改变只需变换磁场三相电流的相序即可,可使控制电路简化。此外,采用交流电动机及其变频调速控制技术,使电动汽车的制动能量回收控制更加方便,控制电路更加简单。 4.传动装置 电动汽车传动装置的作用是将电动机的驱动转矩传给汽车的驱动轴,当采用电动 轮驱动时,传动装置的多数部件常常可以忽略。因为电动机可以带负载启动,所以电动汽车上无需传统内燃机汽车的离合器。因为驱动电机的旋向可以通过电路控制实现 变换,所以电动汽车无需内燃机汽车变速器中的倒档。当采用电动机无级调速控制时,电动汽车可以忽略传统汽车的变速器。在采用电动轮驱动时,电动汽车也可以省略传统内燃机汽车传动系统的差速器。

纯电动汽车的驱动电机系统

纯电动汽车的驱动电机系统 驱动电机系统是电动汽车三大核心系统之一,是车辆行驶的主要驱动系统,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。本文将以北汽新能源EV200车型所采用的驱动电机系统为例来介绍相关技术。 一、驱动电机系统介绍 驱动电机系统由驱动电机、驱动电机控制器(MCU)构成,通过高低压线束、冷却管路与整车其他系统连接,如图1所示。 图1 驱动电机系统结构 图2 永磁同步电机结构 图3 电机传感器 表1 驱动电机技术参数 表2 驱动电机控制器技术参数 整车控制器(VCU)根据加速踏板、制动踏板、挡位等信号通过CAN网络向电机控制器MCU发送指令,实时调节驱动电机的扭矩输出,以实现整车的怠速、加速、能量回收等功能。 电机控制器能对自身温度、电机的运行温度、转子位置进行实时监测,并把相关信息传递给整车控制器VCU,进而调节水泵和冷却风扇工作,使电机保持在理想温度下工作。 驱动电机技术指标参数,如表1所示,驱动电机控制器技术参数如表2所示。 类型永磁同步基速 2 812r/min 转速范围0~9000r/min 额定功率30kW 峰值功率53kW 额定扭矩102N.m 峰值扭矩180N.m(相当于2.0排量的汽油机)重量 45kg 技术指标 技术参数 直流输入电压 336V 工作电压范围265~410V 控制电源 12V 控制电源电压范围9~16V(所有控制器具有低压电路控制)标称容量85kVA 重量 9kg 1.驱动电机 永磁同步电机是一种典型的驱动电机(图2),具有效率高、体积小、可靠性高等优点,是动力系统的执行机构,是电能转化为机械能载体。它依靠内置旋转变压器、温度传感器(图3)来提供电机的工作状态信息,并将电机运行状态信息实时发送给MCU。 旋转变压器检测电机转子位置,经过电机控制器内旋变解码器解码后,电机控制器可获知电机当前转子位置,从而控制相应的IGBT功率管导通,按顺序给定子三个线圈通电,驱动电机旋转。 温度传感器的作用是检测电机绕组温度,并提信息供给MCU,再由MCU通过CAN线传给VCU,进而控制水泵工作、水路循环、冷却电子扇工作,调节电机工作温度。 DOI:10.13825/https://www.docsj.com/doc/1110659780.html,ki.motorchina.2016.03.023

新能源电动汽车电驱动系统 (2)

现代电动汽车电驱动系统主要由四大部分组成:驱动电机、变速器、功率变换器和控制器。驱动电机是电气驱动系统的核心,其性能和效率直接影响电动汽车的性能。驱动电机和变速器的尺寸、重量也会影响到汽车的整体效率。功率变换器和控制器则对电动汽车的安全可靠运行有很大关系。 电驱动系统的由以下几个部分组成: 1.电动汽车驱动电机 选用小型轻量的高效电机,对目前电池容量较小、续驶里程较短的电动汽车现状显得尤为重要。早期电动汽车驱动电机大部分采用他励直流电机(DCM)。直流电机驱动系统改变输入电压或电流就可以实现对其转矩的独立控制,进行平滑调速,具有良好的动态特性,并且有成本低、技术成熟等优点。但是,直流电机的绝对效率低,体积、质量大,碳刷和换向器维护量大,散热困难等缺陷,使其在现代电动汽车中应用越来越少。随着电力电子技术、大规模集成电路和计算机技术的发展以及新材料的出现和现代控制理论的应用,机电一体化的交流驱动系统显示了它的优越性,如效率高、能量密度大、驱动力大、有效的再生制动、工作可靠和几乎无需维护等,使得交流驱动系统开始越来越多地应用于电动汽车中。目前在电动汽车中,主要采用永磁同步电机(PMSM)驱动系统、开关磁阻电机(SRM)驱动系统和异步感应电机(肼)驱动系统。 永磁同步电机(PMSM)是一种高性能的电机,具有体积小、重量轻、结构简单、效率高、控制灵活的优点,在电动汽车上得到了广泛的应用,是当前电动汽车用电动机的研发热点,是异步感应电机的最有力的竞争对手。目前,由日本研制的电动汽车主要采用这种电机,如Honda公司的EV Plus、Nissan公司的Altra 和Toyota公司的RAV4及Prius车型等。但是,永磁电机的磁钢价格较高,磁

电动汽车动力匹配计算要求规范(纯电动)

电动汽车动力匹配计算设计规范 编制:年月日 审核:年月日 批准:年月日 2015-10-15发布2015-11-1实施 XXXX有限公司发布

目录 一、概述 (1) 二、输入参数 (1) 2.1 基本参数列表 (1) 2.2 参数取值说明 (1) 三、XXXX动力性能匹配计算基本方法 (2) 3.1 驱动力、行驶阻力及其平衡 (3) 3.2 动力因数 (6) 3.3 爬坡度曲线 (6) 3.4 加速度曲线及加速时间 (7) 3.5 驱动电机功率的确定 (7) 3.6 主驱动电机选型 (8) 3.7 主减速器比的选择 (8) 参考文献 (9)

一、概述 汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 二、输入参数 2.1 基本参数列表 进行动力匹配计算需首先按确定整车和发动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是XXXX动力匹配计算必须的基本参数,其中发动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2 参数取值说明 1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。XXXX车型迎风面积为A

一般取值5-8 m 2 。 2)动力传动系统机械效率 根据XXXX 车型动力传动系统的具体结构,传动系统的机械效率T η主要由主驱动电机传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联组成。 采用有级机械变速器传动系的车型传动系统效率一般在82%到85%之间,计算中可根据实际齿轮副数量和万向节夹角与数量对总传动效率进行修正,通常取传动系统效率T η值为78-82%。 3)滚动阻力系数f 滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经验公式进行匹配计算: f =??? ???????? ??+??? ??+4 410100100a a u f u f f c 其中:0f —0.0072~0.0120以上; 1f —0.00025~0.00280; 4f —0.00065~0.002以上; a u —汽车行驶速度,单位为km/h ; c —对于良好沥青路面,c =1.2。 三、 XXXX 动力性能匹配计算基本方法 汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为

KH-CDD21纯电动汽车动力驱动与控制一体化教学实训系统教学文稿

KH-CDD21纯电动汽车动力驱动与控制一体化教学实训系统 可选用:吉利帝豪EV300、比亚迪E5、北汽EV160、荣威eRX5 一、产品简介 选用原装纯电动轿车高压电控总成和永磁同步电机;原装配套变速箱和传动轴;高压动力线和低压控制线与动力电池和管理系统实训台对接,实训台保留原车功能;真实展示纯电动轿车电驱动传动系统核心零部件之间的连接控制关系、安装位置和运行工况,以及高压系统安全注意事项,并培养学员对纯电动轿车电驱动传动系统故障分析和处理能力。适用于各类型院校新能源纯电动汽车驱动传动系统课程教学和维修维护实训。 二、功能特点 1.各主要部件安装在实训平台上,保留原车电气连接方式,断电后可方便拆装,训练拆装线束与电器,掌握高压系统零部件拆装和安全保护要点。 2.动力高压配电箱上盖采用透明5mm有机玻璃改装,清晰观察了解控制原理和内部控制元件。 3.驱动传动系统实训台高压电源由动力电池和管理系统实训台提供,与动力电池和管理系统实训台连体工作,配套连接电缆线,保留原车连接方式。 4.教学板完整显示电驱动系统工作原理图,安装检测端子,可直接在面板上检测系统电路元件的电信号,如电阻、电压、电流、频率、波形信号等。 面板采用耐创击、耐污染、防火、防潮的高级铝塑板,表面经特殊工艺喷涂底漆处理;面板打印有永不褪色的彩色电路图等; 5.传动轴输出端安装原车制动器,模拟车辆负载系统,通过调整两端负载大小,真实展示电驱动传动系统不同工况下(启动、加速、匀速、减速、停车、爬坡等)电流和电压等数据变化规律。

6.设备由平台和教学板组成,平台水平放置,安装原车零部件;底部安装4个带自锁脚轮装置。 7.面板部分采用1.5mm冷板冲压成形结构,外形美观;底架部分采用钢结构焊接,表面采用喷涂工艺处理,带自锁脚轮装置,教学板底座上配有30cm左右的台面,方便放置资料、轻型检测仪器等。 8.配备智能化故障设置和考核系统,故障点主要设置在低压控制线路,保证高压系统安全及训练实车故障处理能力。 9.为了教学安全,台架配套安装绝缘地板(绝缘与耐压国标产品地胶)。 10.配套实训指导书,包含系统工作原理,实训科目,故障设置及清除等要点。 三、基本配置(每台)

纯电动汽车整车控制器(VCU)设计方案

纯电动汽车整车控制器 设计方案书

目录 1 整车控制器控制功能和原理 (1) 2 电动汽车动力总成分布式网络架构 (2) 3 整车控制器开发流程 (3) 3.1 整车及控制策略仿真 (3) 3.2 整车软硬件开发 (4) 3.2.1 整车控制器的硬件开发 (5) 3.2.2 整车控制器的软件开发 (8) 3.3 整车控制器的硬件在环测试 (9) 3.4 整车控制器标定 (11) 3.4.1 整车控制器的标定系统 (11) 3.4.2 电动汽车整车控制器的标定流程 (12)

1整车控制器控制功能和原理 电动汽车是由多个子系统构成的一个复杂系统,主要包括电池、电机、变速箱、制动等动力系统,以及其它附件如空调、助力转向、DCDC及充电机等。各子系统几乎都通过自己的控制单元来完成各自功能和目标。为了满足整车动力性、经济性、安全性和舒适性的目标,一方面必须具有智能化的人车交互接口,另一方面,各系统还必须彼此协作,优化匹配。因此,纯电动汽车必须需要一个整车控制器来管理纯电动汽车中的各个部件。 纯电动车辆以整车控制器为主节点、基于高速CAN总线的分布式动力系统控制网络,通过该网络,整车控制器可以对纯电动车辆动力链的各个环节进行管理、协调和监控,提高整车能量利用效率,确保车辆安全性和可靠性。整车控制器的功能如下: 1)车辆驾驶:采集司机的驾驶需求,管理车辆的动力。 2)网络管理:监控通信网络,信息调度,信息汇总,网关。 3)故障诊断处理:诊断传感器、执行器和系统其他部件的故障,并进行相应的 故障处理,按照标准格式存储故障码。 4)在线配置和维护:通过车载标准CAN端口,进行控制参数修改,匹配标定, 功能配置,监控,基于标准接口的调试能力等。 5)能量管理:通过对电动汽车车载耗能系统(如空调、电动泵等)的协调和管 理,以获得最佳的能量利用率。 6)功率分配:通过综合电池的SOC、温度、电压、电流和电机的温度等车辆信 息计算电机功率的分配,进行车辆的驱动和制动能量回馈控制。从而在系统的允许下能获得最佳的驾驶性能和续航里程。 7)附电控制:根据各附电系统的控制逻辑对真空助力泵、水泵、冷却风扇等进 行相应的控制。 8)坡道起步时驻坡控制。

相关文档