文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料物理-磁光性能

纳米材料物理-磁光性能

纳米材料物理-磁光性能
纳米材料物理-磁光性能

纳米材料的磁光性能

磁光效应

磁光效应就是指极化光与磁性物质交互作用后所产生的一种效应。它分为Faraday效应和Kerr效应。1846年,Faraday发现在玻璃样品上加上磁场时,透射光的极化面发生旋转,这就是Faraday效应。如图1(a)所示,红色表示加在物质上的磁场或磁化作用,黄线表示极化光,极化光通过被磁化的物质后产生Faraday效应。注意,所加磁场的方向与光束行进的方向平行。1877年Kerr在观察极化光束从磁性物质反射后,光束的极化以及强度有了改变,这就是磁光科尔效应(magneto-ptical Kerr effect, MOKE)。如图1(b)所示。

图 1

随着铁磁物质磁化强度矢量M的方向相对于材料的表面和人射光束的人射平面的取向,MOKE实际上分为3种效应:纵向MOKE、极性MOKE(Polar MOKE)和横向MOKE。可以用图形清晰地分别表示如下。

纵向MOKE是由于磁化强度矢量处于材料的表面内并平行于入射平面,如图2(a)所示。通常用s极化和P极化分别表示垂直和平行于入射平面光的极化。纵向MOKE简单,其人射光束或者只在s平面或者只在P平面极化,因此其反射光就转变为椭圆极化光。椭圆的主轴常常围绕着主平面有些微的旋转,称之为Kerr旋转。这种椭圆率称为Kerr椭圆率。

透射中也存在着同样的效应,当然通常这只能在薄膜中才看得到,因为绝大多数磁物质在磁光活跃的区域是不透明的。

这些效应的符号和数量比例于M和它的方向。在垂直人射方向没有观察到

什么效应。

图(b)所示的为横向MOKE

梗概图,此时磁化强度垂直于外加磁场和人射平面。与纵向MOKE 不同,第一,它只是在P 平面内极化;第二,反射光仍然保持线性极化,只有反射振幅的变化,即M 的变化只是从+M 变为-M ,反射率从R+?R 变为R-?R 。在垂直人射上没有什么效应。

图(c)所示的是极化MOKE 梗概图,此时磁化矢量垂直于样品表面。像纵向MOKE 一样,它只是在p 平面或s 平面内发生。这种效应中的人射光处于这些线性极化态的一种,反射时转化为椭圆极化光。在垂直人射方向可观察到效应。 金属纳米粒子和纳米粒子薄膜的磁光效应

Menendez 等制备了嵌人于非晶态Al 2O 3层中的Fe 纳米粒子A ,B 和C 三种样品,它们的粒径分别为2.4nm ,4nm 和8nm ,含量分别为10%,30%和40% , Al 2O 3层的厚度分别17nm ,18nm 和18.5nm ,测定了它们的MOKE 。图3是这三个样品的Kerr 椭圆率和旋转角与能量关系的测定结果。最明显的特点是在所有的样品中,不论是椭圆率还是旋转角谱,由于干涉的作用,都在4--4.5 e V 附近出现峰值。作者应用不同的有效媒介近似的广义方法描述了实验结果,从理论与实验符合程度发现,在纳米平均粒径大于4 nm 时,两则符合得较好,而在粒径为约2nm 时,两者的偏差大。这就说明,在粒径小于4nm 时,纳米粒子的磁光性能,因为其电子结构与体材的不同。

图 2

Sepulveda等在MgO(001)衬底上高真空溅射和激光法淀积10nm厚的MgO

缓冲层,在其上镀制0.5--50nm的Fe膜,然后再镀3nm厚的MgO覆盖层。用

Xe灯所发射的P极化光经样品反射后,通过一单色器,所产生的单色光由光二

极管检测,并由锁相放大器处理。在频率置时,锁相放大器就检测其反射率的变

化,这与磁化强度成线性依赖关系,而二次依赖关系由二级谐振给出。图4表示了所测定的不同Fe 厚度样品的P-P 极化光反射率随磁化强度线性变化(linear magnetization variations of reflectivity, LMVR)与光能量的关系。反射谱是在人射角为45度时得到的。可以看到,在约2eV 处出现峰值,且随着样品Fe 厚度的减小。峰值强度和形状减少和变宽。图中的实线,虚线和点线理论计算结果。

图3 三种Fe 纳米粒子样

品的极性Kerr 椭圆率(a)和

旋转角(b), A 为空心圆圈,

B 为实心三角,

C 为实心方

图4 MgO 衬底上Fe 纳米膜的

LMVR 测定结果。图(a)中□,○

和△分别表示对50, 5和2. 5nm

膜的测定值,实线,虚线和点线

则是3种膜的计算值;(b)中○和

□表示对1和0. 5nm Fe 膜的实

测值,实线和虚线是它们的计算

值,-+-+-+-和-|-|-|- 线是自恰媒

介方法对纳米粒子的计算结果

模拟计算中使用了4*4转变矩阵,并假定Fe膜连续,具有Fe体材的光学和磁光常数。显然,对于较厚的样品(厚于1nm),理论与实验测定符合得很好,不仅没有改变样品绕z轴旋转反射谱的形状,而且数值也相合。但是在样品Fe膜厚度小至 1 nm和0.5nm后,图b中实线和虚线所表示的模拟结果与实验测定的明显不合。这种差别可能来源于Fe的量子限制效应所引起的电子结构的变化,但也可能来源于这些极薄膜的不同形貌。实验已经清楚的是,对于较小的覆盖,室温下生长随后退火会导致与连续纳米晶厚膜具有同样晶体取向的晶体岛形成,而且,这种超薄膜的饱和磁场比厚膜的为高。因此,磁行为与这种膜的形貌变化一致。作者们于是使用自恰有效媒介方法所导出的公式研究了形貌对于磁光性能的影响。他们仍然采用Fe体材的有关光学和磁光常数,但计算的是纳米粒子而不是连续的纳米薄膜,结果如图4 (b)中的,-+-+-+-和-|-|-|-线所表示的,粒度不论是1 nm还是小至0.5nm,都与实验结果符合很好了。

这些作者还对上述同样样品测定了反射率二次磁化强度变化(quadratic magnetization variations of reflectivity, QMVR),测试中样品的放置一是[100]轴垂直于人射平面,二是[110]轴垂直于人射平面两种情况。结果表明,两者的QMVR谱明显不同,说明在这种立方晶系样品中QMVR存在着很强的磁光各向异性。而且与上述LMVR的情况相反,50nm Fe膜的QMVR,不论是[100]还是[110]方向都比5和2. 5nm的弱些。这种行为是由于磁层与衬底和覆盖层之间介电常数明显不同所引起的光学效应所致。还发现,这两种晶体取向QMVR谱的

图5 (a)和(b)分别是Fe膜为1和0. 5 nm时的QMVR谱的实验测定和理论模拟结果

差别5和2. 5nm Fe的比50nm膜的大一些。对这些较厚Fe纳米膜理论模拟结果与测定的符合。

有意思的是对于两种很薄膜的测定结果和模拟计算结果,如图 5 1nm(a)与0.5nm(b) Fe纳米膜的[100]和[110]方向QMRV的测量结果分别用■和□表示,实线和虚线则是连续膜的计算值,显然,与实验结果明显不合,这比上述LMVR 不符合的情况还要严重得多。有可能是QMVR对形貌远比LMVR更为敏感的缘故。也像LMVR一样,如果使用自恰有效媒介对纳米粒子进行模拟,得到的-+-+-+-和-|-|-|-线(分别代表[100]和[110]方向样品的)则与实验结果一致了。这证明了形貌在QMVR谱中起着重要的作用。因此,这里的实验和理论结果表明,Fe 纳米岛的电子结构与体材的电子结构是一样的,有关磁光系数的修改是由于样品的形貌所致。这与上面Menendez等Fe纳米粒子在粒度小于4nm后的电子结构与体材的不同的结论刚好相反。

Kalska等在Si和AI衬底上淀积了粒度为8nm,10nm和12nm的Co粒子,并在室温下于0.8--4.8eV的光能量范围内测定了MOKE,结果如图6所示。可以看出,MOKE与粒度相关,8nm粒子的Kerr旋转很小,在所测定的光能量范围内小于0.03度。结构和化学分析表明,这种膜上有1--2ML的CoO,减小了芯部磁性Co粒子的尺度,即小于8nm,因此,整个粒子基本上没有显示出磁性。10nm

图6(a) Co纳米粒子粒度为8nm,

10nm和12 nm膜的MOKE,(b) Co参

考膜的MOKE,(c)膜中粒子浓度对

MOKE的影响

粒子的在约1eV 处有一负的峰,在约3eV 处正Kerr 旋转角达到极大,约为0.20度,这些作者通过分析指出,10nm 粒子的有效磁芯粒径为(4.5±0. 1)nm ,表现出超顺磁性。12nm 粒子MOKE 的与在超高真空中生长的100nm 的Co 。参考膜(图b)的形状类似,符号则相反。

它的正Kerr 旋转角最大约为0. 25度,比10nm 粒度的为大。此时显示出铁磁性。图(c)表示了粒子粒径相同但膜中粒子浓度不同(相差5倍)对MOKE 的影响,与想象的MOKE 旋转应当与衬底中的Co 粒子数成比例相反,实验结果表明,两种Kerr 谱的形状相似,在低光能量几乎重合,在高光能量峰值向下平移。Al 衬底吸收了Co 粒子后形成了复杂的光学系统,光学性质不仅由反射也由散射来决定。但到底怎样解释,仍然是个问题。Huttel 等在2004年也研究了淀积在5 nm 厚的氮化铝(Aluminium nitride, A1N)/蓝宝石衬底上和嵌人在AlN 基体中Co 纳米粒子的磁光性能,发现AlN 对于磁光性能有着强烈的影响。

Melle 等用AAO 模板制备了两种六角形排列的Ni 纳米丝,第一种(样品A)的纳米丝直径d=35nm ,长L=1. 4um 和丝间距a=105nm 。这种样品显示出长度约

2. 5um 的长程有序的多区域。第二种(样品B)的d=180nm, L=4um 和a=500nm

图7 Ni 纳米丝极性(a)和横向(b) MOKE 的实验测定结果、模拟值

和体材Ni 的测定结果

这种样品显示出大小约为1. 25um六角有序区域。Kerr效应测量中,AAO固定在Si衬底上。图8. 30是这两个样品极性MOKE效应(Kerr旋转角)(a)和横向Kerr 效应(反射率的相对变化)(b)的测定结果,分别用●和■表示A和B样品的。图中虚线是体Ni膜的谱。可以看出,小直径纳米丝的极性旋转角谱在3. 1eV附近有强烈的峰值出现,与体Ni的峰值重合,具有同样的数值,虽然纳米丝样品中所含Ni的数量只有约15000因此,是由于纳米丝中几何上对Ni的限制,提高了围绕着峰值位置的数值。Ni纳米丝Kerr旋转角的绝对数值小于0. 20,比上述Fe, C。的都要小些。

至于△R/R,虽然A样品的峰值数值与体Ni的相同,但是,曲线形状根本不同。从图还可清楚地看出,大直径纳米丝样品B,无论是Kerr旋转谱还是相对反射率,都与样品A的明显不同,虽然两种样品都含有约15%的Ni。样品B 的旋转谱变宽,向低能量移动,并增加了在红外区的旋转。同样B样品的相对反射率谱也强烈地变宽,并减小了数值。作者们也应用Menendez的自恰有效媒介方法进行了模拟,计算的结果对A和B样品,分别都用粗黑和细灰色实线表示。与实验结果比较,虽然在数值上仍有区别,但基本形状相同,特别是对A 样品的相对反射率谱,吻合得相当好。样品A的模拟旋转角谱在低能量红外区出现的振荡,是由于Ni纳米丝层与Si衬底之间的光干涉作用所引起。这种振荡在实验谱中没有出现是由于表面粗糙度或由于Al基体的剩余吸收所致。这些作者认为,模拟与实验结果的相合证明了Kerr旋转角谱所观察到的特点与Ni纳米丝的等离激元振荡相关。

氧化物纳米粒子的磁光效应

纳米磁性氧化物的磁光性能的研究不多,这里以2004年Kalska等有关磁性氧化物(M= Co,Mn和Ni)研究来进行讨论。制备的纯粒子平均粒径为12 nm,而的平均粒径为10nm,含Ni和Co的粒径处于这两者之间。就是说,Fe为Mn,Co或Ni取代后,并不太影响粒度大小分布。HRTEM分析表明,的(220)面间距为0. 2967nm,并且这些粒子不是壳层结构。即使粒子表面上含有表面覆盖层的话,也不过大约1ML,因为HRTEM像表明晶格平面未受干扰地延伸到粒子的表面。图8是淀积在Al衬底上和纳米粒子的Kerr极性旋转角谱,

显然都不强,前3个样品的Kerr极性旋转角都在0. 04度范围内。此前,Xiaoxi Liu 等测量过50nm纯膜的MOKE谱,强度也非常小。Mn取代样品的强度比的约大一个数量级。所有这些纳米粒子试样Kerr旋转的符号都与体材料的相反。除了反号之外,峰值的位置也向较高能量移动。纯、纳米粒子的谱在光能量为2. 0eV 处有一正的峰值,然后显示出负的旋转角,并在2. 7eV处极小,在3. 5eV处为0旋转角,4. 4eV处达到第二个极大。第二个极大处的形状会随着膜制备的不同而改变,但是趋向总是相同的。计算表明Fe状态在0.9eV,2eV和3--4eV处发生转变,分别是:

因此,图8纯测定谱中所显示的2个峰值得到了理论计算结果的佐证。纯谱对于Fe与O之间的转变并不敏感,但是认为在Fe为不同的元素比如Mg取代后会有所变化。磁性纳米粒子Kerr谱峰值相对于体材的移动,可能是由于纳米粒子中大的表面积/体积所致,因而有可能改变了化合物的电子结构。Ni取代的样品(b)在2. OeV之前为正Kerr旋转,随即在2. 2eV处为0, 2. 5eV处达到极小,2. 6eV处达到大范围内的极大。在4. 3eV再次为0后,更高光能量的Kerr旋转又变为负的。Co取代的谱(c)只在4eV附近有很弱的Kerr旋转。

Mn置换后的纳米粒子放入酒精中的Kerr谱(d)的特征完全不同,大了将近一个数量级,而且谱显得相当平整。在测定范围内,只有在2. 6eV处一个负的极小。但是在IR和UV端Kerr旋转角是正的,分别在1. 5eV和3. 6eV处为0。这些粒子对于制备方式(是在溶液中还是在衬底上的干粒子)是最为敏感的。为了评价不同稀释剂对于纳米粒子磁性的影响,图9 (a)和(b)分别表示了Mo0.5Fe2.5 O4纳米粒子放在酒精中和水中Kerr旋转角的测定结果。两者都在同样光能量处达到相同的极小,但是在大于一3.0eV后就明显不同了:溶于酒精中的在极小之后几乎线性上升,在3. 5eV处跨过。而在水中的在极小后增加得更快,在光能量大于3.25eV后,Kerr旋转角几乎与光能量无关。通常MOKE谱这样一类差别是由于样品反射率谱的结构所引起,而并不是磁性的真正差别。这两种样品的反射率测定结果为7. 32 (c)和(d)所示。显然两者非常相像,绝对值在Kerr旋转角峰

值能量和更高的能量之后已非常小,但是反射曲线很平整和相似。看来MOKE 谱中的差别不像是由于光学影响所致。显然,现在还不能很好解释这些差别的原因,还需要更多的工作才成。

非晶磁性纳米粒子复合结构的磁光效应

Kalashnikova 等2004

年用离子束溅射制备了两组纳米粒子复合样品。一组图8几种纳米金属氧化物的极性MOKE

图9 Mo 0.5 Fe 2.5 O 4 纳米粒子的极性Kerr 旋

转角(a 和b)和反射 率谱(c 和d), a 和c 在酒精中,b 和d 在水中。

是非晶铁磁合金Co 41Fe 39B 20。纳米粒子嵌入于非晶介电质SiO 2薄膜中。这组样品中,用Ar 气或Ar+N 2气或Ar+O 2制备的,分别标为I-1, I-2和I-3。磁性相的浓度为34%--68%。另一组是非晶磁性合金Co 45Fe 45Zr 10。纳米粒子嵌入于非晶介电质Al 2O 3膜中。这组样品中,用Ar +O 2或Ar +O 2 +磁场+强迫水冷制备的,分别标为II-1和II-2。这组中磁性相的浓度为21%--54%。(CoFeB)/(SiO 2)纳米复合膜的厚度小于1um ,并镀在玻璃衬底上。(CoFeZr) /(Al 2O 3)纳米复合膜的厚度为5--10um ,镀在陶瓷衬底上。铁磁纳米粒子粒度为2--7nm ,并随铁磁相含量的增加而在该范围内增大。测定了这两组样品的Kerr 旋转角谱。

图10 是I 组样品的Kerr 旋转角谱随铁磁相浓度的变化。测量中使用的磁场为15 kOe ,光能量为1. 96eV (对于实线)。从图可以看出,氧或氮杂质的存在虽然对最大Kerr 旋转角有些影响,但并不很大,I-1和I-2的为0. 25度,而I-3. 77的为0. 3度。这与上述各种纳米粒子的Kerr 旋转角数值相当。所有3

个样品曲

图10 (CoFeB)/()纳米复合膜的MOKE 和Faraday

旋转与磁性物质浓度关系的测定值

线的形状基本上一致,而且分别在37%,40%和37. 5%浓度处出现极大。由于这些磁性纳米粒子的渗透阂值(percolation threshold)约为46%,因此,所观察到的极大与渗透过程无关。这些极大所处的磁性粒子浓度范围,光学参数谱的响应具有单调性,因而这种行为可能来源于干涉现象。这一点与上面的一些考虑类似。图(c)中的虚线是Faraday 效应的测定结果,是在极大值浓度区域内测定的,也与浓度呈单调变化(Faraday 旋转只能在磁性粒子的浓度小于42%下进行,因为高浓度时对光的吸收太强)。这佐证了极大值的来源可能是干涉的推论。作者用有效媒介理论公式计算后也支持这种说法。

在光能量较大的2. 54eV 下测定的样品I-1Kerr 效应与浓度的关系,如图(a)中的虚线所示。曲线形状与1. 96eV 能量时的相同,但是有一个向低浓度的相对移动。这就是说,极大是与频率有关的,但并不与所考虑浓度范围内纳米复合物磁性变化有关。

图11 是第二组样品(CoFeZr) / (〖Al 〗_2 "O" _3)纳米复合膜Kerr 效应与浓度的关系曲线。测试时磁场为15kOe ,光能量为1. 96eV 。其中II-2的Kerr 旋转谱只在渗透阑值附近有一个极大值出现,作者认为这是纳米复合物的典型情况。而样品II-1在52%处仍然出现极大。这些纳米复合物的光谱并无根本的差别,

图11 (CoFeZr)/()纳米复合膜的MOKE 与磁性物质浓度

关系的测定值

而所观察到的磁光性能的差别,来源于介电常数张量非对角线上元素由于在制备中加了磁场和未加磁场的不同。至于低浓度下样品II -1谱出现振荡,而样品II-2却没有的事实,作者们也归之于干涉作用所致。当然这是需要进一步工作和证实的。

纳米材料的吸附性能

引言

我国水资源的特点是总量大,人均量少。水资源的不足,加上地表水、浅层地下水的污染又减少了可供利用水资源的数量,形成了所谓的污染性缺水,造成了水荒。水污染对人体健康及工农业生产的持续发展带来了很大的危害。水在循环过程中,沿途挟带的各种有害物质,可通过水的稀释、扩散降低含量而实现无害化,这是水的自净作用。但也可能由于水的流动交换而迁移,造成其他地区或更大范围的污染。那么,我们需要对污水进行预处理才能将其排放到环境中去。在各种环境污染处理技术中,吸附法是广泛应用的方法。常用的吸附剂有活性炭、活性硅藻土、纤维、天然蒙托土、煤渣以及混凝剂等。纳米材料是一种有着巨大应用前景的吸附材料。纳米科学技术是20世纪80年代末崛起并迅速发展起来的新科技。纳米材料指尺寸大小为1~100nm的物质材料,与普通的块体材料相比,纳米材料具有较大的比表面和较多的表面原子,因而显示出较强的吸附特性。

纳米材料的吸附作用

对于纳米粒子的吸附作用,目前普遍认为:纳米粒子表面的表面羟基作用。纳米粒子的吸附作用主要是由于纳米粒子的表面羟基作用。纳米粒子表面存在的羟基能够和某些阳离子键合,从而达到表观上对金属离子或有机物产生吸附作用;另外,纳米粒子具有大的比表面积,也是纳米粒子吸附作用的重要原因。一种良好的吸附剂,必须满足比表面积大,内部具有网络结构的微孔通道,吸附容量大等条件,而颗粒的比表面积与颗粒的直径成反比。

比表面积粒子直径减小到纳米级,会引起比表面积的迅速增加。当粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。

由于纳米粒子具有高的比表面积,使它具有优越的吸附性能,在制备高性能

吸附剂方面表现出巨大的潜力,提供了在环境治理方面应用的可能性。

纳米金属的吸附作用

纳米金属的表面原子特别是处于边和角上的原子有较高的化学活性,这些原子正是催化剂的活性中心,也是吸附剂的活性位点。由于纳米金属原子簇具有较高的表面能,属于亚稳态,有团聚的倾向。

目前主要有以下2种方法改变其稳定性:(1)用多孔的物质如Al2O3、SiO2、碳质材料和多聚物等作为载体,浸入金属盐溶液中,然后将金属离子还原为零价纳米金属原子簇而固定在载体上。(2)纳米金属的表面修饰。用纳米金属作吸附剂的也有报道,Kanel等在N2保护下,用NaBH4还原FeCl3制得了纳米零价铁即纳米铁,他们用纳米铁作为吸附剂对地下水中As(Ⅲ)的吸附行为进行了研究,结果表明,As(Ⅲ)的初始浓度和溶液的pH值对吸附有影响,最大吸附容量为3.5ng As(Ⅲ)/g纳米铁,并发现HCO3-、H4SiO4和H2PO4-的存在对As (Ⅲ)的吸附有干扰。

纳米氧化物的吸附作用

许多纳米氧化物表面展现出既具有Lewis碱又具有Lewis酸的特性,特别是在角和边上。残留的表面羟基和阴/阳离子空穴也能增加纳米氧化物的表面活性。

纳米材料用于分离富集起步较晚,Vassileva等在1996年研究了比表面积大的TiO2作为固相萃取吸附剂对金属离子吸附性能。结果表明,TiO2比常用的SiO2作为固相萃取剂具有许多优点,主要是:高吸附容量、多元素同时吸附、能有效地吸附和洗脱及很好的重视性。马万红等人利用流动注射微柱富集在线分析方法对Cr(Ⅵ)离子在纳米TiO2表面上的吸附动力学特征进行了原位表征,研究结果表明,纳米TiO2对Cr(Ⅵ)有强烈的吸附作用,当pH改变时,纳米TiO2吸附的Cr(Ⅵ)可被2mol/LHCl完全洗脱。Mallikarjuna等[2]用纳米γ-Fe2O3和硫脲的复合物作为吸附剂,对Pb2+吸附研究表明,该复合物显示出较强吸附能力。纳米氧化物分离富集技术与其他分析技术联用,也是吸附剂研究的一个重要发展方向

富勒烯的吸附作用

富勒烯是一种闭合笼型的碳原子团簇。C60富勒烯作为吸附剂最令人感兴趣

的是它的选择性。许多金属离子能够和1-吡咯基二硫代甲酸铵(APDC)形成络合物,从而可以用C60富集。而镉被选择性地从共存的Cu、Pb、Zn和Fe等离子中分离出来并用原子吸收光谱检测。C60富勒烯还被用于镉、铅和镍的富集。

碳纳米管的吸附作用

碳纳米管(CNTs)是国内外广泛关注的一类碳材料,近年来逐渐成为水处理材料领域的一个研究热点。碳纳米管是日本科学家Iijima于1991年发现的一种晶型碳素材料,区别于传统晶型碳素材料石墨和金刚石的二维结构和三维结构,碳纳米管呈一维管状结构,由一层或多层石墨片沿轴向卷曲成圆柱状,两端由半球形的端帽封闭,石墨层片内的碳原子以C-C键相连,由一层石墨片层卷曲而成的称为单壁碳纳米管,由多层石墨片层卷曲而成的则称为多壁碳纳米管,多壁碳纳米管层间以范德华力结合。碳纳米管因具有独特的电磁学、力学、光学和热性能学而被用于储氢材料、复合材料增强剂、催化剂载体、超导材料等领域。由于碳纳米管独特的纳米管状微观结构及其大比表面积、丰富孔隙结构、独特导电性能等特性,在水处理材料领域受到关注,自20世纪以来已被逐渐研究用作水处理吸附材料、催化材料以及吸附和催化材料载体。

我国在世界范围内最早开展碳纳米管对水中无机污染物吸附效能研究。碳纳米管本身对无机污染物具有吸附能力,2003年清华大学的Li等[4]就开展了碳纳米管对无机离子F-的吸附去除研究,他们的研究表明,定向碳纳米管对氟离子吸附容量达4.5mg/g以上。由于碳纳米管具有高比表面积和丰富孔结构,因此在碳纳米管表面引入吸附无机离子的活性集团,将会显著提高其对无机离子的吸附效能。

另外我国率先开展碳纳米管对水中有机污染物的吸附去除研究,2003年Peng等[5]首次研究了多壁碳纳米管对水中有机污染物1,2-二氯苯的研究,结果表明,碳纳米管对有机污染物1,2-二氯苯吸附效果良好,且吸附平衡时间远远短于活性炭,碳纳米管对1,2-二氯苯吸附在较宽的pH值范围(3-10)内吸附效能稳定。同时发现,在高pH值条件下,碳纳米管对非离子有机污染物吸附出现明显下降,他们认为,其机理是由于碳纳米管表面少量含氧官能团在高pH值条件下电离和水化,从而导致在碳纳米管表面形成水化层,引起吸附量下降。

总结起来,碳纳米管本身对无机污染物具有一定吸附效能,但吸附效果有限,

才用化学氧化的方法对碳纳米管进行氧化处理,在碳纳米管表面引入含氧官能团,能显著提高碳纳米管对无机物的吸附能力,其作用机理是无机污染物与碳纳米管表面含氧官能团发生表面络合作用,完成吸附过程,吸附后的碳纳米管可才用酸液洗脱的方法进行再生。碳纳米管对有机污染物具有较好吸附性能,且碳纳米管对有机污染物吸附受碳纳米管表面性质、水质条件和污染物分子性质等因素影响,一般表面富含含氧官能团碳纳米管对有机污染物吸附效能下降,而表面疏水性改性往往有利于碳纳米管对有机污染物的吸附去除。

碳纳米管是一类新型碳材料,具有大比表面积、丰富孔隙结构、良好电子传输性能、优异的机械强度和化学稳定性,使其在水处理吸附材料、催化材料等领域受到关注。目前国内在此方面的研究方兴未艾,可以预见,关于碳纳米管水处理材料的研究未来仍会成为众多研究工作者关注的焦点。

结语

纳米材料具有较大的化学活性和表面能,很容易与外来的原子结合,形成稳定的结构。作为吸附剂有以下有点:超强的吸附能力;宽的pH值适用范围;高的选择性。但有些纳米材料的稳定性较差,如无机纳米颗粒,在空气中吸附气体并与气体发生反应;一些纳米粒子为降低其表面能而有较大的团聚倾向;正因纳米材料的超强吸附性,给脱附、再生带来困难。纳米材料在环境保护中的应用越来越受到人们的重视,这点是毋庸置疑的。虽然此项技术还处于由实验室向工业化发展的阶段,纳米技术在微观理论上还有许多疑点,纳米吸附理论还有待完善,但可以预见,通过深入研究纳米材料的性质,人们将制备出高吸附选择性的纳米材料,高选择性、高稳定性、高催化活性、低成本、长寿命及无污染的“超级纳米吸附剂”必将在环境保护等领域有着广阔的应用前景,纳米吸附技术的推广必将是不可阻挡的趋势。

材料物理性能期末复习题

期末复习题 一、填空(20) 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈 介电常数一致,虚部表示了电介质中能量损耗的大小。 .当磁化强度M为负值时,固体表现为抗磁性。8.电子磁矩由电子的轨道磁矩和自旋磁矩组成。 9.无机非金属材料中的载流子主要是电子和离子。 10.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。11.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 12.对于中心穿透裂纹的大而薄的板,其几何形状因子。 13.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 14.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 15.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。16.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 17.当温度不太高时,固体材料中的热导形式主要是声子热导。 18.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 19.电滞回线的存在是判定晶体为铁电体的重要根据。 20.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 21. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 22.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 23.晶体发生塑性变形的方式主要有滑移和孪生。 24.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 25.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释(20) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。

《金属材料的物理特性》参考教案

金属材料的物理特性 一、教学设计思路 金属材料是与我们的生活密切联系的教学内容,本课题围绕学生熟悉的生活用品开展学习,通过学生分组实验、讨论、归纳总结得出金属的一些共同的物理性质和各自的特性,通过阅读课文了解常见金属与合金的主要成分性能和用途,让学生体会到化学就在我们的生活中,增强学生发现生活、感受生活的意识,从而实现“教学生活化”的教学理念。 教学过程围绕课程目标的三个维度(知识与技能、过程与方法、情感态度与价值观),注意培养学生从化学视角观察生活的习惯,教会学会将化学知识应用于生活实践的方法,使他们能对化学有关的生活问题做出合理的解释,感受学习化学的乐趣,体会学习化学的价值。 教学目标 知识技能:使学生了解金属的物理性质,了解常见合金的成分性能和用途。 能力培养:通过情景设置,使学生具有较强的问题意识,能够发现和提出有探究价值的化学问题。通过学生动手实验,培养学生的实验能力和分析问题的能力。 科学品质:通过实验激发学生学习化学的兴趣,培养学生实事求是的科学态度。培养学生将化学知识应用于生活实践的意识,能够对与化学有关的社会问题和生活问题做出合理的解释。 科学方法:指导学生用实验的方法认识事物的性质,培养学生科学的认知方法。 美育渗透:从生活中的金属制品,感受其丰富多彩的形状、颜色美。 重点 1、金属材料的物理性质 2、物质性质与用途的关系 3、合金的物理性质 难点 1、培养学生运用探究方法得出相关结论的能力 2、提高学生综合分析问题的能力

教学方法 采用实验探究法:按照问题—实验—观察—分析—结论的程序实行探究式讨论教学。 仪器、药品 铁片、铜片、铝片、干电池、小灯泡、导线、酒精灯、火柴、砂纸、黄铜、铜,与钛有关的资料和新型的合金的资料。

纳米材料物理-磁光性能

纳米材料的磁光性能 磁光效应 磁光效应就是指极化光与磁性物质交互作用后所产生的一种效应。它分为Faraday效应和Kerr效应。1846年,Faraday发现在玻璃样品上加上磁场时,透射光的极化面发生旋转,这就是Faraday效应。如图1(a)所示,红色表示加在物质上的磁场或磁化作用,黄线表示极化光,极化光通过被磁化的物质后产生Faraday效应。注意,所加磁场的方向与光束行进的方向平行。1877年Kerr在观察极化光束从磁性物质反射后,光束的极化以及强度有了改变,这就是磁光科尔效应(magneto-ptical Kerr effect, MOKE)。如图1(b)所示。 图 1 随着铁磁物质磁化强度矢量M的方向相对于材料的表面和人射光束的人射平面的取向,MOKE实际上分为3种效应:纵向MOKE、极性MOKE(Polar MOKE)和横向MOKE。可以用图形清晰地分别表示如下。 纵向MOKE是由于磁化强度矢量处于材料的表面内并平行于入射平面,如图2(a)所示。通常用s极化和P极化分别表示垂直和平行于入射平面光的极化。纵向MOKE简单,其人射光束或者只在s平面或者只在P平面极化,因此其反射光就转变为椭圆极化光。椭圆的主轴常常围绕着主平面有些微的旋转,称之为Kerr旋转。这种椭圆率称为Kerr椭圆率。 透射中也存在着同样的效应,当然通常这只能在薄膜中才看得到,因为绝大多数磁物质在磁光活跃的区域是不透明的。 这些效应的符号和数量比例于M和它的方向。在垂直人射方向没有观察到

什么效应。 图(b)所示的为横向MOKE 梗概图,此时磁化强度垂直于外加磁场和人射平面。与纵向MOKE 不同,第一,它只是在P 平面内极化;第二,反射光仍然保持线性极化,只有反射振幅的变化,即M 的变化只是从+M 变为-M ,反射率从R+?R 变为R-?R 。在垂直人射上没有什么效应。 图(c)所示的是极化MOKE 梗概图,此时磁化矢量垂直于样品表面。像纵向MOKE 一样,它只是在p 平面或s 平面内发生。这种效应中的人射光处于这些线性极化态的一种,反射时转化为椭圆极化光。在垂直人射方向可观察到效应。 金属纳米粒子和纳米粒子薄膜的磁光效应 Menendez 等制备了嵌人于非晶态Al 2O 3层中的Fe 纳米粒子A ,B 和C 三种样品,它们的粒径分别为2.4nm ,4nm 和8nm ,含量分别为10%,30%和40% , Al 2O 3层的厚度分别17nm ,18nm 和18.5nm ,测定了它们的MOKE 。图3是这三个样品的Kerr 椭圆率和旋转角与能量关系的测定结果。最明显的特点是在所有的样品中,不论是椭圆率还是旋转角谱,由于干涉的作用,都在4--4.5 e V 附近出现峰值。作者应用不同的有效媒介近似的广义方法描述了实验结果,从理论与实验符合程度发现,在纳米平均粒径大于4 nm 时,两则符合得较好,而在粒径为约2nm 时,两者的偏差大。这就说明,在粒径小于4nm 时,纳米粒子的磁光性能,因为其电子结构与体材的不同。 图 2

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

纳米材料物理

纳米材料的基本效应 纳米材料的特殊性能是由于纳米材料的特殊结构,使之产生四大效应,即尺寸效应(量子尺寸效应、小尺寸效应)/表(界)面效应/量子效应(宏观量子隧道效应、库仑堵塞与量子隧穿)/介电限域效应,从而具有传统材料所不具备的物理、化学性能。 宏观尺度的金属材料在高温条件下,其能带可以看作是连续的。 (久保理论) 对于纳米金属颗粒来说,低温下能带的离散性会凸现出来。相邻电子能级之间的间隔d将随颗粒体积V的减小而增加。量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。 能带理论表明,金属费米能级附近电子能级一般是连续的,这一点只有在高温或宏观尺寸情况下才成立。对于只有有限个导电电子的超微粒子来说,低温下能级是离散的,对于宏观物体包含无限个原子(即导电电子数N→∞),由久保公式可得能级间距d→0,即对大粒子或宏观物体能级间距几乎为零;而对纳米微粒,所包含原子数有限,N值很小,这就导致d有一定的值,即能级间距发生分裂。当能级间距大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须要考虑量子尺寸效应,这会导致纳米微粒磁、光、声、热、电以及超导电性与宏观特性有着显著的不同。

Ag的电子数密度n = 6 × 1022/cm3,由公式 当T=1K时,能级最小间距d/kB=1,代入上式,求得d=20nm。根据久保理论,当d>kB时才会产生能级分裂,出现量子尺寸效应.由此得出,当粒径d<20nm,Ag纳米微粒变为 非金属绝缘体,如果温度高于1K,则要求d << 20nm才有可能变为绝缘体。这里应当指出,实际情况下金属变为绝缘体除了满足d>kB外,还需满足电子寿命>h/d的条件。实验表明,纳米Ag的确具有很高的电阻,类似于绝缘体,这就是说,纳米Ag满足上述两个条件。 Shift to higher energy in smaller size Discrete structure of spectra Increased absorption intensity

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

纳米材料论文

纳米材料的特性与应用 摘要:纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚爱好。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学特性,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工、催化、涂料等领域也得到了一定的应用,并显示出它的独特魅力。 关键词:纳米材料特性应用 1. 纳米发展简史 1959年,着名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。 1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.什么是纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。 一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 3. 纳米材料的特性 广义地说,纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。 3.1表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。如此高的比表面积会出现一些极为奇特的现象,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。 3.2小尺寸效应

金属的物理性能测试

金属的物理性能测试 金属材料的性能一般可分为使用性能和工艺性能两大类。使用性能是指材料在工作条件下所必须具备的性能,它包括物理性能、化学性能和力学性能。物理性能是指金属材料在各种物理条件任用下所表现出的性能。包括:密度、熔点、导热性、导电性、热膨胀性和磁性等。化学性能是指金属在室温或高温条件下抵抗外界介质化学侵蚀的能力。包括:耐蚀性和抗氧化性。力学性能是金属材料最主要的使用性能,所谓金属力学性能是指金属在力学作用下所显示与弹性和非弹性反应相关或涉及应力—应变关系的性能。它包括:强度、塑性、硬度、韧性及疲劳强度等。 1密度:密度就是某种物质单位体积的质量。 2热性能:熔点:金属材料固态转变为液态时的熔化温度。 比热容:单位质量的某种物质,在温度升高1℃时吸收的热量或温度降低1℃时所放出的热量。 热导率:在单位时间内,当沿着热流方向的单位长度上温度降低1℃时,单位面积容许导过的热量。 热胀系数:金属温度每升高1℃所增加的长度与原来长度的比值。 3电性能: 电阻率:是表示物体导电性能的一个参数。它等于1m长,横截面积为1mm2的导线两端间的电阻。也可用一个单位立方体的两平行端面间的电阻表示。 电阻温度系数:温度每升降1℃,材料电阻的改变量与原电阻率之比,称为电阻温度系数。 电导率:电阻率的倒数叫电导率。在数值上它等于导体维持单位电位梯度时,流过单位面积的电流。

4磁性能: 磁导率:是衡量磁性材料磁化难易程度的性能指标,它是磁性材料中的磁感应 强度(B)和磁场强度(H)的比值。磁性材料通常分为:软磁材料(μ值甚高,可达数万)和硬磁材料(μ值在1左右)两大类。 磁感应强度:在磁介质中的磁化过程,可以看作在原先的磁场强度(H)上再 加上一个由磁化强度(J)所决定的,数量等于4πJ的新磁场,因而在磁介质中的磁场B=H+4πJ的新磁场,叫做磁感应强度。 磁场强度:导体中通过电流,其周围就产生磁场。磁场对原磁矩或电流产生作 用力的大小为磁场强度的表征。 矫顽力:样品磁化到饱和后,由于有磁滞现象,欲使磁感应强度减为零,须施 加一定的负磁场Hc,Hc就称为矫顽力。 铁损:铁磁材料在动态磁化条件下,由于磁滞和涡流效应所消耗的能量。 其它如力学性能,工艺性能,使用性能等。

举例说明纳米材料的结构与其性质的关系

代鹏程无机化学2009级硕博连读学号:200911461 题目:举例说明纳米材料的结构与其性质的关系 答: 目录 1、纳米材料定义 2、纳米材料的结构 3、纳米材料的性能 4、以量子点为例说明纳米材料结构与其性质的关系 5、以纳米线为例说明纳米材料结构与其性质的关系 1、纳米材料定义 纳米材料是纳米级结构材料的简称。狭指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸最多不超过100纳米,在通常情况下不超过10纳米;从广义上说,纳米材料,是指微观结构至少在一维方向上受纳米尺度(1~100nm)限制的各种固体超细材料,它包括零维的原子团簇(几十个原子的聚集体)和纳米微粒;一维纳米纤维;二维纳米微粒膜(涂层)及三维纳米材料。 2、纳米材料的结构 材料学研究认为:材料的结构决定材料的性能,同时材料的性能反映材料的结构。纳米材料也同样如此。对于纳米材料,其特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显的差异。 纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用。在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。 纳米材料由于非常小,使纳米材料的几何特点之一是比表面积(单位质量材料的表面积)很大,一般在102~104m2/g。它的另一个特点是组成纳米材料的单元表面上的原子个数与单元中所有原子个数相差不大。例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数53=125个,而表面上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。这些特点完全不同于普通的材料。例如,普通材料的比表面积在10m2/g以下,其表面原子的个数与组成单元的整体原子个数相比较完全可以忽略不计。 由于以上纳米材料的两上显著不同于普通材料的几何特点,从物理学的观点来看,就使得纳米材料有两个不同于普通材料的物理效应表现出来,这是一个由量变到质变的过程。一个效应我们称之为量子尺寸效应,另一个被称之为表面效应。量子尺寸效应是由于材料的维度不断缩小时,描述它的物理规律完全不同

材料物理性能期末复习重点-田莳

1.微观粒子的波粒二象性 在量子力学里,微观粒子在不同条件下分别表现出波动或粒子的性质。这种量子行为称为波粒二象性。 2.波函数及其物理意义 微观粒子具有波动性,是一种具有统计规律的几率波,它决定电子在空间某处出现的几率,在t 时刻,几率波应是空间位置(x,y,z,t)的函数。此函数 称波函数。其模的平方代表粒子在该处出现的概率。 表示t 时刻、 (x 、y 、z )处、单位体积内发现粒子的几率。 3.自由电子的能级密度 能级密度即状态密度。 dN 为E 到E+dE 范围内总的状态数。代表单位能量范围内所能容纳的电子数。 4.费米能级 在0K 时,能量小于或等于费米能的能级全部被电子占满,能量大于费米能级的全部为空。故费米能是0K 时金属基态系统电子所占有的能级最高的能量。 5.晶体能带理论 假定固体中原子核不动,并设想每个电子是在固定的原子核的势场及其他电子的平均势场中运动,称单电子近似。用单电子近似法处理晶体中电子能谱的理论,称能带理论。 6.导体,绝缘体,半导体的能带结构 根据能带理论,晶体中并非所有电子,也并非所有的价电子都参与导电,只有导带中的电子或价带顶部的空穴才能参与导电。从下图可以看出,导体中导带和价带之间没有禁区,电子进入导带不需要能量,因而导电电子的浓度很 大。在绝缘体中价带和导期隔着一个宽的禁带E g ,电子由价带到导带需要外界供给能量,使电子激发,实现电子由价带到导带的跃迁,因而通常导带中导电电子浓度很小。半导体和绝缘体有相类似的能带结构,只是半导体的禁带较窄(E g 小) ,电子跃迁比较容易 1.电导率 是表示物质传输电流能力强弱的一种测量值。当施加电压于导体的两 端 时,其电荷载子会呈现朝某方向流动的行为,因而产生电流。电导率 是以欧姆定律定义为电流密度 和电场强度 的比率: κ=1/ρ 2.金属—电阻率与温度的关系 金属材料随温度升高,离子热振动的振幅增大,电子就愈易受到散射,当电子波通过一个理想品体点阵时(0K),它将不受散射;只有在晶体点阵完整性遭到破坏的地方,电子被才受到散射(不相干散射),这就是金属产生电阻的根本原因。由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原于、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。这样,电子波在这些地方发生散射而产生电阻,降低导电性。 金属电阻率在不同温度范围与温度变化关系不同。一般认为纯金属在整个温度区间产生电阻机制是电子-声子(离子)散射。在极低温度下,电子-电子散射构成了电阻产生的主要机制。金属融化,金属原子规则阵列被破坏,从而增强了对电子的散射,电阻增加。 3.离子电导理论 离子电导是带有电荷的离子载流子在电场作用下的定向移动。一类是晶体点阵的基本离子,因热振动而离开晶格,形成热缺陷,离子或空位在电场作用下成为导电载流子,参加导电,即本征导电。另一类参加导电的载流子主要是杂质。 离子尺寸,质量都远大于电子,其运动方式是从一个平衡位置跳跃到另一个平衡位置。离子导电是离子在电场作用下的扩散。其扩散路径畅通,离子扩散系数就高,故导电率高。 4.快离子导体(最佳离子导体,超离子导体) 具有离子导电的固体物质称固体电解质。有些

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

金属材料的物理特性教案及练习题

教学案例 学校名称:乌丹五中 课程名称:化学 内容主题:6、1金属材料的物理特性教材版本:科学粤教版 教师姓名: 456 教龄: 26年

《6、1金属材料的物理特性》问题导读——评价单 班级:姓名:学号:设计者:审核者: 1、通读教材,勾划知识点 2、精读课文,完成填空。 金属共有并区别于非金属的物理性质是、、、。金属还具有各自的特性:最难熔的金属是,最易熔的金属是,最重的金属是,最轻的金属是,最硬的金属是。 3、金属之最: 最早被人类广泛利用的金属——铜 目前世界年产量最高的金属——铁 地壳含量最高的金属元素——铝 人体中含量最高的金属元素——钙 导电、导热性最好的金属——银 延性最好的金属——铂 展性最好的金属——金 4、什么是合金 5、合金有什么特性 我的问题是: 《6、1金属材料的物理特性》问题训练——评价单:

一:填空题 1、金属共有并区别于非金属的物理性质是、、 、。 2、最难熔的金属是,最易熔的金属是,最重的金属是,最轻的金属是,最硬的金属是。 二、选择题 1、下列物质属于金属单质的是() A、水 B、木炭 C、氮气 D、铜 2、钨用来制造灯丝,因为钨具有导电性且() A、密度大 B、熔点高 C、硬度大 D、延展性好 3、铁是一种应用广泛的金属,下列有关铁的说法中,正确的是() A、铁丝在氧气中燃烧生成氧化铁 B、钢是一种纯净物 C、铁是地壳里含量最多的金属元素 D、用铁锅炒菜可使食物中增加微量的铁元素 4、钛和钛合金被认为是21世纪的重要材料,它们具有很多优良的性能,如 熔点高、密度小、可塑性好、易于加工,钛合金与人体有很好的“相容性”。 根据它们的主要性能,下列用途不切合实际的是() A、用来作保险丝 B、用来制造航天飞机 C 、用来制造人造骨 D、用于制造船舶 三、简答题 1、为什么菜刀、锤子等通常用铁制而不用铜制或铅制 2、银的导电性比铜好,为什么导线一般用铜制而不用银制

纳米材料的物理性能.

《材料科学前沿》 学号:S1******* 流水号:S2******* 姓名:张东杰 指导老师:郝耀武

纳米晶材料的物理性能 摘要:纳米材料由于其独特的微观结构和奇异的物理化学性质,目前已成为材料领域研究的热点之一。纳米晶材料具有优异的物理特性,这是由所组成的微粒的尺寸、相组成和界面这三个方面的相互作用来决定的。本文简要介绍了纳米晶材料的定义,综述了纳米晶材料的各种物理特性。 关键词:纳米材料,纳米晶材料,物理性能 1、引言 纳米材料是指三维空间尺度至少有一维处于纳米量级(1~100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。由于其组成单元的尺度小,界面占用相当大的成分。因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。纳米体系使人们认识自然又进入一个新的层次,它是联系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域。实际上由纳米粒子组成的材料向宏观体系演变过程中存在结构上有序度的变化和在状态上的非平衡性质,使体系的性质产生很大的差别。对纳米材料的研究将使人们从微观到宏观的过渡有更深入的认识。 纳米材料按其结构可分为四类:晶粒尺寸至少在一个方向上在几个纳米范围内的称为三维纳米材料;具有层状结构的称为二维纳米材料;具有纤维结构的称为一维纳米材料;具有原子簇和原子束结构的称为零维纳米材料。 纳米晶材料(纳米结构材料)的概念最早是由H.Gleiter出的,这类固体是由(至少在一个方向上)尺寸为几个纳米的结构单元(主要是晶体)所构成。纳米晶材料是一种非平衡态的结构,其中存在大量的晶体缺陷。当然,纳米材料也可由非晶物质组成,例如:半晶态高分子聚合物是由厚度为纳米级的晶态层和非晶态层相间地构成的故是二维层状纳米结构材料。又如纳米玻璃的组成相均为非晶态,它是由纳米尺度的玻璃珠和界面层所组成。我们这里主要讨论纳米晶材料的物理性能。

材料物理性能期末复习考点教学内容

材料物理性能期末复 习考点

一名词解释 1.声频支振动:震动着的质点中所包含的频率甚低的格波,质点彼此之间的相位差不大,格波类似于弹性体中的应变波,称声频支振动。 2.光频支振动:格波中频率甚高的振动波,质点间的相位差很大,临近质点的运动几乎相反,频率往往在红外光区,称光频支振动。 3.格波:材料中一个质点的振动会影响到其临近质点的振动,相邻质点间的振,动会形成一定的相位差,使得晶格振动以波的形式在整个材料内传播的波。 4.热容:材料在温度升高和降低时要时吸收或放出热量,在没有相变和化学反应的条件下,材料温度升高1K时所吸收的热量。 5.一级相变:相变在某一温度点上完成,除体积变化外,还同时吸收和放出潜热的相变。 6.二级相变:在一定温度区间内逐步完成的,热焓无突变,仅是在靠近相变点的狭窄区域内变化加剧,其热熔在转变温度附近也发生剧烈变化,但为有限值的相变。 7.热膨胀:物体的体积或长度随温度升高而增大的现象。 8.热膨胀分析:利用试样体积变化研究材料内部组织的变化规律的方法。 9.热传导:当材料相邻部分间存在温度差时,热量将从温度高的区域自动流向温度低的区域的现象。 10.热稳定性(抗热震性):材料称受温度的急剧变化而不致破坏的能力。 11.热应力:由于材料的热胀冷缩而引起的内应力。 12.材料的导电性:在电场作用下,材料中的带电粒子发生定向移动从而产生宏观电流 13.载流子:材料中参与传导电流的带电粒子称为载流子 14.精密电阻合金:需要电阻率温度系数TRC或者α数值很小的合金,工程上称其为精密电阻合金 15.本征半导体:半导体材料中所有价电子都参与成键,并且所有键都处于饱和(原子外电子层填满)状态,这类半导体称为本征半导体。 16. n型半导体:掺杂半导体中或者所有结合键处被价电子填满后仍有部分富余的价电子的这类半导体。 17. p型半导体:在所有价电子都成键后仍有些结合键上缺少价电子,而出现一些空穴的一类半导体。 18.光致电导:半导体材料材料受到适当波长的电磁波辐射时,导电性会大幅升高的现象。

纳米材料的热学性质

纳米材料与团簇物理结课论文 纳米材料的热学性质 纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级( 1 n m~1 0 0 n m)的固体材料。由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达l5~5 0%。纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。 纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。 纳米材料的热学性质概述 一、纳米材料的熔点及内能 材料热性能与材料中分子、原子运动行为有着不可分割的联系。当热载子(电子、声子及光子)的各种特征尺寸与材料的特征尺寸(晶粒尺寸、颗粒尺寸或薄膜厚度)相当时,反应物质热性能的物性参数如熔化温度、热容等会体现出鲜明的尺寸依赖性。特别是,低温下热载子的平均自由程将变长,使材料热学性质的尺寸效应更为明显。

图1 几种纳米金属粒子的熔点降低现象 上图(图1)为几种纳米金属粒子的熔点降低现象。随粒子尺寸的减小,熔点降低。当金属粒子尺寸小于10nm后熔点急剧下降,其中3nm左右的金微粒子的熔点只有其块体材料熔点的一半,用高倍率电子显微镜观察尺寸2nm的纳米金粒子结构可以发现,纳米金颗粒形态可以在单晶、多晶与孪晶间连续转变。这种行为与传统材料在固定熔点熔化的行为完全不同,伴随着纳米材料的熔点降低,单位质量粒子熔化时的潜热吸收(焓变)也随尺寸的减小而减少。人们在具有自由表面的共价半导体的纳米晶体、惰性气体和分子晶体也发现了熔化的尺寸效应现象。 根据固体物理的基本原理,可以说明材料热学性质出现尺寸效应的根本原因,一般情况下,晶体材料的内能U可依据其晶格振动的波特性在德拜假设下估计出,即: (1) 式中,Θ为德拜温度;k为波矢;T为热力学温度;h为普朗克常数;k B为玻尔兹曼常数。求和是对于所有可能的k值进行的。k的允许值由其分量表示为: (2) 式中,L为晶格长度;N为状态度;△k x为特定方向上连续波矢的差。在其他方向的k分量也存在类似关系。 在块体材料内,式(1)通常简化为: (3) 式中,u bulk是块体材料单位容积的U值;n为原子数密度;x D为与德拜温度对应的积分限。上述关于u的表述只给出了来自块体材料声子模式的贡献,而表面声子的贡献则被忽略了。在块体材料中,表面声子的贡献确实可以忽略;但当材料至少一维尺寸大幅减少至纳米量级时,这

纳米材料的物理化学性能

第四章纳米材料的物理化学性能 纳米微粒的物理性能 第一节热学性能 ※1.1. 纳米颗粒的熔点下降 由于颗粒小,纳米颗粒的表面能高、比表面原子多,这些表面原子近邻配位不全,活性大以及体积远小于大块材料的纳米粒子熔化时所需要增加的内能小得多,这就使纳米微粒熔点急剧下降。 金的熔点:1064o C;2nm的金粒子的熔点为327o C。 银的熔点:960.5o C;银纳米粒子在低于100o C开始熔化。 铅的熔点:327.4o C;20nm球形铅粒子的熔点降低至39o C。 铜的熔点:1053o C;平均粒径为40nm的铜粒子,750o C。 ※1.2. 开始烧结温度下降 所谓烧结温度是指把粉末先用高压压制成形,然后在低于熔点的温度下使这些粉末结合成块,密度接近常规材料的最低加热温度。 纳米颗粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,空位团的湮灭,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低。 ※1.3. NPs 晶化温度降低 非晶纳米颗粒的晶化温度低于常规粉末,且纳米颗粒开始长大温度随粒径的减小而降低。 ※熔点降低、烧结温度降低、晶化温度降低等热学性质的显著变化来源于纳米材料的表(界)面效应。 第二节电学性能 2.1 纳米金属与合金的电阻特性 1. 与常规材料相比,Pd纳米相固体的比电阻增大; 2. 比电阻随粒径的减小而逐渐增加; 3. 比电阻随温度的升高而上升 4. 随粒子尺寸的减小,电阻温度系数逐渐下降。电阻的温度变化规律与常规粗晶基本相似,差别在于温度系数强烈依赖于晶粒尺寸。 随着尺寸的不断减小,温度依赖关系发生根本性变化。当粒径为11nm时,电阻随温度的升高而下降。 5. 当颗粒小于某一临界尺寸时(电子平均自由程),电阻的温度系数可能会由正变负,即随着温度的升高,电阻反而下降(与半导体性质类似). 电子在晶体中传播由于散射使其运动受阻,而产生电阻。 ※纳米材料的电阻来源可以分为两部分: 颗粒组元(晶内):当晶粒大于电子平均自由程时主要来自晶内散射 界面组元(晶界):晶粒尺寸与电子平均自由程相当时,主要来自界面电子散射?纳米材料中大量的晶界存在,几乎使大量电子运动局限在小颗粒范围。 ?晶界原子排列越混乱,晶界厚度越大,对电子散射能力就越强。 ?界面的这种高能垒是使电阻升高的主要原因。 总之:纳米材料体系的大量界面使得界面散射对电阻的贡献非常大,当纳米材料尺寸非常小时,这种贡献对总电阻占支配地位。当粒径低于临界尺寸时,量子尺寸效应造成的能级离散性不可忽视,最后温升造成的热激发电子对电导的贡献增大,即温度系数变负。 ※金属纳米颗粒材料的电阻增大的现象主要归因于小尺寸效应。 第三节磁学性能 许多生物体内就有天然的纳米磁性粒子,如向磁性细菌,蜜蜂,螃蟹,海龟等。

材料物理性能期中2010试卷参考答案

材料物理性能期中试卷 姓名成绩 本试卷共四大题(33小题) 一、概念题(15分) 1、比热容 答:(在保持体积或压力恒定的条件下,测得的物体的热容值,)即单位质量物体,温度升高1度,需要吸收的热量。 2、德拜特征温度 答:德拜特征温度是德拜热容理论中的一个特征物理量,其大小与固体的原子结合能(力)有关。一般来说,当温度高于德拜特征温度后,固体的热容趋于一恒定值。 3、第一热电效应 答:第一热电效应亦称塞贝克效应,是指将两根不同金属的导线连接在一起形成闭合回路,如果两节点处存在温差,则将在回路中产生电流的现象。 4、电解质的本征电导 答:离子型电解质,由于热力学稳定缺陷,如间隙离子或离子空位的存在,当在其两端加上电压后,离子缺陷将在电场和热运动的作用下作定向运动,形成电导。由于形成的热力学稳定的缺陷的类型与数量只与物质本身和温度有关,与外界条件无关,故称之为电解质的本证电导。 4、K状态 答:K状态即不均匀固溶体,在固溶体中由于原子偏聚形成成分的不均匀分布,偏聚区尺寸约为纳米数量级,与电子波的波长在同一数量级,造成电阻显著增加。

K 状态表现为:1)退火态的电阻高于淬火态;2)冷加工后的电阻低于冷加工前的电阻;3)冷加工后退火导致电阻提高。 二、 判断题(请在序号后的括号内打∨或×)(12分) 1、( ×)对于金属材料,其价电子数越高,则参与导电的电子数越多,电阻率越低; 2、( ×)对于陶瓷材料导热性能越好,则其导电性越好,; 3、( ∨)厚度大于10微米的金属薄膜均不能透光; 4、( ∨)杂质的进入将破坏电解质的绝缘性能,甚至可能使其变为导体; 5、( ∨)相同厚度下能透过可见光光的材料不一定能够透过紫外线,而能透过紫外线的材料则一定透得过可见光; 6、( ∨)世界上没有绝对绝缘的物质。 三、 公式题(写出公式,并注明每个物理量的意义与单位)(15分) 1、线膨胀系数表达式 答:。 或温度,。 或原始长度,。,或膨胀系数,或C K T mm m L C K 11o o 1----?=???= -αααL dT dL L T L 2、马西森定律 答: 。 电阻率,。系数,;杂质浓度,;杂质引起的电阻率,‘;纯元素的电阻率,m m %C m -m '')(00?Ω-?Ω---?Ω?Ω-?=+=ρξρρξρρρρC T 3、固体电介质导电率表达式 ln σ=lnA-B/T 物质。 也适用于液体和玻璃态晶体中离子电导的公式成直线关系。与表明:电导率对数通式为:T kT U A e A kT U -=?=-1ln ln ln ;σσσ

相关文档
相关文档 最新文档