文档视界 最新最全的文档下载
当前位置:文档视界 › 高中物理竞赛力学教程第二讲运动学

高中物理竞赛力学教程第二讲运动学

高中物理竞赛力学教程第二讲运动学
高中物理竞赛力学教程第二讲运动学

第二讲运动学

§2.1质点运动学的基本概念

2.1.1、参照物和参照系

要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,这个被选的物体叫做参照物。为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标系。

通常选用直角坐标系O–xyz,有时也采用极坐标系。平面直角坐标系一般有三种,一种是两轴沿水平竖直方向,另一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向(我们常把这种坐标称为自然坐标)。

2.1.2、位矢位移和路程

在直角坐标系中,质点的位置可用三个坐标x,y,z表示,当质点运动时,它的坐标是时间的函数

x=X(t)y=Y(t)z=Z(t)

这就是质点的运动方程。

质点的位置也可用从坐标原点O指向质点P(x、y、z)的有向线段来表示。如图2-1-1所示, 也是描述质点在空间中位置的物理量。的长度为质点到原点之间的距离,的方向由余弦、、决定,它们之间满足

当质点运动时,其位矢的大小和方向也随时间而变,可表示为=(t)。在直角坐标系中,设

分别为、、沿方向、、和单位矢量,则可表示为

位矢与坐标原点的选择有关。

研究质点的运动,不仅要知道它的位置,还必须知道它的位置的变化情况,如果质点从空间一点运动到另一点,相应的位矢由1变到2,其改变量为

称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段。它描写在一定时间内质点位置变动的大小和方向。它与坐标原点的选择无关。

2.1.3、速度

平均速度质点在一段时间内通过的位移和所用的时间之比叫做这段时间内的平均速度

平均速度是矢量,其方向为与的方向相同。平均速度的大小,与所取的时间间隔有关,因此须指明是哪一段时间(或哪一段位移)的平均速度。

瞬时速度当为无限小量,即趋于零时,成为t时刻的瞬时速度,简称速度

瞬时速度是矢量,其方向在轨迹的切线方向。

瞬时速度的大小称为速率。速率是标量。

2.1.4、加速度

平均加速度质点在时间内,速度变化量为,则与的比值为这段时间内的平均加速度

平均加速度是矢量,其方向为的方向。

瞬时加速度当为无限小量,即趋于零时,与的比值称为此时刻的瞬时加速度,简称加速度

加速度是矢量,其方向就是当趋于零时,速度增量的极限方向。

2.1.5、匀变速直线运动

加速度不随时间t变化的直线运动称为匀变速直线运动。若与同方向,则为匀加速直线运动;若与反方向,则为匀减速直线运动。

匀变速直线运动的规律为:

匀变速直线运动的规律也可以用图像描述。其位移—时间图像(s~t图)和速度—时间图像(v~t图)分别如图2-1-3和图2-1-4所示。

从(s~t)图像可得出:

(1)任意一段时间内的位移。

(2)平均速度,在()的时间内的平均速度的大小,是通过图线上点1、点2的割线的斜率。

(3)瞬时速度,图线上某点的切线的斜率值,等于该时刻的速度值。从s~t图像可得出:

从(v~t)图像可得出:

(1)任意时刻的速度。

(2)任意一段时间内的位移,时间内的位移等于v~t图线,时刻与横轴所围的“面积”。这一结论对非匀变速直线运动同样成立。

(3)加速度,v~t图线的斜率等于加速度的值。若为非匀变速直线运动,则v~t图线任一点切线的斜率即为该时刻的瞬时加速度的大小。

§2.2 运动的合成与分解相对运动

2.2.1、运动的合成与分解

(1)矢量的合成与分解

矢量的合成与分解的基本方法是平行四边形法则,即两分量构成平行四边形的两邻边,合矢量为该平行四边形与两分量共点的对角线。由平行四边形法则又衍生出三角形法则,多个矢量的合成又可推导出多边形法则。

同一直线上的矢量的合成与分解可以简化为代数运算,由此,不在同一直线上的矢量的合成与分解一般通过正交分解法进行运算,即把各个矢量向互相垂直的坐标轴投影,先在各轴上进行代数运算之后,再进行矢量运算。

(2)运动的合成和分解

运动的合成与分解是矢量的合成与分解的一种。运动的合成与分解一般包括位移、速度、加速度等的合成与分解。运动的合成与分解的特点主要有:①运动的合成与分解总是与力的作用相对应的;②各个分运动有互不相干的性质,即各个方向上的运动与其他方向的运动存在与否无关,这与力的独立作用原理是对应的;③位移等物理量是在一段时间内才可完成的,故他们的合成与分解要讲究等时性,即各个运动要取相同时间内的位移;④瞬时速度等物理量是指某一时刻的,故它们的合成分解要讲究瞬时性,即必须取同一时刻的速度。

两直线运动的合成不一定就是直线运动,这一点同学们可以证明。如:①两匀速直线运动的合成仍为匀速直线运动;②两初速为零(同一时刻)的匀加速直线运动的合成仍为初速为零的匀加速直线运动;③在同一直线上的一个匀速运动和一个初速为零的匀变速运动的合运动是一个初速不为零的匀变速直线运动,如:竖上抛与竖下抛运动;④不在同一直线上的一个匀速运动与一个初速为零的匀加速直线运动的合成是一个曲线运动,如:斜抛运动。

2.2.2、相对运动

任何物体的运动都是相对于一定的参照系而言的,相对于不同的参照系,同一物体的运动往往具有不同的特征、不同的运动学量。

通常将相对观察者静止的参照系称为静止参照系;将相对观察者运动的参照系称为运动参照系。物体相对静止参照系的运动称为绝对运动,相应的速度和加速度分别称为绝对速度和绝对加速度;物体相对运动参照系的运动称为相对运动,相应的速度和加速度分别称为相对速度和相对加速度;而运动参照系相对静止参照系的运动称为牵连运动,相应的速度和加速度分别称为牵连速度和牵连加速度。

绝对运动、相对运动、牵连运动的速度关系是:绝对速度等于相对速度和牵连速度的矢量和。

这一结论对运动参照系是相对于静止参照系作平动还是转动都成立。

当运动参照系相对静止参照系作平动时,加速度也存在同样的关系:

当运动参照系相对静止参照系作转动时,这一关系不成立。

如果有一辆平板火车正在行驶,速度为(脚标“火地”表示火车相对地面,下同)。有一个大胆的驾驶员驾驶着一辆小汽车在火车上行驶,相对火车的速度为,那么很明显,汽车相对地面的速度为:

(注意:和不一定在一条直线上)如果汽车中有一只小狗,以相对汽车为的速度在奔跑,那么小狗相对地面的速度就是

从以上二式中可看到,上列相对运动的式子要遵守以下几条原则:

①合速度的前脚标与第一个分速度的前脚标相同。合速度的后脚标和最后一个分速度的后脚标相同。

②前面一个分速度的后脚标和相邻的后面一个分速度的前脚标相同。

③所有分速度都用矢量合成法相加。

④速度的前后脚标对调,改变符号。

以上求相对速度的式子也同样适用于求相对位移和相对加速度。

相对运动有着非常广泛的应用,许多问题通过它的运用可大为简化,以下举两个例子。

例如图2-2-1所示,在同一铅垂面上向图示的两个方向以的初速度抛出A、B两个质点,问1s后A、B相距多远?这道题可以取一个初速度为零,当A、B抛出时开始以加速度g向下运动的参考系。在这个参考系中,A、B二个质点都做匀速直线运动,而且方向互相垂直,它们之间的距离

m

在空间某一点O,向三维空间的各个方向以相同的速度射出很多个小球,球ts之后这些小球中离得最远的二个小球之间的距离是多少(假设ts之内所有小球都未与其它物体碰撞)?这道题初看是一个比较复杂的问题,要考虑向各个方向射出的小球的情况。但如果我们取一个在小球射出的同时开始自O点自由下落的参考系,所有小球就都始终在以O点为球心的球面上,球的半径是,那么离得最远的两个小球之间的距离自然就是球的直径2。

§2.3抛体运动

2.3.1、曲线运动的基本知识

轨迹为曲线的运动叫曲线运动。它一定是一个变速运动。图2-3-1表示一质点作曲线运动,它经过P点时,在P点两旁的轨迹上取两点,过三点可作一圆,当这两点无限趋近于P点时,则圆亦趋近于一个定圆,我们把这个圆叫P点的曲率圆,曲率圆的半径叫P点的曲率半径,曲率圆的圆心叫P点的曲率中心,曲率半径的倒数叫P点的曲率。如图2-3-1,亦可做出Q点的曲率圆。曲率半径大,曲率小,表示曲线弯曲较缓,曲率半径小,曲率大,表示曲线弯曲厉害。直线可认为是曲率半径为无穷大的曲线。

质点做曲线运动的瞬时速度的方向总是沿该点的切线方向。如图2-3-2所示,质点在△t 时间内沿曲线由A点运动到B点,速度由V变化到V B,则其速度增量为两者之矢量差,=V B―V,这个速度增量又可分解成两个分量:在V B上取一段AC等于V,则△V分解成△V和△V,其中△V表示质点由A运动到B的速度方向上的增量,△V表示速度大小上的增量。

法向加速度a表示质点作曲线运动时速度方向改变的快慢,其大小为在A点的曲率圆的向心加速度:

其方向指向A点的曲率中心。切向加速度表示质点作曲线运动时速度大小改变的快慢,方向亦沿切线方向,其大小为

总加速度a方法向加速度和切向加速度的矢量和。

2.3.2、抛物运动是曲线运动的一个重要特例

物体以一定的初速度抛出后,若忽略空气阻力,且物体的运动在地球表面附近,它的运动高度远远小于地球半径,则在运动过程中,其加速度恒为竖直向下的重力加速度。因此,抛体运动是一种加速度恒定的曲线运动。

根据运动的叠加原理,抛体运动可看成是由两个直线运动叠加而成。常用的处理方法是:将抛体运动分解为水平方向的匀速直线运动和竖直方向的匀变速直线运动。

如图2-3-3。取抛物轨迹所在平面为平面,抛出点为坐标原点,水平方向为x轴,竖直方向为y轴。则抛体运动的规律为:

其轨迹方程为

这是开口向下的抛物线方程。

在抛出点和落地点在同一水平面上的情况下,飞行时间T,射程R和射高H分别为

抛体运动具有对称性,上升时间和下降时间(抛出点与落地点在同一水平面上)相等(一般地,从某一高度上升到最高点和从最高点下降到同一高度的时间相等);上升和下降时经过同一高度时速度大小相等,速度方向与水平方向的夹角大小相等。

下面介绍一种特殊的抛体运动——平抛运动:

质点只在重力作用下,且具有水平方向的初速度的运动叫平抛运动。它可以看成水平方向上的匀速运动(速度为v0)与竖直方向上的自由落体运动的合成。

①速度:采用水平竖直方向的直角坐标可得:,其合速度的大小为,其合速度的方向为(设水平方向夹角为θ),可见,当时,,即表示速度趋近于自由落体的速度。

②位移:仍按上述坐标就有,。仿上面讨论也可得到同样结论,当时间很长时,平抛运动趋近于自由落体运动。

③加速度:采用水平和竖直方向直角坐标系有,,用自然坐标进行分解,如图2-3-4其法向加速度为,切向加速度为,θ为速度与水平向方的夹角,将速度在水平与竖直方向的坐标系中分解可知:

由此可知,其法向加速度和切向加速度分别为:

由上两式可以看出,随着时间的推移,法向加速度逐渐变小趋近于零,切向加速度趋近于定值g,这表示越来越接近竖直下抛运动。在生活中也很容易看到,平抛物体的远处时就接近竖直下落了。

运动的轨迹方程:

从方程可以看出,此图线是抛物线,过原点,且越大,图线张开程度大,即射程大。根据运动的独立性,经常把斜抛运动分解成水平方向匀速直线运动和竖直方向上的竖直上抛运动来处理,但有时也可以用其它的分解分法。

抛体运动另一种常用的分解方法是:分解沿方向的速度为的匀速直线运动和沿竖直方向的自由落体运动二个分运动。

如图2-3-5所示,从A点以的初速度抛出一个小球,在离A点水平距离为s处有一堵高度为h的墙BC,要求小球能越过B点。

问小球以怎样的角度抛出,才能使最小?

将斜抛运动看成是方向的匀速直线运动和另一个自由落体运动的合运动,如图2-3-6所示。

在位移三角形ADB在用正弦定理

④轨迹:由直角坐标的位移公式消去时间参数t便可得到直角坐标系中的平抛运

由①式中第一个等式可得

将②式代入①式中第二个等式

当有极大值1时,即时,有极小值。

因为,

所以

当小球越过墙顶时,y方向的位移为零,由②式可得

③式代入式①:我们还可用另一种处理方法

以AB方向作为x轴(图2-3-7)这样一取,小球在x、y方向上做的都是匀变速运动了,和g都要正交分解到x、y方向上去。

小球运动的方程为

当最大,即时,,有极小值

§2.4质点的圆周运动

刚体平面平行运动与定轴转动

2.4.1、质点的圆周运动

(1)匀速圆周运动如图2-4-1所示,质点P在半径为R的圆周上运动时,它的位置可用角度θ表示(习惯上以逆时针转角正,顺时针转角为负),转动的快慢用角速度表示:

质点P的速度方向在圆的切线方向,大小为

ω(或v)为常量的圆周运动称为匀速圆周运动。这里的“匀速”是指匀角速度或匀速率,速度的方向时刻在变。因此,匀速圆周运动的质点具有加速度,其加速度沿半径指向圆心,称为向心加速度(法向加速度)。

向心加速度只改变速度的方向,不改变速度的大小。

(2)变速圆周运动ω(或v)随时间变化的圆周运动,称为变速圆周运动,描述角速度变化快慢的物理量为角加速度

质点作变速圆周运动时,速度的大小和方向都在变化。将速度增量分解为与平行的分量和垂直的分量,如图2-4-2。相当于匀速圆周运动个的,的大小为

=

质点P的加速度为

其中就是切向加速度和法向加速度。

β为常量的圆周运动,称为匀变速圆周运动,类似于变速直线运动的规律,有

(3)圆周运动也可以分解为二个互相垂直方向上的分运动。参看图2-4-3一个质点A在t=0时刻从x正方向开始沿圆周逆时针方向做匀速圆周运动,在x方向上

在y方向上:

从x和y方向上的位移、速度和加速度时间t表达的参数方程可以看出:匀速圆周运动可以分为两个互相垂直方向上的简谐运动,它们的相位相差

2.4.2、刚体的平面平行运动

刚体平面平行运动的特征是,刚体上的任意质点都作平行于一个固定平面的运动。如圆柱沿斜面的滚动,即为平面平行运动。可取刚体上任意平行于固定平面的截面作为研究对象。

刚体的平面平行运动,常有两种研究方法:一种是看成随基点(截面上任意一点都可作为基点)的平动和绕基点的转动的合运动;另一种是选取截面上的瞬时转动中心S(简称瞬心)为基点。瞬心即指某瞬间截面上速度为零的点。这样,刚体的平面平行运动看成仅作绕瞬心的转动。

确定瞬心的方法有两种:如图2-4-4(a)所示,若已知截面上两点的速度,则与两速度方向垂直的直线的交点即为瞬心。或如图2-4-4(b)所示,已知截面转动的角速度及截面上某一点A 的速度,则在与速度垂直的直线上,与A点距离为的点即为瞬心。

注意,瞬心的速度为零,加速度不一定为零。

2.4.3、刚体的定轴转动

刚体运动时,刚体上或其延展部分有一根不动直线,该直线称为定轴,刚体绕这一轴转动。刚体作定轴转动时,其上各点都在与轴垂直的平面内作圆周运动,各点作圆周运动的半径不同,在某一时刻,刚体上所有各点的角位移、角速度和角加速度都是相同的。而各点的线位移、线速度和线加速度则随各点离开转轴的垂直距离不同而不同。

2.4.4、一些求曲率半径的特殊方法

先看椭圆曲线,要求其两顶点处的曲率半径。介绍以下两种方法:

(1)将椭圆看成是半径R=A(设A>B)的圆在平面上的投影,圆平面和平面的夹角满足关系式(如图2-4-5)

设一个质点以速率v在圆上做匀速圆周运动,则向心加速度,从上图中可以看出,当顶点的投影在椭圆的长轴(x轴)上的P点时,其速率和加速度分别为:

当质点的投影在椭圆的短轴(y轴)上的Q点时,其速率和加速度分别为:。

因此椭圆曲线在P、Q的曲率半径分别为:

(2)将椭圆看成是二个简谐运动的合成,可以把椭圆的参数方程(设A>B)(如图2-4-6)

可改写为

即可进一步写出x,y二个方程的速度v和加速度a:

那么在长轴端点P处()的曲率半径:

在短轴端点Q处()的曲率半径

再把抛物线y=Ax,要求其任意一点的曲率半径(如图2-4-7)因为抛物线可以写作参数方程

其中,这样就可以导出

对任意一个t值:v=

a=acos=a

所以这一点的曲率半径

将t=代入,可得

因为,所以抛物线y=Ax上任意一点的曲率半径

§2.5几种速度的特殊求法

2.5.1、相关的速度

当绳端在做既不沿绳方向,又不垂直于绳方向的运动时,一般要将绳端的运动分解为沿绳方向和垂直于绳方向二个分运动。

如图2-5-1所示的情况,绳AB拉着物体m在水平面上运动,A端以速度v做匀速运动,问m做什么运动?有的同学会将绳的速度v分解成竖直

分速度vsina和水平分速度vcosa,以为木块的速度(u

如图2-5-2所示,杆AB沿滑下,A、B二端的速度和也是二个相关的速度。将分解成沿杆方向的分速和垂直于杆的分速。由于杆的长度不会发生变化,所以,即,即

2.5.2、两杆交点的运动两杆的交点同时参与了二杆的运动,而且相对每一根杆还有自己的运动,因而是一种比较复杂的运动。图2-5-3(a)中的AC、BD两杆均以角速度绕A、B两固定轴在同一竖直面内转动,转动方向如图示。当t=0时,60o,试求t时刻两棒交点M 点的速度和加速度。t=0时,△ABM为等边三角形,因此AM=BM=,它的外接圆半径,图2-5-3(b)。二杆旋转过程中,角增大的角度一直等于角减小的角度,所以M角的大小始终不变(等于60o),因此M点既不能偏向圆内也不能偏向圆外,只能沿着圆周移动,因为∠和∠是对着同一段圆弧()的圆心角和圆周角,所以∠=2∠,即M以2的角速度绕O点做匀速圆周运动,任意时刻t的速度大小恒为

向心加速度的大小恒为

再看图2-5-4(a),一平面内有二根细杆和,各自以垂直于自己的速度和在该平面内运动,试求交点相对于纸平面的速率及交点相对于每根杆的速率。

参考图2-5-4(b),经过时间之后,移动到了的位置,移动到了的位置,和的原位置交于点,和交于点。

=

在中:

因为角和角互补,所以

因此两杆交点相对于纸平面的速度

不难看出,经过时间后,原交点在上的位置移动到了A位置,因此交点相对的位移就是,交点相对的速度就是:

=

用同样的方法可以求出交点相对的速度

因为可以取得无限小,因此上述讨论与是否为常量无关。如果是变量,上述表达式仍然可以表达二杆交点某一时刻的瞬时速度。

如果和的方向不是与杆垂直,这个问题应该如何解决?读者可以进行进一步的讨论。

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

高中物理竞赛训练题:运动学部分

高中物理竞赛训练题1 运动学部分 一.知识点 二.习题训练 1.轰炸机在h高处以v0沿水平方向飞行,水平距离为L处有一目标。(1)飞机投弹要击中目标,L应为多大?(2)在目标左侧有一高射炮,以初速v1发射炮弹。若炮离目标距离D,为要击中炸弹,v1的最小值为多少?(投弹和开炮是同一时间)。 2.灯挂在离地板高h、天花板下H-h处。灯泡爆破,所有碎片以同样大小的初速度v0朝各个方向飞去,求碎片落到地面上的半径R。(可认为碎片与天花板的碰撞是弹性的,与地面是完全非弹性的。) 若H =5m,v0=10m/s,g = 10m/s2,求h为多少时,R有最大值并求出该最大值。 3.一质量为m的小球自离斜面上A处高为h的地方自由落下。若斜面光滑,小 球在斜面上跳动时依次与斜面的碰撞都是完全弹性的,欲使小球恰能掉进斜面上距A点为s的B处小孔中,则球下落高度h应满足的条件是什么?(斜面倾角θ为已知) 4.速度v0与水平方向成角α抛出石块,石块沿某一轨道飞行。如果蚊子以大小恒定的速率v0沿同一轨道飞行。问蚊子飞到最大高度一半处具有多大加速度?空气阻力不计。 5.快艇系在湖面很大的湖的岸边(湖岸线可以认为是直线),突然快艇被风吹脱,风沿着快艇以恒定的速度v0=2.5km/h沿与湖岸成α=150的角飘去。你若沿湖岸以速度v1=4km/h行走或在水中以速度v2=2km/h游去(1人能否赶上快艇?(2)要人能赶上快艇,快艇速度最多为多大?(两种解法)

6.如图所示,合页构件由两菱形组成,边长分别为2L 和L ,若顶点A以匀加速度a水平向右运动,当BC 垂直于OC 时,A 点速度恰为v ,求此时节点B和节点C 的加速度各为多大 ? 7.一根长为l 的薄板靠在竖直的墙上。某时刻受一扰动而倒下,试确定一平面曲线 f (x ,y ) = 0,要求该曲线每时每刻与板相切。(地面水平)。 10.一只船以4m/s 的速度船头向正东行驶,海水以3m/s 的速度向正南流,雨点以10m/s 的收尾速度竖直下落。求船中人看到雨点的速度 11。一滑块p 放在粗糙的水平面上,伸直的水平绳与轨道的夹角为θ,手拉绳的另一端以均匀速度v 0沿轨道运动,求这时p 的速度和加速度。 12. 如下图,v 1、v 2、α已知,求交点的v 0. 13.两个半径为R 的圆环,一个静止,另一个以速度v 0自左向右穿过。求如图的θ角位置(两圆交点的切线恰好过对方圆心)时,交点A 的速度和加速度。

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

第二讲 运动学

第二讲运动学(辅导时间:2012/12/8) 班级:____________姓名:_____________ 1.一列长为l的队伍,行进速度为v,通讯员从队尾以速度v1赶到排头,又立即以速度v2返回队尾,求这段时间里队伍前进的距离。 2.中巴车定时定速在嵊长公路上来回行驶,一人沿此路线骑自行车匀速前进,每隔t1=3min与迎面而来的汽车相遇,每隔t2=5min有一辆后面来的汽车超过他,问中巴车每隔多长时间开出一班? 3.国商大厦一、二楼之间有一部正在向上运动的自动扶梯,某人以相对扶梯的速度v沿楼梯向上跑,数得扶梯有n1级;到二楼后他又从该扶梯返回,以相同的相对扶梯的速度v沿扶梯向下跑,数得扶梯有n2级,那么该扶梯在一、二楼间实际有多少级? 4.一人以4m/s的速度骑自行车向东行驶,感觉风是从正南吹来,当他以6m/s的速度骑行时,感觉风是从正东南方吹来,则实际风速和风向如何? 5.一只船在河的正中航行,如图所示,河宽l=100m,流速u=5m/s,并在 距船s=150m的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中, 船对水的最小速度为多少?6.在宽度为d的街上,有一连串汽车以速度u鱼贯驶过,已知汽车的宽 度为b,两车间的距离为a.如图所示,一行人想用尽可能小的速度沿一直 线穿过此街,试求些人过街所需的时间。 7.一辆邮车以μ=10m/s的速度沿平直公路匀速行驶,在离此公路d=50m处有一个邮递员,当他与邮车的连线和公路的夹角α=arctan 1 4 时,开始沿直线匀速奔跑(如图所示),已知他奔跑的最大速度为5m/s.试问: (1)当应向什么方向跑,才能尽快与邮车相遇? (2)他至少以多大的速度奔跑,才能尽快现邮车相遇? 8.如图所示,水平直轨道上有一辆小车A,轨道的O点的正上方有一绞车B。 绞车转动使牵引绳缠绕在绞车上,拉着小车在水平轨道上移动。问当绳与水平 方向的夹角为θ时,小车的速度为多少?已知绞车的收绳速度为v0 9.一均匀细杆长为l,上、下两端A、B分别靠在竖直墙和水平地面上,如图所示。 当上端A以v0匀速向墙角O点移动到离O点距离为y时,下端B距离O点距离为x. 问此时B端的速度为多少? 10.光滑水平面上有A、B两个物体,通过一根跨过定滑轮的轻绳子相连 系,如图所示。当A与水平面夹角为θA=45°,B与水平面的夹角为θB=30° 时,A、B两物体的速度之比v A:v B应该是多少? v A v

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

初中物理竞赛试题运动学

初中物理竞赛试题精选:运动学1.A、B两辆车以相同速度v0同方向作匀速直线运动,A车在前,B车在后.在两车上有甲、乙两人分别用皮球瞄准对方,同时以相对自身为2v0的初速度水平射出,如不考虑皮球的竖直下落及空气阻力,则() A.甲先被击中B.乙先被击中 C.两人同时被击中D.皮球可以击中乙而不能击中甲 2.如图所示,静止的传送带上有一木块正在匀速下滑,当传送带突然向下开动时,木块图2滑到底部所需时间t与传送带始终静止不动所需时间t0相比是() A.t=t0B.t<t0C.t>t0 D.A、B两种情况都有可能 3.如图所示,A、B为两个大小和材料都相同而转向相反的轮子,它们的转轴互相平行且在同一水平面内。有一把均匀直尺C,它的长度大于两轮转轴距离的2倍。把该直尺静止地搁在两转轮上,使尺的重心在两轮之间而离B轮较近。然后放手,考虑到轮子和尺存在摩擦,则直尺将() A保持静止。B向右运动,直至落下。 C开始时向左运动,以后就不断作左右来回运动。 D开始时向右运动,以后就不断作左右来回运动。 4.在一辆行驶的火车车厢内,有人竖直于车厢地板向上跳起,落回地板时,落地点() A 在起跳点前面;B在起跳点后面; C与起跳点重合;D与火车运动情况有关,无法判断。

5.在水平方向作匀速直线高速飞行的轰炸机上投下一颗炸弹,飞机驾驶员和站在地面上的观察者对炸弹运动轨迹的描述如图12所示。其中有可能正确的是() 图12 6.一列长为s的队伍以速度V沿笔直的公路匀速前进。一个传令兵以较快的速度v 从队末向队首传递文件,又立即以同样速度返回到队末。如果不计递交文件的时间,那么这传令兵往返一次所需时间是 7.甲、乙两车站相距100千米,一辆公共汽车从甲站匀速驶向乙站,速度为40千米/时。当公共汽车从甲站驶出时,第一辆大卡车正好从乙站匀速开往甲站,而且每隔15分钟开出一辆。若卡车的速度都是25千米/时,则公共汽车在路途中遇到的卡车总共有() (A).20辆。(B)15辆。(C)10辆。(D)8辆 8.某高校每天早上都派小汽车准时接刘教授上班。一次,刘教授为了早一点赶到学校,比平时提前半小时出发步行去学校,走了27分钟时遇到来接他的小汽车,他上车后小汽车立即掉头前进。设刘教授步行速度恒定为v,小汽车来回速度大小恒定为u,刘教授上车以及小汽车掉头时间不计,则可判断() A.刘教授将会提前3分钟到校,且v:u=1:10。 B.刘教授将会提前6分钟到校,且v:u=1:10。 C.刘教授将会提前3分钟到校,且v:u=1:9。 D.刘教授将会提前6分钟到校,且v:u=1:9。 9.一氢气球下系一重为G的物体P,在空中做匀速直线运动。如不计空气阻力和风力影响,物体恰能沿MN方向(如图1中箭头指向)斜线上升,图1中OO’为竖直方向, 则在图1中气球和物体P所 处的情况正确的是() 10.某段铁路有长度L的铁

高中物理竞赛力学教程第二讲运动学

第二讲运动学 §2.1质点运动学的基本概念 2.1.1、参照物和参照系 要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,这个被选的物体叫做参照物。为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标系。 通常选用直角坐标系O–xyz,有时也采用极坐标系。平面直角坐标系一般有三种,一种是两轴沿水平竖直方向,另一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向(我们常把这种坐标称为自然坐标)。 2.1.2、位矢位移和路程 在直角坐标系中,质点的位置可用三个坐标x,y,z表示,当质点运动时,它的坐标是时间的函数 x=X(t)y=Y(t)z=Z(t) 这就是质点的运动方程。 质点的位置也可用从坐标原点O指向质点P(x、y、z)的有向线段来表示。如图2-1-1所示, 也是描述质点在空间中位置的物理量。的长度为质点到原点之间的距离,的方向由余弦、、决定,它们之间满足 当质点运动时,其位矢的大小和方向也随时间而变,可表示为=(t)。在直角坐标系中,设 分别为、、沿方向、、和单位矢量,则可表示为 位矢与坐标原点的选择有关。 研究质点的运动,不仅要知道它的位置,还必须知道它的位置的变化情况,如果质点从空间一点运动到另一点,相应的位矢由1变到2,其改变量为 称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段。它描写在一定时间内质点位置变动的大小和方向。它与坐标原点的选择无关。 2.1.3、速度 平均速度质点在一段时间内通过的位移和所用的时间之比叫做这段时间内的平均速度 平均速度是矢量,其方向为与的方向相同。平均速度的大小,与所取的时间间隔有关,因此须指明是哪一段时间(或哪一段位移)的平均速度。 瞬时速度当为无限小量,即趋于零时,成为t时刻的瞬时速度,简称速度 瞬时速度是矢量,其方向在轨迹的切线方向。 瞬时速度的大小称为速率。速率是标量。 2.1.4、加速度 平均加速度质点在时间内,速度变化量为,则与的比值为这段时间内的平均加速度

高中物理竞赛讲义-运动学综合题

运动学综合题 例1、如图所示,绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,当绳变为竖直方向时,圆 筒转动角速度为ω,(此时绳未松弛),试求此刻圆筒与绳分离处A 的速度以及圆筒与斜面切点C的速度 例2、如图所示,湖中有一小岛A,A与直湖岸的距离为d,湖岸边有一点B,B沿湖岸方向与A点的距离为l.一人自B点出发,要到达A 点.已知他在岸上行走的速度为v1,在水中游泳的速度为v2,且v1>v2,要求他由B至A所用的时问最短,问此人应当如何选择其运动路线?

例3、一根不可伸长的细轻绳,穿上一粒质量为m的珠 子(视为质点),绳的下端固定在A点,上端系在轻质 小环上,小环可沿固定的水平细杆滑动(小环的质量及 与细杆摩擦皆可忽略不计),细杆与A在同一竖直平面 内.开始时,珠子紧靠小环,绳被拉直,如图所示,已 知,绳长为l,A点到杆的距离为h,绳能承受的最大 T,珠子下滑过程中到达最低点前绳子被拉断, 张力为 d 求细绳被拉断时珠子的位置和速度的大小(珠子与绳子 之间无摩擦) 例4、在某铅垂面上有一光滑的直角三角形细管轨道,光滑小球从顶点A沿斜边轨道自静止出发自由滑到端点C所需时间恰好等于小球从A由静止出发自由地经B滑到C所需时间,如图所示.设AB为铅直轨道,转弯处速度大小不变,转弯时间忽略不计,在此直角三角形范围内可构建一系列如图中虚线所示的光滑轨道,每一轨道由若干铅直和水平的部分连接而成,各转弯处性质都和B点相同,各轨道均从A点出发到C点终止,且不越出△ABC的边界.试求小球在各条轨道中,从静止出发自由地由A到C所需时间的上限与下限之比值.

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

高一物理竞赛讲义第2讲教师版

第2讲相对运动和 匀变速运动 温馨寄语 变速运动的研究是高中物理课本的开始,也是我们训练童鞋们高中物理竞赛能力,必不可少的一步。这个地方的难点主要在于,对于加速度概念的理解,和对匀变速直线运动诸多公式的熟练运用。 告诉大家个诀窍:就是自己推公式。这是记住公式,并且能够灵活运用的不二法门。 另一方面,童鞋们也会着重的接触物理竞赛运动学的精髓之一:相对运动 知识点睛 一:运动的合成分解: 由于位移、速度、加速度与力一样都是矢量。是分别描述物体运动的位置变化运动的快慢及物体运动速度变化的快慢的。由于一个运动可以看成是由分运动组成的,那么已知分运动的情况,就可知道合运动的情况。 例如轮船渡河,如果知道船在静水中的速度的大小和方向,以及河水流动的速度的大小和方向,应用平行四边法则,就可求出轮船合运动的速度v(大小方向)。这种已知分运动求合运动叫做运动的合成。 相反,已知合运动的情况,应用平行为四边法则,也可以求出分运动和情况。 例如飞机以一定的速度在一定时间内斜向上飞行一段位移,方向与水平夹角为30 ,我们很容易求出飞机在水平方向和竖直方向的位移:这种已知合运动求分运动叫运动的分解。合运动分运动是等时的,独立的这一点必须牢记。

以上两例说明研究比较复杂的运动时,常常把这个运动看作是两个或几个比较简单的运动组成的,这就使问题变得容易研究。在上例轮船在静水中是匀速行驶的,河水是匀速流动的,则轮船的两个分运动的速度矢量都是恒定的。轮船的合运动的速度矢量也是恒定的。所以合运动是匀速直线的。一般说来,两个直线运动的合成运动,并不一定都是直线的。在上述轮船渡河的例子中如果轮船在划行方向是加速的行驶,在河水流动方向是匀速行驶,那么轮船的合运动就不是直线运动而是曲线运动了。由此可知研究运动的合成和分解也是为了更好地研究曲线运动作准备。掌握运动的独立性原理,合运动与分运动等时性原理也是解决曲线运动的关键。 运动合成、分解的法则: 运动的合成和分解是指位移的合成与分解及速度、加速度的合成与分解。 因为位移、速度和加速度都是矢量,所以运动的合成(矢量相加)和分解(矢量相减)都遵循平行四边形法则。关于这一点通过实验是完全可以验证的,通过对实际运动观察也能得到证实。 如图所示,若OA矢量代表人在船上行走的位移(速度或加速度)OB矢量代表船在水中行进的位移(速度或加速度),则矢量OC的大小和方向就代表人对水(合运动)的位移(速度或加速度)。 几点说明: ⑴掌握运动的合成和分解的目的在于为我们提供了一个研究复杂运动的简单方法。 ⑵物体只有同时参加了几个分运动时,合成才有意义,如果不是同时发生的分运动,则合成也就失去了意义。 ⑶当把一个客观存在的运动进行分解时,其目的是在于研究这个运动在某个方向的表现。 ⑷处理合成、分解的方法主要有作图法和计算法。计算法中有余弦定理计算、正弦定理计算、勾股定理计算及运用三角函数等。

高中物理竞赛辅导讲义-1.4运动学综合题

1.4运动学综合题 例1、如图所示,绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,当绳变为竖直方向时,圆 筒转动角速度为ω,(此时绳未松弛),试求此刻圆筒与绳分离处A 的速度以及圆筒与斜面切点C的速度 例2、如图所示,湖中有一小岛A,A与直湖岸的距离为d,湖岸边有一点B,B沿湖岸方向与A点的距离为l.一人自B点出发,要到达A 点.已知他在岸上行走的速度为v1,在水中游泳的速度为v2,且v1>v2,要求他由B至A所用的时问最短,问此人应当如何选择其运动路线?

例3、一根不可伸长的细轻绳,穿上一粒质量为m的珠 子(视为质点),绳的下端固定在A点,上端系在轻质 小环上,小环可沿固定的水平细杆滑动(小环的质量及 与细杆摩擦皆可忽略不计),细杆与A在同一竖直平面 内.开始时,珠子紧靠小环,绳被拉直,如图所示,已 知,绳长为l,A点到杆的距离为h,绳能承受的最大 T,珠子下滑过程中到达最低点前绳子被拉断, 张力为 d 求细绳被拉断时珠子的位置和速度的大小(珠子与绳子 之间无摩擦) 例4、在某铅垂面上有一光滑的直角三角形细管轨道,光滑小球从顶点A沿斜边轨道自静止出发自由滑到端点C所需时间恰好等于小球从A由静止出发自由地经B滑到C所需时间,如图所示.设AB为铅直轨道,转弯处速度大小不变,转弯时间忽略不计,在此直角三角形范围内可构建一系列如图中虚线所示的光滑轨道,每一轨道由若干铅直和水平的部分连接而成,各转弯处性质都和B点相同,各轨道均从A点出发到C点终止,且不越出△ABC的边界.试求小球在各条轨道中,从静止出发自由地由A到C所需时间的上限与下限之比值.

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

初中物理竞赛试题精选运动学

初中物理竞赛试题精选:运动学 1. A、B两辆车以相同速度v0同方向作匀速直线运动,A车在前,B车在后.在两车上有甲、乙两人分别用皮球瞄准对方,同时以相对自身为2v0的初速度水平射出,如不考虑皮球的竖直下落及空气阻力,则( ) A.甲先被击中 B.乙先被击中 C.两人同时被击中 D.皮球可以击中乙而不能击中甲 2. 如图所示,静止的传送带上有一木块正在匀速下滑,当传送带突然向 下开动时,木块图2滑到底部所需时间t与传送带始终静止不动所需时间 t0相比是( ) A.t=t0 B.t<t0 C.t>t0 D.A、B两种情况都有可能 3. 如图所示,A 、B 为两个大小和材料都相同而转向相反的轮子,它 们的转轴互相平行且在同一水平面内。有一把均匀直尺C ,它的长度 大于两轮转轴距离的2倍。把该直尺静止地搁在两转轮上,使尺的重 心在两轮之间而离B 轮较近。然后放手,考虑到轮子和尺存在摩擦, 则直尺将( ) A 保持静止。 B 向右运动,直至落下。 C 开始时向左运动,以后就不断作左右来回运动。 D 开始时向右运动,以后就不断作左右来回运动。 4. 在一辆行驶的火车车厢内,有人竖直于车厢地板向上跳起,落回地板时,落地点( ) A 在起跳点前面; B 在起跳点后面; C 与起跳点重合; D 与火车运动情况有关,无法判断。 5. 在水平方向作匀速直线高速飞行的轰炸机上投下一颗炸弹,飞机驾驶员和站在地面上的观察者对炸弹运动轨迹的描述如图12所示。其中有可能正确的是 ( ) 图12 6. 一列长为s 的队伍以速度V 沿笔直的公路匀速前进。一个传令兵以较快的速度v 从队末向队首传递文件,又立即以同样速度返回到队末。如果不计递交文件的时间,那么这传令兵往返一次所需时间是 。; ; ; 22222)D (2)C (2)B (2)A (V v sv V v s V v s V s -++ 7. 甲、乙两车站相距100千米,一辆公共汽车从甲站匀速驶向乙站,速度为40千米/时。当公共汽车从甲站驶出时,第一辆大卡车正好从乙站匀速开往甲站,而且每隔15分钟开出一辆。若卡车的速度都是25千米/时,则公共汽车在路途中遇到的卡车总共有( ) (A).20辆。 (B)15辆。 (C)10辆。 (D)8辆 8. 某高校每天早上都派小汽车准时接刘教授上班。一次,刘教授为了早一点赶到学校,比平时提前半小时出发步行去学校,走了27分钟时遇到来接他的小汽车,他上车后小汽车立即掉头前进。设刘教授步行速度恒定为v ,小汽车来回速度大小恒定为u , 刘教授上车以及小汽

高中物理竞赛辅导运动学

高中物理竞赛辅导运动学 §2.1质点运动学的差不多概念 2.1.1、参照物和参照系 要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,那个被选的物体叫做参照物。为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标 系。 通常选用直角坐标系O –xyz ,有时也采纳极坐标系。平面直角坐标系一样有三种,一种是两轴沿水平竖直方向,另 一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向〔我们常把这种坐标称为自然坐标〕。 2.1.2、位矢 位移和路程 在直角坐标系中,质点的位置可用三个坐标x ,y ,z 表示,当质点运动时,它的坐标是时刻的函数 x=X 〔t 〕 y=Y 〔t 〕 z=Z 〔t 〕 这确实是质点的运动方程。 质点的位置也可用从坐标原点O 指向质点P 〔x 、y 、z 〕的有向线段r 来表示。如图2-1-1所示, 也是描述质点在空间中位置的物理量。的长度为质点到原点之间的距离,的方向由余弦αcos 、βcos 、γcos 决定,它们之间满足 1cos cos cos 222=++γβα 当质点运动时,其位矢的大小和方向也随时刻而变,可表示为r =r (t)。在直角坐标系中,设分不为、、沿方向x 、y 、z 和单位矢量,那么r 可表示为 t z t y t x t )()()()(++= 位矢与坐标原点的选择有关。 研究质点的运动,不仅要明白它的位置,还必须明白它 的位置的变化情形,假如质点从空间一点),,(1111z y x P 运动到另一点),,(2222z y x P ,相应的位矢由r 1 变到r 2,其改 变量为? z z y y x x r r )()()(12121212-+-+-=-=? 称为质点的位移,如图2-1-2所示,位移是矢量,它是 从初始位置指向终止位置的一个有向线段。它描写在一定时刻内质点位置变动的大小和方向。它与坐标原点的选择无关。 2.1.3、速度 平均速度 质点在一段时刻内通过的位移和所用的时刻之比叫做这段时刻内的平均速度 ) 2z y 图2-1-1

高中物理竞赛运动学。

运动学 1如图所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D ,BC 段水平,当以恒定水平速度V 拉绳上的自由端时,A 沿水平面前进,求当跨过B 的两段绳子的夹角为α时,A 的运动 速度。 (V A =α cos 1+V ) 2. 缠在轴上的线被绕过滑轮B 后,以恒定速度v0 拉出。这时线轴沿水平平面无滑动滚动。求线轴中心点O 的速度随线与水平方向的夹角 α 的变化关系。线轴的内、外半径分别为r 和R 。 3.均匀光滑细棒AB 长l ,以速度v 搁在半径为r 的固定圆环上作匀速平动,试求在图13位置时,杆与环的交点M 的速度和加速度. 图13 4一个半径为 R 的半圆柱体沿水平方向向右做加速度为 a 的匀加速运动。在半圆柱体上搁置一根竖直杆,此杆只能沿竖直方向运动(如图)。当半圆柱体的速度为 v 时,杆与半圆柱体接触点 P 与柱心的连线与竖直方向的夹角为θ,求此时竖直杆运动的速度和加速度。

5 A ,B ,C 三个芭蕾舞演员同时从边长为l 的三角形顶点A ,B ,C 出发,以相同的速率v 运动;运动中始终保持A 朝着B ,B 朝着C ,C 朝着A .试问经多少时间三人相聚?每个演员跑了多少路径? 6.三只小虫A 、B 、C 沿水平面爬行,A 、B 的速度都能达到v =1cm/s 。开始时,这些虫子位于一个等边三角形的三个顶点上。C 应具有什么样的速度,才能在A 、B 任意移动的情况下使三小虫仍保持正三角形? 7 在掷铅球时,铅球出手时距地面的高度为h ,若出手时的速度为V 0,求以何角度掷球时,水平射程最远?最远射程为多少? (α=gh v v 22sin 2001 +-、 x=g gh v v 2200+) 7、模型飞机以相对空气v = 39km/h 的速度绕一个边长2km 的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间? 9如图所示,合页构件由两菱形组成,边长分别为2L 和 L ,若顶点A以匀加速度a水平向右运动,当 BC 垂直于 OC 时,A 点速度恰为 v ,求此时节点B 和节点 C 的加速度各为多大?

运动学物理竞赛第二讲

物理竞赛辅导第二讲 例1:超音速飞机沿直线OB 以速度v 匀速飞行。一观察者从A 点注视飞机起飞,∠BOA=θ且在观察时间内可认为不变。如图1-1-3,飞机的辐射器先后发出强度一小一大两个脉冲短声波,脉冲时间间隔为τ,如图1-1-4.在什么条件下观察者能先记录下强度大的脉冲,再记录下强度小的脉冲?已知OA=L ,声速为V 。 例2:用5条边长为L 的正方形薄板做成一个小屋,置于地面上,并且屋顶面互相垂直,如图3所示。已知水滴沿屋顶从A 点流到B 点所需的时间为从B 点滴落地面所需时间的2倍。假定水滴从A 点以初速度零开始流下,试求水滴从A 流到地面所需的时间。 例3:一只蜗牛从地面开始沿竖直电杆上爬,它上爬的速度υ与它离地面的高度h 之间满足的关系 是,其中常数L=20cm ,0υ=2cm/s 。求它上爬20cm 所用的时间。 例4:将一小球以30m/s 的初速度竖直上抛,以后每隔1s 抛出一球(空气阻力可以忽略不计),空中各球不会发生碰撞,问: (1)最多能有几个小球同时在空中? (2)设在t=0时第一个小球被抛出,那么它应该在哪些时刻和以后抛出的小球在空中相遇而过?(g 取10m/2s ) h l lv v +=0

例5:1-2所示,在倾角为 的光滑斜面顶端有一质点A 自静止开始自由下滑,与此同时在斜面底部有一质点B 自静止开始以匀加速度为a 背离斜面在光滑的水平面上运动,设A 下滑到斜面底部能沿着光滑的小弯曲部分平稳地朝B 追去,试求为使A 不能追上B ,a 的取值范围。 例6:一客车从静止开始以加速度a 做匀加速直线运动的同时,在车尾的后面离车头为sm 远的地方有一乘客正以某一速度在追赶这列客车,已知司机从车头前面的反光镜内能看到离车头的最远距离为0s m ,保留时间在0t s 内才能看清楚,这样才能制动客车使车停下来,该乘客要想乘坐上这列客车,其追赶客车匀速运动的速度所满足的表达式是什么?若a=1m/2s ,s=30m ,0s =20m ,0t =1s ,求v 的最小值。 例7:蚂蚁离开巢沿直线爬行,它的速度与到蚁巢中心的距离为反比,当蚂蚁爬到距巢中心1L =1m 的A 点处时,速度是1v =2cm/s ,试问,蚂蚁从A 点爬到距巢中心2L =2m 的B 点所需的时间为多少? 例8:已知一质点做变加速直线运动,初速度为0v ,其加速度随位移线性减小的关系即加速过程中加速度与位移之间的关系满足条件a=0a -ks ,式中a 为任一位置处的加速度,s 为位移,0a 、k 为常数,求当位移为0s 时质点的瞬时速度。

初中物理竞赛运动学专题训练

初中物理运动学专题训练 1、甲、乙二人同时从同一地点A出发,沿直线同向到达点B,甲在前一半路程和后一半路 程内的运动速度分别是V 1和V 2 (V 1 >V 2 ), 乙在前一半时间和后一半时间内的运动速度是 V 1和V 2 ,则() A.甲先到达B B、乙先到达B C、两人同时到达B地 D、条件不足,无法确定 2、某科研所每天早晨都派小汽车按时接专家上班。有一天,专家为早一点赶到科研所,比平时提早1小时出发步行去科研所。走了一段时间后遇到了来接他的汽车,他上车后汽车立即掉头继续前进。进入单位大门时,他发现只比平时早到10分钟。问专家在路上步行了多长时间才遇到汽车?(设专家和汽车都作匀速运动,专家上车及汽车掉头时间不计) 3、甲、乙两地相距100千米,一辆汽车以40千米/时的速度从甲地出发开往乙地。此时恰好有一辆汽车从乙地开出向甲地出发,且以后每隔15分钟乙地均有一辆车发出,车速都是20千米/时,则从甲地发出的那辆车一路上可遇到从乙地发出汽车共 ________辆.(不包括进出车站的车辆)。 4、相距4500米的甲、乙两车站之间是一条笔直的公路。每隔半分钟,有一辆货车从甲站 出发以10米/秒的速度匀速开赴乙站,共开出50辆;于第一辆货车开出的同时有一辆客车从乙站出发匀速开往甲站。若客车速度是货车速度的2倍,那么客车途中遇到第一辆货车与最后一次遇到货车相隔的时间为多少秒? 5、从港口A到港口B的行程历时6昼夜,每天中午12时,由A、B两港口共分别开出一 艘轮船驶向B港A港,则每一艘开出的轮船在途中遇到对港口开来的轮船是(不包括在港口遇到的轮船)() A、6艘 B、11艘 C、12艘 D、13艘 6、某同学骑自行车从家到县城,原计划用5小时30分,由于途中有3.6千米的道路不平, 走这段不平的路时,速度相当于后来的3/4,因此,迟到12分钟,该同学和县城相距多少千米? 7、某高校每天早上都派小汽车准时接刘教授上班。一次,刘教授为早一点赶到学校,比 平时提前半小时出发步行去学校。走了27分钟时遇到来接他的小汽车,他上车后小汽 车立即调头继续前进。设刘教授步行速度为V 1,小汽车来回速度大小恒为V 2 ,刘教授 上车以及小汽车调头时间不计,则可判断() A、刘教授会提早3分钟到校且V 1:V 2 =1:10 B、刘教授会提早6分钟到校且V 1:V 2 =1:10 C、刘教授会提早3分钟到校且V 1:V 2 =1:9 D、刘教授会提早6分钟到校且V 1:V 2 =1:9 8、A、B两地之间仅有一条公路且相距了300千米。从A地早上9:00起每隔45分钟开出一辆汽车向B地。车速为60千米/时,下午15:00A地开出最后一班车。另外每天由B地早上8:00起每隔1小时也开出一辆汽车向A地,车速为75千米/小时,下午16:00B地开出最后一班车。则由A地早上9:00开出的班车在行驶途中能见到________辆由B地开出的班车;由B地下午15:00开出的班车在行驶中能见到________辆由A地开出的班车。(进出站时除外) 9、甲、乙两车站相距100km,今从乙站每隔15分钟开出一卡车,均以25km/h 的速度匀

物理竞赛大纲

物理竞赛大纲 力学 1. 运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度 曲率半径角速度和※角加速度 相对运动伽里略速度变换 2.动力学 重力弹性力摩擦力 惯性参考系 牛顿第一、二、三运动定律胡克定律万有引力定律 均匀球壳对壳内和壳外质点的引力公式(不要求导出) ※非惯性参考系※平动加速参考系中的惯性力 ※匀速转动参考系惯性离心力、视重 ☆科里奥利力 3.物体的平衡 共点力作用下物体的平衡 力矩刚体的平衡条件 ☆虚功原理 4.动量

冲量动量质点与质点组的动量定理动量守恒定律 ※质心※质心运动定理 ※质心参考系 反冲运动 ※变质量体系的运动 5.机械能 功和功率 动能和动能定理※质心动能定理 重力势能引力势能 质点及均匀球壳壳内和壳外的引力势能公式 (不要求导出) 弹簧的弹性势能 功能原理机械能守恒定律 碰撞 弹性碰撞与非弹性碰撞恢复系数 6.※角动量 冲量矩角动量 质点和质点组的角动量定理和转动定理 角动量守恒定律 7.有心运动 在万有引力和库仑力作用下物体的运动 开普勒定律 行星和人造天体的圆轨道和椭圆轨道运动 8.※刚体 刚体的平动刚体的定轴转动 刚体绕轴的转动惯量 平行轴定理正交轴定理 刚体定轴转动的角动量定理刚体的平面平行运动 9.流体力学 静止流体中的压强

浮力 ☆连续性方程☆伯努利方程 10.振动 简谐振动振幅频率和周期相位 振动的图像 参考圆简谐振动的速度 (线性)恢复力由动力学方程确定简谐振动的频率 简谐振动的能量 同方向同频率简谐振动的合成 阻尼振动受迫振动和共振(定性了解) 11.波动 横波和纵波 波长频率和波速的关系 波的图像 ※平面简谐波的表示式 波的干涉※驻波波的衍射(定性) 声波声音的响度、音调和音品 声音的共鸣乐音和噪声(前3项均不要求定量计算) ※多普勒效应 热学 1. 分子动理论 原子和分子大小的数量级 分子的热运动和碰撞布朗运动※压强的统计解释 ☆麦克斯韦速率分布的定量计算;※分子热运动自由度※能均分定理;温度的微观意义 分子热运动的动能 ※气体分子的平均平动动能 分子力分子间的势能

相关文档
相关文档 最新文档