文档视界 最新最全的文档下载
当前位置:文档视界 › 生化名词解释

生化名词解释

生化名词解释
生化名词解释

1.肽键:由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合形成的化学键。

2.氨基酸残基:肽链中的氨基酸分子因为脱水缩合而基团不全,被称为氨基酸残基。

3.蛋白质的一级结构:指在蛋白质分子内某一段肽链中的局部空间结构,即该段肽链主链

骨架原子的相对空间位置,不含氨基酸残基侧链的构象。

4.模体:在许多蛋白质分子中,可发现两个或三个具有二级结构的肽链,在空间上相互接

近,形成一个特殊的空间构象,被称为模体。

5.蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在

三维空间的排布位置。

6.结构域(domain):分子量较大的蛋白质常可折叠成多个结构较为紧密的区域,并各行

其功能,称为结构域。

7.分子伴侣(molecular chaperon):通过提供一个保护环境从而加速蛋白质折叠成天然构象

或形成四级结构的一类蛋白质。

8.蛋白质的四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作

用,称为蛋白质的四级结构。

9.蛋白质的变性:在某些物理或化学因素的作用下,其特定的空间构象被破坏,也即有序

的空间构象变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。

10.蛋白质的复性:若蛋白质的变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢

复其原有的构象和功能,称为蛋白质的复性。

11.核酸的一级结构:核酸中核苷酸的排列顺序,也称为碱基序列。

12.DNA变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。

13.增色效应:DNA变性时其溶液OD260增大的现象。

14.解链温度:DNA解链过程中,紫外吸光度的变化达到最大变化值的一半时所对应的温

度。

15.DNA复性:当变性条件缓慢地除去后,两条解离的互补链可重新配对,恢复原来的双

螺旋结构,这一现象称为DNA复性。

16.减色效应:DNA复性时,其溶液OD260降低。

17.核酸分子杂交:不同种类的DNA单链分子或RNA分子放在同一溶液中,只要两种单链

分子之间存在着一定程度的碱基配对关系,在适宜的条件可以在不同的分子间形成杂化双链。

18.酶的活性中心:酶分子中必需基团在空间结构上相互靠近,集中在一起并形成具有一定

空间结构的区域,这个区域能与底物特异性结合,并将底物转化为产物,这一空间区域就称为酶的活性中心。

19.酶的共价修饰:酶蛋白肽链上的一些基团可以在另一种酶的催化下,与某种化学基团可

以可逆的共价结合,使酶的构象发生改变,从而改变酶的催化活性,这一过程称为酶的共价修饰调节。在共价修饰过程中,酶发生无活性(或低活性)与有活性(或高活性)两种形式的互变。以磷酸化和去磷酸化调节最为普遍。

20.同工酶:催化的化学反应相同,但酶蛋白的分子结构、理化性质及免疫学性质不同的一

组酶称为同工酶。

21.变构调节:体内一些代谢物可以与某些酶分子活性中心外的某一部分可你的结合,使酶

发生变构改变其催化活性,对酶催化活性的这种调节方式称为酶的变构调节。

22.糖酵解(glycolysis):在机体缺氧情况下,葡萄糖经一系列酶促反应生成丙酮酸进而还原

生成乳酸的过程称为糖酵解。

23.底物水平磷酸化(substrate-level phosphorylation):ADP或其他核苷二磷酸的磷酸化作用

与底物的脱氢作用直接相偶联的反应过程称为底物水平磷酸化。

24.糖异生(gluconeogenesis):由非糖化合物(乳酸、甘油、生糖氨基酸)转变为葡萄糖或糖

原的过程称为糖异生。

25.必需脂肪酸(essential fatty acid):某些多不饱和脂酸(如亚麻酸、亚油酸、花生四烯酸)

机体自身不能合成,必须从食物中摄取,是动物不可缺少的营养素,称为必需脂肪酸。

26.脂肪动员(fat mobilization):储存在脂肪细胞中的脂肪在脂肪酶的作用下逐步水解,释放

出游离脂肪酸和甘油供其他组织细胞氧化利用的过程。

27.酮体(ketone bodies):脂肪酸在肝细胞中经有限氧化分解而产生的中间产物,包括:乙酰

乙酸、β-羟丁酸、丙酮,三者称为酮体。

28.呼吸链:指线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合体,可通

过连锁的氧化还原反应将代谢物脱下的电子最终传递给氧生成水。这一系列酶和辅酶称为呼吸链,又称电子传递链。

29.氧化磷酸化:代谢物脱下的2H,经电子传递链氧化为水时所释放的能量用于ADP磷酸

化,生成ATP的过程,称为氧化磷酸化。

30.必需氨基酸:体内需要而不能自身合成,必须由食物供给的氨基酸。

31.一碳单位(one carbon unit):某些氨基酸在分解代谢过程中产生的含有一个C原子的基团。

32.从头合成途径:利用磷酸核糖、氨基酸、一碳单位和CO2等简单物质为原料,经过一

些列酶促反应,合成嘌呤核苷酸,称为从头合成途径。

33.补救合成途径:利用体内游离嘌呤或嘌呤核苷,经过简单的反应过程合成嘌呤核苷酸,

称为补救合成途径。

34.酶的化学修饰:酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰,从而引起酶

活性改变,这种调节称为酶的化学修饰。

35.复制:以秦代DNA为模板合成子代DNA时,将遗传信息准确地复制到子代DNA分子

上,这一过程叫做复制。

36.复制叉:复制开始后,DNA双链解开形成两股单链,两股单链伸展成叉状,称为复制

叉。

37.双向复制:原核生物复制时,总是从一个固定的起始点开始向两个方向进行称为双向复

制。

38.半不连续复制:子代DNA在合成时,领头链复制是连续进行的,随从链的复制是不连

续的,这种复制方式叫半不连续复制。

39.不对称转录:在DNA分子双链上,一股链作模板指引转录,另一股链不转录;同时模

板链并非永远在同一单链上。转录的这种选择性称为不对称转录。

40.编码链:DNA分子中与模板链相对的不能转录生成RNA的一股链称为编码链。

41.断裂基因:真核生物的结构基因,由若干个编码区被非编码区互相间隔开但又连续镶嵌

而成,因此真核生物的基因称为断裂基因。

42.内含子:真核生物的结构基因中的非编码序列称为内含子。

43.启动子:RNA聚合酶与模板结合的部位,也是控制转录的关键部位,由起始部位、结

合部位、识别部位组成。启动子的核苷酸序列具有特殊性,在DNA上开始转录的第一个碱基定位+1,为起始部位,沿转录方向顺流而下的核苷酸序列均用正值表示;逆流而上的核苷酸序列均用负值表示。在—10区的一致序列是TATAAT,是RNA聚合酶的结合位点,又称为结合部位或Pribnow盒;在—35区是TTGACA,是RNA聚合酶的识别位点,为识别部位。

44.遗传密码与反密码:从mRNA分子的5’端AUG开始,每相邻的三个核苷酸为一组,代

表某种氨基酸或其它信息,这就是遗传密码或密码子。tRNA反密码环中的三联碱基与mRNA中的某些密码子反向配对,则称其为反密码子。

45.氨基酸的活化:在蛋白质合成过程中,氨基酸与tRNA结合为氨基酰-tRNA的过程称为

氨基酸的活化。

46.SD序列:原核生物mRNA起始密码子上游8—13个碱基处存在一段一致性序列,可与

小亚基16S—rRNA3’端互补序列配对结合,使起始密码准确定位于翻译起始点,称为SD序列。

47.多顺反子(polycistron):原核细胞中数个结构基因常串联为一个转录单位,转录生成的

mRNA可编码几种功能相关的蛋白质,为多顺反子。

48.开放阅读框(open rending frame,ORF):从mRNA5’端起始密码子AUG到3’端终止密码

子之间的核苷酸序列,各个三联体密码连续排列编码一个蛋白质多肽链。

49.顺式作用元件:真核生物中可影响自身基因表达活性的DNA序列,称为顺式作用元件,

按功能特性分为启动子、增强子和沉默子等。

50.反式作用因子:由某一基因表达产生的蛋白质因子,通过与另一基因的特异的顺式作用

元件相互作用(DNA—蛋白质相互作用),调节其表达,这种蛋白质因子称为反式作用因子。

51.阻遏(repression):如果基因对环境信号应答是被抑制,这种基因是可阻遏基因,可阻遏

基因表达产物水平降低的过程,称为阻遏。

52.组成性基因表达:对某些基因产物,在生命全过程中都是必需的或必不可少的,其表达

在几乎所有细胞中都持续表达或变化很小,这类基因表达被称为组成性基因表达。53.启动子:RNA聚合酶结合位点周围的一组转录控制组件,每一组件含7—20bp的DNA

序列。至少包括一个转录起始点以及一个以上的功能组件。这就是启动子。

54.cDNA文库:以mRNA为模板,利用反转录酶合成与mRNA互补的DNA,再复制成双

链cDNA片段,与适当载体连接后转入受体菌,这些受体菌包含了细胞所表达的基因信息,称为cDNA文库。

55.Plasmid::即质粒,是存在于细菌染色体外的小型环状双链DNA分子。质粒分子本身是

含有复制功能的遗传结构,能在宿主细胞独立自主地进行复制,并在细胞分裂时恒定地传给子代细胞。质粒带有某些遗传信息,所以会赋予宿主细胞一些遗传性状。因为质粒DNA有自我复制功能及所携带的遗传信息等特性,故可作为重组DNA操作的载体。56.Vector:即基因载体,或称克隆载体,是在基因工程中为“携带”感兴趣的外源DNA、

实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子,具有自我复制和表达的功能。其中,为使插入的外源DNA序列可转录、进而翻译成肽链而特意设计的克隆载体又称表达载体。克隆载体有质粒DNA、噬菌体DNA和病毒DNA,它们经适当改造后仍具有自我复制能力,或兼有表达外源基因的能力。

57.Restriction endonuclease:即限制性核酸内切酶,就是识别DNA的特定序列,并在识别

位点或其周围切割双链DNA的一类核酸内切酶。限制性核酸内切酶存在于细菌体内,与相伴存在的甲基化酶共同构成细菌的限制——修饰体系,限制外源DNA、保护自身DNA,对细菌遗传性状的稳定遗传具有重要意义。限制性核酸内切酶分为三类。重组DNA技术中常用的限制性核酸内切酶为Ⅱ类酶。

58.G蛋白:全称为GTP结合蛋白或GTP结合调节蛋白,广泛存在于各种组织的细胞膜上,

在受体与效应蛋白(酶或离子通道)之间起传递信息作用。G蛋白是由α、β和γ三个亚基构成的三聚体,不同来源的β和γ亚基十分相似,而α亚基结构不同,形成了不同的G蛋白。G蛋白的多样性决定了受体作用的专一性和功能上的差异。当配体与受体结合时,激活了G蛋白,原来结合在α亚基上的GDP被GTP取代,而使α亚基与β、γ二聚体分离而表现出活性,作用于效应酶,由效应酶催化产生第二信使。

59.CaM:即钙调蛋白,是细胞内重要的调节蛋白,由一条多肽链组成,有4个Ca2+结合

位点,当胞浆Ca2+增高,Ca2+与CaM结合,其构象发生改变而激活Ca2+—CaM激酶。

60.Receptor:即受体,是细胞膜上或细胞内能特异性识别生物活性物质并与之结合,将信

号向细胞内传递,并引起各种生物学效应的分子,化学本质主要是蛋白质,个别是糖脂。

位于细胞膜上的受体称膜受体,大多为镶嵌糖蛋白,而位于细胞浆和细胞核中的受体称为胞内受体,为DNA结合蛋白。受体在信息传递、药物、维生素及毒物等发挥生物学作用的过程中都起极为重要的作用。

61.secondary messenger:即第二信使,激素与受体结合后,靶细胞内产生的能转导膜外激

素信号的某些小分子化合物(如cAMP、cGMP、Ca2+、IP3等),在靶细胞内起信息传递和放大作用,这些靶细胞内的小分子化合物称为第二信使。

62.autophosphorylation:即自身磷酸化,当配体与单跨膜螺旋受体结合后,催化型受体大多

数发生二聚化,二聚体TPK被激活,彼此可使对方的某些酪氨酸残基磷酸化,这一过程称为自身磷酸化。

63.2、3—BPG支路:红细胞内的糖酵解的侧支循环,分支点是1,3—二磷酸甘油酸。因2,3

—BPG磷酸酶活性较二磷酸甘油酸变位酶活性低,2,3—BPG的生成大于分解,故红细胞内2,3—BPG升高。2,3—BPG可调节血红蛋白的运氧功能。

64.胆汁酸的肠肝循环:在肝细胞内合成的初级胆汁酸,随胆汁进入肠道,转变为次级胆汁

酸。肠道中约95%胆汁酸经门静脉被重吸收入肝,并同新合成的胆汁酸一起再次被排入肠道,此循环过程称为胆汁酸的肠肝循环。

65.黄疸:胆红素为金黄色物质,大量的胆红素扩散进入组织,可造成组织黄染,这一体征

称为黄疸。根据胆红素生成的原因可将黄疸分为三种类型。即溶血性黄疸、肝细胞性黄疸和阻塞性黄疸。

66.维生素:维生素是指机体维持正常功能所必需,但体内不能合成或合成量很少,必需由

食物供给的一组低分子量有机物质。

67.脂溶性维生素:维生素A、维生素D、微生物E和维生素K均为非极性疏水的异戊二烯

衍生物,不溶于水,溶于脂类及脂肪溶剂,故称为脂溶性维生素。

68.水溶性维生素:B族维生素和维生素C可溶于水,而不溶于脂溶剂,故称为水溶性维生

素。

69.糖基化位点:糖蛋白分子中能连接N—连接寡糖链的特定氨基酸组成的序列,称为糖基

化位点,N—连接寡糖链的糖基化位点为Asn—X—Ser/Thr。

70.病毒癌基因(virus oncogene):是一类存在于肿瘤病毒(大多数为逆转录病毒)中的,能

使靶细胞发生恶化转化的基因。

71.细胞癌基因(cellular oncogene):指存在于生物正常细胞基因组中的癌基因,也称为原癌

基因。正常情况下,这些基因处于静止或低表达状态,它对维持细胞正常功能具有重要作用。

72.抑癌基因(antioncogene):是存在于正常细胞基因组中的一类抑制细胞过度生长、增殖从

而遏制肿瘤形成的基因。这类基因的丢失或失活可导致肿瘤的发生。主要的抑癌基因有p53和Rb。

73.基因诊断:基因诊断是应用分子生物学和分子遗传学技术,通过检测致癌基因(内源或

外源)的存在、基因结构缺陷或表达异常,对人体状态和疾病作出诊断的方法。

74.基因治疗:基因治疗是用基因治疗疾病,指外源正常基因或治疗基因通过载体转移到人

体的靶细胞,进行修饰或表达,以达到治疗和改善疾病的目的的一种方法。

75.PCR(ploymerase chain reaction):PCR即聚合酶链反应。在模板、引物、4种dNTP和耐

热DNA聚合酶存在的条件下,特异性地扩增位于两段已知序列之间的DNA区段的酶促合成反应。

关于生物化学重点名词解释

两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 氨基酸的等电点:使氨基酸净电荷为零时溶液的pH值,用符号pI表示,是氨基酸的特征常数。 中性氨基酸pI = 1/2 ( pK1' + pK2' )???????? 酸性氨基酸pI = 1/2 ( pK1' + pKR' )碱性氨基酸pI = 1/2 ( pK2' + pKR' ) 必需氨基酸:指机体又必需,自身不能合成,需要从饮食中获得的氨基酸。 一个氨基酸的羧基与另一个氨基酸的氨基脱去一分子水而形成酰胺键,这个键称为肽键,产生的化合物叫做肽。 谷胱甘肽 (GSH):Cys 残基上的-SH是GSH的活性基团。GSH广泛分布于生物体内,是某些氧化还 原酶的辅酶。此外,可以用作巯基酶的保护剂。 构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 组成蛋白质的氨基酸都为α-氨基酸(除Pro外),都为L型(除Gly外),除Gly之外,其余氨 基酸都有手性碳原子,都具有旋光性。由于蛋白质中的Tyr、Trp 和 Phe 残基在紫外区有光吸收,所以蛋白质在 280nm 的光波长处有最大光吸收 蛋白质的一级结构:广义的一级结构指蛋白质中共价键连结的全部情况,包括肽链的数目,肽链中 氨基酸之间的连结方式,肽链中氨基酸的排列顺序,二硫键的位置;狭义的一级结构肽链中氨基酸的排列顺序。蛋白质的一级结构决定它的高级结构,即各个层次的结构所需的信息全都储存于一级结构中 蛋白质的二级结构:指多肽链本身通过氢键沿一定方向盘绕、折叠而形成的构象。天然蛋白质包括α-螺旋、β-折叠、β-转角、无规则卷曲等二级结构。 α-螺旋:蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。螺距为,每一圈含有个氨基酸残基,每个残基沿着螺旋的长轴上升,旋转100°。 β-折叠:?蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰胺氢之间形成的氢键维持的。这些肽链可以是平行排列(由N到C方向)或者是反平行排列。 结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 蛋白质的三级结构:指蛋白质在二级结构(二级结构、超二级结构和结构域)的基础上,主链构象和侧链构象相互作用,进一步盘曲折叠形成球状分子结构。 蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。

生物化学名词解释

生物化学:在分子水平研究生命体的化学本质及其生命活动过程中化学变化规律 自由能:自发过程中能用于作功的能量。 两性离子:在同一氨基酸分子中既有氨基正离子又有羧基负离子。 必需氨基酸:机体内不能合成,必需从外界摄取的氨基酸. 等电点:氨基酸氨基和羧基的解离度相等,氨基酸分子所带净电荷为零时溶液的pH值。 蛋白质的一级结构:蛋白质多肽链中氨基酸的排列顺序。 蛋白质的二级结构:多肽链沿着肽链主链规则或周期性折叠。 结构域:蛋白质多肽链在超二级结构基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 超二级结构:蛋白质分子中相邻的二级结构构象单元组合在一起成的有规则的在空间能辨认的二级结构组合体。 蛋白质的三级结构:在二级结构的基础上进一步以不规则的方式卷曲折叠形成的空间结构。 蛋白质的四级结构:由两条或两条以上的多肽链组成,多肽链之间以次级建相互作用形成的特定空间结构。 蛋白质的变性:在某些理化因素的作用下,维持蛋白质空间结构的次级键被破坏,空间结构发生改变而一级结构不变,使生物学活性丧失。 蛋白质的复性:变性了的蛋白质在一定条件下可以重建其天然构象,恢复生物学活性。 蛋白质的沉淀作用:蛋白质分子表面水膜被破坏,电荷被中和,蛋白质溶解度降低而沉淀。电泳:蛋白质分子在电场中泳动的现象。 沉降系数:一种蛋白质分子在单位离心力场里的沉降速度为恒定值,被称为沉降系数。 核酸的一级结构:四种核苷酸沿多核苷酸链的排列顺序。核酸的变性:高温、酸、碱等破坏核酸的氢键,使有规律的双螺旋变成无规律的“线团”。 核酸的复性:变性DNA经退火重新恢复双螺旋结构。 增色效应:变性核酸紫外吸收值增加。 减色效应:复性核酸紫外吸收值恢复原有水平。 Tm值:核酸热变性的温度,即紫外吸收值增加达最大增加量一半时的温度。

生物化学名词解释

生物化学名解解释 1、肽单元(peptide unit):参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Cα是两个肽平面的连接点,两个肽平面可经Cα的单键进行旋转,N—Cα、Cα—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6、酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考) 7、酶的活性中心 (active center of enzymes):酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。参与酶活性中心的必需基团有结合底物,使底物与酶形成一定构象复合物的结合基团和影响底物中某些化学键稳定性,催化底物发生化学反应并将其转化为产物的催化基团。活性中心外还有维持酶活性中心应有的空间构象的必需基团。 8、酶的变构调节 (allosteric regulation of enzymes):一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称酶的变构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。 9、酶的共价修饰(covalent modification of enzymes):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。 13、糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖

(完整版)生物化学名词解释大全

第一章蛋白质 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI 表示。 4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。 5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的 近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子 结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则 的、在空间上能辨认的二级结构组合体。 16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏 水侧链避开水相而相互聚集而形成的作用力。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当 两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解 度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并 恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所 带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作

生化生物化学名词解释(1)重点知识总结

第一章 蛋白质的结构与功能 等电点(isoelectric point, pI)在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 蛋白质的一级结构(pri mary structure): 蛋白质分子中,从N-端至C-端的氨基酸残基的排列顺序。 蛋白质的二级结构(se condary structure): 蛋白质的二级结构是指多肽链中主链骨架原子的局部空间排布,不涉及氨基酸侧链的构象。 肽单元: 参与肽键的6个原子—— Cα1、C、H、O、N、Cα2 处于同一平面,称为肽单元α-helix:以α-碳原子为转折点,以肽键平面为单位,盘曲成右手螺旋状的结构。 螺旋上升一圈含3.6个氨基酸残基,螺距0.54nm 氨基酸的侧链伸向螺旋的外侧。 螺旋的稳定是靠氢键。氢键方向与长轴平行。 β-折叠:蛋白质肽链主链的肽平面折叠呈锯齿状 结构特点:锯齿状;顺向平行、反向平行 稳定化学键:氢键 蛋白质的三级结构(tert iary structure) : 蛋白质的三级结构是指在各种二级结构的基础上再进一步盘曲或折迭。也就是整条肽链所有原子在三维空间的排布位置。 结构域(domain) : 分子量大的蛋白质三级结构常可分割成一个和数个球状或纤维状的区域,折叠得较为紧密,各有独特的空间构象,并承担不同的生物学功能。 分子伴侣 (chaperon): 帮助形成正确的高级结构 使错误聚集的肽段解聚 帮助形成二硫键 蛋白质的四级结构(quar ternary structure):蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用 亚基(subunit):二条或二条以上具有独立三级结构的多肽链组成的蛋白质。其中,每条具有独立三级结构的多肽链 模体一个蛋白质分子中几个具有二级结构的肽段,在空间位置上相互接近,形成特殊的空间构象,称为“模体”(motif) 蛋白质的变性: 天然蛋白质在某些物理或化学因素作用下,其特定的空间结构被破坏,而导致理化性质改变和生物学活性的丧失,称为蛋白质的变性作用 (denaturation)。 蛋白质的复性当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能 盐析(salt precipitation)是将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质沉淀。 电泳蛋白质在高于或低于其pI的溶液中为带电的颗粒,在电场中能向正极或负极移动。这种通过蛋白质在电场中泳动而达到分离各种蛋白质的技术, 称为电泳(elctrophoresis) 第二章 核酸的结构与功能 脱氧核糖核酸(deoxyribonucleic acid, DNA):主要存在于细胞核内,是遗传信息的储存和携带者,是遗传的物质基础。 核糖核酸(ribonucleic acid, RNA): 主要分布在细胞质中,参与遗传信息表达的各过程。DNA和RNA的一级结构:核苷酸的排列顺序,即碱基的排列顺序。

生化名词解释

生化名词解释 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essential amino acid)3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(protein secondary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( van der Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis)24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds)3.不对称比率(dissymmetry ratio)4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect)10.减色效应(hypo chromic effect)11.噬菌体(phage) 12.发夹结构(hairpin structure)13.DNA 的熔解温度(melting temperature T m) 14.分子杂交(molecular hybridization)15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(K m 值) 2.底物专一性(substrate specificity)3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy)14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1.生物氧化(biological oxidation) 2.呼吸链(respiratory chain) 3.氧化磷酸化(oxidative phosphorylation)4.磷氧比P/O(P/O) 5.底物水平磷酸化(substrate level phosphorylation) 6.能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle) 4.发酵(fermentation) 5.变构调节(allosteric regulation) 6.糖酵解途径(glycolytic pathway) 7.糖的有氧氧化(aerobic oxidation) 8.肝糖原分解(glycogenolysis) 9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme) 11.糖核苷酸(sugar-nucleotide) 第六章脂类代谢

生化名词解释 (4)

. . 名词解释 1、呼吸链:呼吸链又叫电子传递链,是由位于线粒体内膜(真核)中的一系列电子传递体按标准 氧化还原电位,由低到高顺序排列组成的一种能量转换体系。 2、生物氧化:能源物质在活细胞中氧化分解,释放化学能并转化为生物能的生化过程,称 为生物氧化,又叫细胞氧化或细胞呼吸。 3、联合脱氨基作用:将转氨基作用与谷氨酸氧化脱氨基作用联合进行,促进各种氨基酸脱去氨基 生成α-酮酸和氨的过程称氨基酸的联合脱氨基作用。例如:丙氨酸的联合脱氨基作用。 4、DNA 内切酶:具有识别双链DNA 分子中特定核苷酸序列,并由此切割DNA 双链的核酸内切 酶统称为限制性核酸内切酶。 5、酵解与发酵:.酵解 葡萄糖经1,6-二磷酸果糖和3-磷酸甘油酸降解,生成丙酮酸并产生A TP 的代谢过程。 6、分子杂交:不同来源的变性DNA ,若彼此之间有部分互补的核苷酸顺序,当它们在同一溶液中 进行热变性和退火处理时,可以得到分子间部分配对的缔合双链,此过程叫分子杂交。 7、增色效应:伴随着变性,核酸的紫外吸收值增加,此现象为增色现象。 减色效应:复制过程中,紫外吸收值降低,次现象为减色现象。 8、逆转录:以RNA 为模板,依靠逆转录酶的作用,以四种脱氧核苷三磷酸(dNTP)为底物,产生 DNA 链。 9、等电点:分子所带正负电荷相等,净电荷为零的环境PH 成为等电点。 10、活性中心:酶分子上直接参与底物的结合并对其进行催化的区域。 11、酶的活性中心:酶分子上由与催化功能有关的原子或基团构成的特殊的空间结构,称为酶的活 性中心 C CH COOH CH 2COOH C O CH 2CH 2COOH CH COOH NH 2CH 2谷氨NH 2CH 3CH 3O 丙氨酸丙酮酸谷丙转或或NADPH H +++H +NH 3酸脱氢酶α-酮戊二酸

生化名词解释总结

第二章氨基酸 1、构型(configuration)一个有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构型的改变往往使分子的光学活性发生变化。 2、构象(conformation)指一个分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 3、旋光异构:两个异构化合物具有相同的理化性质,但因其异构现象而使偏振光的旋转方向不同的现象。 4、等电点(pI,isoelectric point)使分子处于兼性分子状态,在电场中不迁移(分子的净电荷为零)的pH值。 第三章蛋白质的结构 1、肽(peptides)两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 2、肽键(peptide bond)一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。 3、肽平面:肽链主链上的肽键因具有双键性质,不能自由旋转,使连接在肽键上的6个原子共处的同一平面。 4、蛋白质一级结构:蛋白质一级结构(primary structure) 指蛋白质中共价连接的氨基酸残基的排列顺序。 5、蛋白质二级结构:蛋白质二级结构:肽链中的主链借助氢键,有规则的卷曲折叠成沿一维方向具有周期性结构的构象。 6、超二级结构:若干相邻的二级结构单元(螺旋、折叠、转角)组合在一起,彼此相互作用,形成有规则在空间上能辨认的二级结构组合体、充当三级结构的构件,称为超二级结构(super-secondary structure),折叠花式(folding motif)或折叠单位(folding unit) 7、结构域:在较大的球状蛋白质分子中,多肽链往往形成几个紧密的相对独立的球状实体,彼此分开,以松散的肽链相连,此球状实体就是结构域 8、蛋白质三级结构:指一条多肽链在二级结构或者超二级结构甚至结构域的基础上,进一步盘绕,折叠,依靠共价键的维系固定所形成的特定空间结构成为蛋白质的三级结构。 9、蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。由一条肽链形成的蛋白质没有四级结构。 10、蛋白质三维结构 11、氢键:氢原子与电负性的原子X共价结合时,共用的电子对强烈地偏向X的一边,使氢原子带有部分正电荷,能再与另一个电负性高而半径较小的原子Y结合,形成的X—H┅Y型的键。 12、疏水作用力:分子中存在非极性基团(例如烃基)时,和水分子(广义地说和任何极性分子或分子中的极性基团)间存在相互排斥的作用,这种排斥作用称为疏水力。 13、Sanger测序 14、Edman降解测序:从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 第四章蛋白质结构与功能 1、协同效应:寡聚蛋白分子中,一个亚基构象和功能的改变影响其他亚基构象和功能状态的改变;有正协同效应和负协同效应的不同。 2、波尔效应: 3、ELISA4: 4、western blot:免疫印迹测定,原理:蛋白质经凝胶电泳分离,通过转移电泳将蛋白质条带转移硝酸纤维素膜上,进行酶联免疫反应。 步骤:SDS电泳→转移电泳→硝酸纤维膜→封闭→一抗→酶标二抗→显色反应

生物化学名词解释集锦

生物化学名词解释集锦 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essential amino acid) 3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(protein secondary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( van der Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis) 24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds) 3.不对称比率(dissymmetry ratio) 4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect) 10.减色效应(hypo chromic effect) 11.噬菌体(phage) 12.发夹结构(hairpin structure) 13.DNA 的熔解温度(melting temperature T m) 14.分子杂交(molecular hybridization) 15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(K m 值) 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1. 生物氧化(biological oxidation) 2. 呼吸链(respiratory chain) 3. 氧化磷酸化(oxidative phosphorylation) 4. 磷氧比P/O(P/O) 5. 底物水平磷酸化(substrate level phosphorylation) 6. 能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle) 4.发酵(fermentation) 5.变构调节(allosteric regulation) 6.糖酵解途径(glycolytic pathway) 7.糖的有氧氧化(aerobic oxidation) 8.肝糖原分解(glycogenolysis) 9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme) 11.糖核苷酸(sugar-nucleotide) 第六章脂类代谢

生化名词解释

核酸的增色效应:核酸变性后,在260nm处的吸收值上升的现象。 核酸的减色效应:当变性的DNA经复性以重新形成双螺旋结构时,其溶液的A260值则减小,这一现象称为减色效应。 核酸的TM值:加热变性使DNA双螺旋结构丧失一半时的温度。 DNA的双螺旋:DNA的两条链围着同一中心轴旋绕而成的一种空间结构。 核酸分子杂交:两条来源不同但有核苷酸互补关系的DNA单链分子之间,或DNA 单链分子与RNA分子之间,在去掉变性条件后,互补的区段能够复性形成双链DNA分子或DNA/RNA异质双链分子。 核小体:真核生物染色质的基本结构单位,是DNA绕组蛋白核心盘旋所形成的串珠结构。 退火:热变性的DNA在缓慢冷却得条件下,两条单链再重新结合恢复双螺旋结构,这种复性叫退火。 核酸变性:天然核酸双螺旋区的氢键断裂,变成单链,但并不涉及共价键断裂的现象。 核酸复性:变性的DNA在适当的条件下,可使两条彼此分开的链重新缔合成为双螺旋结构,使其物理.化学性质及生活活性得到恢复的过程。 必需氨基酸:人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。 氨基酸的等电点:使氨基酸静电荷为零时溶液的PH值。 蛋白质的变性:蛋白质受到某些理化因素的影响,其空间结构发生改变,蛋白质的理化性质和生物学功能随之改变或丧失,但未导致蛋白质一级结构改变的现象。 蛋白质的复性:高级结构松散了的变性蛋白质通常在除去变性因素后,可缓慢地重新自发折叠形成原来的构象,恢复原有的理化性质和生物活性的现象。 盐析:加入大量的中性盐使蛋白质沉淀析出的现象。 盐溶: 球蛋白溶于稀得中性盐溶液,其溶解度随稀盐溶液浓度增加而增大的现象。 同源蛋白质:不同物种中具有相同或相似功能的蛋白质或具有明显序列同源性的蛋白质。 蛋白质的一级结构:多肽链内氨基酸残基从N末端到C末端的排列顺序,是蛋白质最基本的结构。 蛋白质的二级结构:多肽链主链的折叠产生由氢键维系的有规律的构象。 蛋白质的三级结构:由二级结构元件构建成的总三维结构。 蛋白质的四级结构:由两条或两条以上具有三级结构的多肽链聚合而成,有特定三维结构的蛋白质构象。 蛋白质的超二级结构:蛋白质中相邻的二级结构单位组合在一起,形成有规律的在空间上能辨认的二级结构的组合体。 结构域:多肽链在二级结构或超二级结构的基础上形成三级结构局部折叠区,是相对独立的紧密球状实体。 辅酶:与酶蛋白结合较松弛。用透析法能够除去的小分子有机物。 辅基:与酶蛋白结合较紧密,常以共价键结合,透析不能除去的小分子有机物及金属离子。 酶活力:在一定条件下所催化的某一化学反应速度的快慢,即酶促反应的能力。酶的活性中心:指必需基团在一级结构上可能相距遥远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。米氏常数:酶反应速度为最大速度一半时的底物浓度。 激活剂:能提高酶活性的物质 抑制剂:引起抑制作用的物质。 不可逆抑制:抑制剂与酶的必需基团以共价键结合而引起酶活力丧失,不能用透析,超滤等物理方法除去抑制剂而恢复酶活性。 可逆抑制剂:酶与抑制剂非共价地可逆结合,当用透析,超滤等方法除去抑制剂剂后酶的活性可以恢复。 别构酶:具有别构效应的酶 同工酶:催化相同的化学反应,但其蛋白质分子结构,理化性质和免疫能力等方面都存在明显差异的一组酶。 酶原激活:酶原转变为有活性的酶的过程。 单体酶:一般仅有一条多肽链。 寡聚酶:酶蛋白是寡聚蛋白质,由几个至几十个亚基组成,以非共价键连接。多酶复合体:由几个酶靠非共价键嵌合而成 诱导契合:当酶分子与底物分子接近时,酶分子受底物分子诱导,其构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合进行反应。 糖酵解:是将葡萄糖降解为丙酮酸并伴随ATP生成的一系列反应。 底物水平磷酸化:产生ATP等高能分子的方式。 回补反应:酶催化的,补充柠檬酸循环中代谢产物供给的反应。 激酶:从高能供体分子转移到特定靶分子的酶。 糖的异生作用:由非糖前体合成葡萄糖的过程。 呼吸链:一系列的氢和电子传递体称为呼吸链。 氧化磷酸化:氧化与磷酸化的偶联作用称为氧化磷酸化。 生物氧化:有机分子在生物细胞内氧化分解,最终生成二氧化碳和水,并释放能量的过程。 能荷:在总腺苷酸系统中所负荷的高能磷酸基的数量。 磷氧比:消耗的无机磷酸的磷原子数与消耗分子氧的氧原子数之比。 解偶联剂:抑制偶联磷酸化的化合物。 高能磷酸化合物:分子中含有磷酸基团,被水解下来时释放出大量的自由能,这类高能化合物加高能磷酸化合物。 电子传递抑制剂:能够阻断呼吸链中某部位电子传递的物质。 必需脂肪酸:机体生命活动必不可少,但机体自身又不能合成,必需由食物供给的多不饱和脂肪酸。β—氧化:脂肪酸在体内氧化时在羧基端的β碳原子上进行氧化,碳链逐次断裂,每次断下一个二碳单位。 α—氧化:在α碳原子上发生氧化作用,分解出二氧化碳,生成缩短了一个碳原子的脂肪酸。 ω—氧化:脂肪酸的ω端甲基发生氧化,先转变为羟甲基,继而在氧化成羧基,从而形成α,ω—二羧酸的过程。 酮体:在肝脏中,脂肪酸氧化分解的中间产物乙酰乙酸,β—羟基丁酸及丙酮三者统称为酮体。 生物固氮:是微生物,藻类和与高等生物共生的微生物通过自身的固氮酶复合物把分子氮变成氨的过程。 氨的同化:把生物固氮和硝酸盐还原形成的无机态NH3,进一步同化转变成含氮有机物的过程。 一碳单位:在代谢过程中,某些化合物可以分解产生具有一个碳原子的基团。生糖氨基酸:能通过代谢转变成葡萄糖的氨基酸。 生酮氨基酸:分解代谢过程中能转变成乙酰乙酰辅酶A的氨基酸。 联合脱氨基作用:转氨基作用与氧化脱氨基作用配合进行的脱氨基作用。 复制:以亲代DNA分子的双链为模板,按照碱基互补配对原则,合成出与亲代DNA分子完全相同的两个双链DNA分子的过程。 转录:以DNA分子中一条链为模板,按碱基互补配对原则,合成出一条与模板DNA链互补的RNA分子的过程。 翻译:在mRNA指令下,按照三个核苷酸决定一个氨基酸的原则,把mRNA上的遗传信息转化成蛋白质中特定的氨基酸序列的过程。 半保留复制:每个子代DNA分子中有一条链来自亲代DNA,另一条链是新合成的。这样的复制方式叫半保留复制。 Klenow片段:保留5’→3’聚合酶和3’→5’外切酶活力的片段。 复制子:独立复制的单位叫复制子。 前导链:以3’→5’走向的亲代链为模板,子代链就能连续合成,这条链叫前导链。 后随链:以5’→3’走向的亲代链为模板,子代链按5’→3’的方向不连贯的合成许多小片段,然后由DNA聚合酶Ⅰ切除小片段上的RNA引物,填补片段之间的空缺,最后由连接酶把它们连接成一条完整的子代链,这条链叫后随链。半不连续复制:在复制叉上新生的DNA链一条按5’→3’的方向连续合成;另一条按5’→3’的方向不连续合成,因此叫半不连续复制。 冈崎片段:后随链合成的较小的DNA片段叫冈崎片段。 逆转录:以RNA为模板合成DNA的过程。 转化:一个嘌呤碱基被另一个嘌呤碱基置换或一个嘧啶碱基被另一个嘧啶碱基置换。 颠换:一个嘌呤碱基被嘧啶碱基置换或一个嘧啶碱基被嘌呤碱基置换。 启动子:转录起始的特殊序列。 终止子:控制转录终止的部位。 基因工程:在分子水平上利用人工方法对DNA进行重组的技术。 模板连(反义链,负链):在一个转录单位中,双链DNA分子中作为模板被转录的一条链。 编码链(有义链,正链):与模板链互补的DNA链。 遗传密码:DNA中或(mRNA)中的核苷酸序列与蛋白质中氨基酸序列之间的对应关系。 密码子:mRNA上每3个相邻的核苷酸编码蛋白质多肽链的一个氨基酸,这三个核苷酸就称为一个密码子。 简并性:同一种氨基酸有两个或更多密码子的现象。 同义密码子:对应同一种氨基酸的不同密码子。 多核糖体:由一个mRNA分子与一定数目的单个核糖体结合而成的念珠状的结构。氨基酸的活化:氨基酸与tRNA相连,形成氨酰-tRNA的过程。 SD序列:原核生物mRNA起始的AUG序列上有10个左右的位置通常含有一段富含嘌呤碱基的序列,与原核生物16SrRNA的3’端的嘧啶碱基进行互补配对,以帮助从起始AUG处开始翻译。 关键酶(标兵酶):催化限速步骤的酶。 反馈抑制:在系列反应中对反应序列前头的标兵酶发生的抑制作用,从而调节整个系列反应速度。 前馈激活:在一系列,前面的代谢物可对后面的酶起激活作用。 单价反馈抑制;指一个单一代谢途径的末端产物对催化关键步骤的酶活性,通常是第一步反应酶活性的抑制作用。 二价反馈抑制:在分支代谢途径中,催化共同途径第一步反应的酶活性可以被两个或两个以上的末端产物抑制的现象。 顺序反馈抑制:分支代谢途径中的两个末端产物,不能直接抑制代谢途径中的第一个酶,而是分别抑制分支点后的反应步骤,造成分支点上中间产物的积累,这种高浓度的中间产物再反馈抑制第一个酶的活性。 协同反馈抑制:在分支代谢途径中,几种末端产物同时都过量,才对途径中的第一个酶具有抑制作用。若某一末端产物单独过量则对途径中的第一个酶无抑制作用。 累积反馈抑制:在分支代谢途径中,任何一种末端产物过量时都能对共同途径中的第一个酶起抑制作用,而且各种末端产物的抑制作用互不干扰。 同工酶反馈抑制:第一个限速步骤由一组同工酶催化,分支代谢的几个最终产物往往分别对其中一个同工酶发生抑制作用,从而起到与累积的反馈抑制相同的效应。 操纵子:在细菌基因组中,编码一组在功能上相关的蛋白质的几个结构基因,与共同的控制位点组成的一个基因表达的协同单位。 衰减子:位于结构基因上游前导区调节基因表达的功能单位,前导区转录的前导mRNA通过构象变化终止或减弱转录。

生化名词解释

生化名词解释1 1.氨基酸的等电点:当溶液在某一特定的pH值时,氨基酸以两性离子的形式存在,正电荷数与负电荷数相等,净电荷为零,在直流电场中既不向正极移动也不向负极移动,这时溶液的pH值称为该氨基酸的等电点,用pI表示。 2.肽键:是指键,是一个氨基酸的α–COOH基和另一个氨基酸的α–NH2基所形成的酰胺键。 3.多肽链:由许多氨基酸残基通过肽键彼此连接而成的链状多肽,称为多肽链。 4.肽平面:肽链主链的肽键具有双键的性质,因而不能自由旋转,使连接在肽键上的六个原子共处于一个平面上,此平面称为肽平面。 5.蛋白质的一级结构:多肽链上各种氨基酸残基的排列顺序,即氨基酸序列。 6.肽单位:多肽链上的重复结构,如Cα–CO–NH–Cα称为肽单位,每一个肽单位实际上就是一个肽平面。 7.多肽:含有三个以上的氨基酸的肽统称为多肽。 8.氨基酸残基:多肽链上的每个氨基酸,由于形成肽键而失去了一分子水,成为不完整的分子形式,这种不完整的氨基酸被称为氨基酸残基。 9.蛋白质二级结构:多肽链主链骨架中,某些肽段可以借助氢键形成有规律的构象,如α–螺旋、β–折叠和β–转角;另一些肽段则形成不规则的构象,如无规卷曲。这些多肽链主链骨架中局部的构象,就是二级结构。 10.超二级结构:在球状蛋白质分子的一级结构顺序上,相邻的二级结构常常在三维折叠中相互靠近,彼此作用,从而形成有规则的二级结构的聚合体,就是超二级结构。 11.结构域:在较大的蛋白质分子里,多肽链的三维折叠常常形成两个或多个松散连接的近似球状的三维实体,即是结构域。它是球蛋白分子三级结构的折叠单位。 12.蛋白质三级结构:指一条多肽链在二级结构(超二级结构及结构域)的基础上,进一步的盘绕、折叠,从而产生特定的空间结构。或者说三级结构是指多肽链中所有原子的空间排布。维系三级结构的力有疏水作用力、氢键、范德华力、盐键(静电引力)。另外二硫键在某些蛋白质中也起着非常重要的作用。 13.蛋白质四级结构:由相同或不同的亚基(或分子)按照一定的排布方式聚合而成的聚合体结构。它包括亚基(或分子)的种类、数目、空间排布以及相互作用。 14.二硫键:指两个硫原子之间的共价键,在蛋白质分子中二硫键对稳定蛋白质分子构象起重要作用。 15.二面角:在多肽链中,Cα碳原子刚好位于互相连接的两个肽平面的交线上。Cα碳原子上的Cα–N和Cα–C都是单键,可以绕键轴旋转,其中以

生化常考名词解释

1.增色效应:变性后的DNA 在260nm 的紫外光吸收有明显升高。 2.DNA 的变性:碱基对间的氢键断裂,双螺旋结构分开,成为两条单链的DNA 分子,即改变了DNA 的二级结构,但并不破坏一级结构。 3.Tm 值:50%的DNA 分子发生变性时的温度。 4.肽键:蛋白质分子中不同氨基酸是以相同的化学键连接的,即前一个氨基酸分子的a-羧基与下一个氨基酸分钟的a-氨基缩合,脱去一个水分子形成肽,肽链上的C-N 化学键称为肽键。 5.蛋白质一级结构:蛋白质多肽键氨基酸的组成和排列顺序。 6.电游:在直流电中,带正电何的蛋白质分子向阴极移动,带负电的向阳极移动。 7.氨基酸的等电点(pl):氨基酸解离成两性离子或正电荷与负电荷相等,也就是静电何为零,其在的溶液中pH 值就是浓氨酸的等电点。 8.酶的活性中心:酶分子上直接与底物结合并与其催化性能直接有关的一些基因所构成的微区。 9.变构酶:守变构调节的酶。 10.米氏常数(即Km):为酶促反映速度为最大速度一半时的底物浓度。 11.同工酶:催化相同的无化学反应,但酶蛋白的分子结构,理化性质和免疫学性质不同的一组酶。 12.酶的抑制剂和激活酶:凡能使酶的活性下降并不引起酶蛋白质变性的物质为酶的抑制剂,能使酶由无活性变为有活性或促酶活性提高的物质。 13.生物膜:是构成各种细胞器的内膜系统,如线粒体膜、内质网膜、高尔基体膜等,统称为生物膜。 14.钾-钠泵:细胞内外永远存在钾钠离子的浓度差,这种浓度差靠细胞上的特异蛋白来维持的,它能水解ATP并利用ATP 水解所释放的能量,蒋钠从细胞内运向细胞外,将钾从细胞外运向细胞内。 15.受体:细胞膜上或细胞内能识别生物活性分子并与之结合的生物大分子 16.糖酵解:是在无氧条件下,把葡萄糖转变为乳酸(三碳糖)并产生ATP 的一系列反应。 17.柠檬酸循环:又称三羧酸循环,是指在有氧条件下,葡萄糖氧化生成的乙酰辅酶A 通过与草酰乙酸生成柠檬酸,进入循环被氧化分解为一碳的CO2 和水,同时释放能量的循环过程。 18.葡萄糖异生作用:非糖物质在肝.肾中转变成葡萄糖和糖元的过程,非糖物质转化为糖代谢的中间产物后,在相应酶催化下,糖酵解的三个不可逆反应,利用糖酵解途径,其它酶生成葡萄糖的途径。 19.生物氧化:营养物质在生物体内氧化分解成H2O 和CO2 并释放能量的过程称为生物氧化。 20.氧化磷酸化:氢沿着呼吸链传递给氧形成的同时,伴有ADP 磷酸化为ATP 的过程,氧化作用释放能量,磷酸化吸收能量俩个反应偶联在一起。 21.底物水平磷酸化:在底物被氧化的过程中,底物分子形成高能键,由此高能键提供能量使ADP 磷酸化生成ATP 的过程称为底物水平磷酸化。此过程与呼吸链的作用无关。 22.解偶联作用:在氧化磷酸过程中,底物的脱氢氧化与ADP 的磷酸化是过程能量进行偶联的,某些物质能解除这个偶联过程,其结果是底物的脱氢氧化继续进行,同样有电子传递和氧气消耗,也有能量释放,但却不能利用所释放的能量进行ADP 的磷酸化,不能生成ATP. 23.酮体:脂肪酸在肝细胞中的氧化不很完全,经常出现一些脂肪酸氧化的中间产物,即乙酰乙酸、β –羟丁酸和丙酮,统称为酮体。 24.a-氧化:每一次氧化,先去一个碳原子即羟酸碳原子,生成减了一个碳原子的脂肪酸和CO2 的氧化过程。 25.蛋白质的生理价值:蛋白质的生理价值是指饲料蛋白质被动物机体合成组织蛋白质的利用率。 26.转氨基作用:在转氨酶的催化下,将某一氨基酸的α –氨基转移到另一种α –酮酸的酮基上,生成相应的α –酮酸和另一种氨基酸的作用(赖氨酸、脯氨酸、羟脯氨酸除外) 27.中心法则: 28.转录:以DNA 的某些片段为模板,合成与之相应的各种RNA。通过转录把遗传信息转抄到某些RNA 分子上。 29.翻译:以RNA 为模板,指导合成相应的各种蛋白质,这个过程称为翻译。 30.半保留半不连续复制:DNA 复制时子链双链中有一条链来源于母链,故称半保留复制。以DNA 母链双链为模板合成子链时,其中一条子链的合成是不连续的,而另一条链的合成是连续的,故称半不连续复制,合称半保留半不连续复制。 31.遗传密码:把排列在DNA 或其转录物RNA 链中的核甘酸顺序与蛋白质的氨基酸排列顺序联系起来的关系。

相关文档