文档视界 最新最全的文档下载
当前位置:文档视界 › 信号与系统课程作业

信号与系统课程作业

信号与系统课程作业
信号与系统课程作业

一、题目

1.已知信号f(t)=sin(20πt)+sin(80πt),用如图所示的采样频率为fs=100Hz,大小为1的信号对其进行采

样,使用MATLAB编程,

(1)绘制采样后的信号时域上的波形图;

(2)对采样后的信号进行频谱分析,画出其幅度谱;

(3)要从采样信号中恢复出原始信号f(t),在MATLAB中设计滤波器,画出滤波后的幅度谱;

(4)将信号f(t)加载到载波信号s(t)=cos(500πt)上,画出调制后信号的波形图和幅度谱。

二、原理

1、信号的采样

“取样”就是利用从连续时间信号f(t)中“抽取”一系列离散样本值的过程。这样得到的离散信号称为取样信号。采样信号f(t)可以看成连续信号f(t)和取样脉冲序列s(t)的乘积。其中取样脉冲序列s(t)也称为开关函数。如果其各脉冲间隔时间相同,均为Ts,就称为均匀取样。Ts称为取样周期,fs=1/Ts 称为取样频率或取样率,ωs=2πfs=2π/Ts称为取样角频率。

如果f(t)?F(jω),s(t)?S(jω),则由频域卷积定理,得取样信号fs(t)的频谱函数为

本题的取样脉冲序列s(t)是周期为Ts=0.01s的冲激函数序列δTs,也就是冲激取样。而冲激序列δTs(这里T=Ts,Ω=2π/Ts=ωs)的频谱函数也是周期冲激序列,即

2、采样定理

所谓模拟信号的数字处理方法就是将待处理模拟信号经过采样、量化和编码形成数字信号,再利用数字信号处理技术对采样得到的数字信号进行处理。

一个频带限制在(0,fc)Hz的模拟信号m(t),若以采样频率fs≥2fc对模拟信号m(t)进行采样,得到最终的采样值,则可无混叠失真地恢复原始模拟信号m(t)。

其中,无混叠失真地恢复原始模拟信号m(t)是指被恢复信号与原始模拟信号在频谱上无混叠失真,并不是说被恢复信号与原始信号在时域上完全一样。由于采样和恢复器件的精度限制以及量化误差等存在,两者实际是存在一定误差或失真的。奈奎斯特频率:通常把最低允许的采样频率fs=2fc称为奈奎斯特频率。

3、信号的重构

设信号f(t)被采样后形成的采样信号为fs(t),信号的重构是指由fs(t)经过插处理后,恢复出原来的信号f(t)的过程。因此又称为信号恢复。

在采样频率ωs≥2ωm的条件下,采样信号的频谱Fs(jω)是以ωs为周期的谱线。选择一个理想低通滤

波器,使其频率特性H(jω)满足:

?

?

?

>

<

=

c

c j

H

ω

ω

ω

ω

ω

Ts

)

(

式中的ωc称为滤波器的截止频率,满足ωm≤ωc≤ωs/2。将采样信号通过该理想低通滤波器,输出信号的频谱将与原信号的频谱相同。因此,经过理想滤波器还原得到的信号即为原信号本身。

通过以上分析,得到如下的时域采样定理:一个带宽为ωm的带限信号f(t),可唯一地由它的均匀取样信号fs(nTs)确定,其中,取样间隔Ts<π/ωm,该取样间隔又称为奈奎斯特(Nyquist)间隔,最低允许取样频率fs=2fm就是奈奎斯特频率。

使用matlab的sinc(x)的函数,sinc(x) 代表的是sin(pix)/(pix) 。

4、调制信号

调制信号是原始信息变换而来的低频信号。调制本身是一个电信号变换的过程。调制信号去改变载波信号的某些特征值(如振幅、频率、相位等),导致载波信号的这个特征值发生有规律的变化,这个规律是调制信号本身的规律所决定的。

载波是被调制以传输信号的波形,一般为正弦波。一般要求正弦载波的频率远高于调制信号的带宽,否则会发生混叠,使传输信号失真。我们一般需要发送的数据的频率是低频的,如果按照本身的数据的频率来传输,不利于接收和同步。使用载波传输,我们可以将数据的信号加载到载波的信号上,接收方按照载波的频率来接收数据信号,有意义的信号波的波幅与无意义的信号的波幅是不同的,将这些信号提取出来就是我们需要的数据信号。

二.源程序(附源程序说明)

fy='sin(20*pi*t)+sin(80*pi*t)'; %原信号

%第一问:对信号采样

fs=100;%采样频率

Ts = 1/fs;%采样周期

tp=0.1;

t1 = -tp:Ts:tp;%采样时间序列

f1 = [fs*k2/m2,fs*k1/m1];%设置采样信号的频率数组

t = t1;

fz = eval(fy);%获取采样序列

%画采样序列波形

figure

subplot(111),stem(t,fz,'.');

title('采样信号时域图')

xlabel('t(s)'),ylabel('y(t)')

line([min(t),max(t)],[0,0]);

grid on

%第二问:画采样信号频谱

FZ = fz*exp(-1j*(1:length(fz))'*w);%采样信号的离散时间傅里叶变换subplot(111),plot(f1,abs(FZ),'m');

title('采样信号幅度谱谱')

xlabel('f(Hz)'),ylabel('FZ')

grid on

%第三问:信号的恢复及频谱函数

T = 1/fs;%采样周期

dt = T/10; %时间间隔,在每个抽样点前面插入9个值

tp = 0.1;%时间围赋值

t = -tp:dt:tp; %时间围

n = -tp/T:tp/T;%计算在重构的时间区间之有多少个采样周期

TMN = ones(length(n),1)*t-n'*T*ones(1,length(t));%生成TMN矩阵

fh = fz*sinc(fs*TMN);%由采样信号恢复原信号

k1 = 0:999; k2 = -999:-1;

m1 = length(k1);m2 = length(k2);

w = [-2*pi*k2/m2,2*pi*k1/m1];%频率变量

FH = fh*exp(-1j*(1:length(fh))'*w);%恢复后的信号的离散时间傅里叶变换figure

%画滤波后的频谱

f = [10*fs*k2/m2,10*fs*k1/m1];%频率围

subplot(111),plot(f,abs(FH),'g')

title('滤波后信号的幅度谱');

xlabel('f(Hz)'),ylabel('FH');

axis([-100 100 0 max(abs(FH))+2]);

grid on

%第四问:调制

T = 1/fs;

dt = T/10; tp = 0.1;

t = -tp:dt:tp; n = -tp/T:tp/T;

k1 = 0:999; k2 = -999:-1;

m1 = length(k1);m2 = length(k2);

ft = [10*fs*k2/m2,10*fs*k1/m1];%频率围

yc=cos(500*pi*t);%载波信号

fc= eval(fy);

y=fc.*yc;%调制后的信号

FY = y*exp(-1j*(1:length(y))'*w);%已调信号的离散时间傅里叶变换%画调制后信号波形

figure

subplot(211),stem(t,y,'.');

title('已调信号')

xlabel('t(s)'),ylabel('y(t)')

line([min(t),max(t)],[0,0]);

grid on

%画调制后信号频谱

subplot(212),plot(ft,abs(FY),'m');

title('已调信号幅度谱')

xlabel('f(y)'),ylabel('FY')

grid on

四、运行结果与分析

1、第一问

分析:采样信号在时域的表示为无穷多冲激函数的线性组合,其权值为原始信号在对应采样时刻的定义值。

2、第二问

分析:采样信号fs(t)的频谱

就是将原始信号f(t)的频谱在频

率轴上以采样角频率ωs为周期

进行周期延拓后的结果(幅度为

原频谱的1/Ts)。由取样信号fs(t)

的频谱可以看出,如果ωs>2ωm

(即fs>2fm或Ts<1/2fm),那么

各相邻频移后的频谱不会发生

重叠。

3、第三问

分析:采样信号在一定

条件下可以恢复为原来的

信号,只需用带宽为Ws/2

的理想低通滤波器将各次

谐波调制频谱滤去,保留不

失真的基带频谱,从而不失

《信号与系统》课程标准

《信号与系统》课程标准 第一部分课程概述 一、课程名称 中文名称:《信号与系统》 英文名称:《Signals and Systems》 二、学时与适用对象 课程总计90学时,均为理论课。本标准适用于四年制、五年制生物医学工程专业。 三、课程性质地位 《信号与系统》是生物医学工程专业开设的一门必修的专业基础课程。它是以数学方法研究电信号与电系统的分析与求解,在现代电子类理工科的学科发展中,起着建立数学研究方法和实际工作桥梁的重要作用。对信号与系统知识的理解和掌握,将为学员以后的实际工作打下基础。 预修课程为《高等数学》、《线性代数》、《电路原理》等,主修完本门课程后,学员将进一步学习《数字信号处理》、《医学图像处理》等后续课程。 四、课程基本理念 1.准确把握本课程在人才培养方案中的作用和地位,教学内容、方法、手段的选择必须以人才培养目标和规格为依据。 2.坚持学员为主体,教员为主导的教学理念。教学过程渗透素质教育、动手能力的培养等现代教育思想和观念。 3.在具体教学中应注意以下几个问题: (1)理论联系实际 作为一门专业基础课,理论与实际的结合尤为重要。由于这门课是利用数学工具来分析信号求解系统,所以在一开始接触时很多学员会不适应,将理论从实际中抽象出来需要一个思想转变的过程。教学活动中,教员应该有意识地找出实际学习生活中学员可能接触到的一些例子,通过对这些

实例的分析帮助学员完成这一思想转变,从而使学员开始学会使用理论工具来分析实际问题,使理论与实际通过数学这座桥梁联系到一起。在教员的启发引导和实例教学的作用下,建立用数学方法解决实际工程问题的思维模式,培养学员分析问题、解决问题的能力。 (2)重视教与学的结合 从课程的设计到评价的各个环节,在注意发挥教员教学主导作用的同时,还要特别注意学员学习的主动性,以充分发挥学员的积极性和学习潜能。提高学习的主动性,就要求教员能够在这门看起来枯燥的理论课程教学中,能够让学员发现乐趣,形成适合自己的学习方法。教学中注意把一些有利于思维方式形成的问题交给学员,引起学员的注意力,教员从解决问题的思路着手对学员进行启发,调动学员的思维方式转变;适当采取一些能够让学员参与到教学活动当中的形式,比如自学部分内容然后在课堂上模拟讲课。 (3)教学方式 对于理论基础课,现有的教学手段有板书、幻灯、动画等,充分利用这些手段丰富教学实践,增强学员对一些理论基础的理解和应用,建立起学员正确的思维模式和解决问题的方式方法。教学过程中还要注意这门理工科的主干课程与生物医学工程实际工作的结合,利用可以找到的医学工程方面的实例来丰富教学内容,增强学员的学习兴趣,进一步强化学员的知识与实践分析能力,开扩视野,培养科学的思维方式。对于学员不易理解的一些理论推导过程,结合板书推导、幻灯的演示,能够起到加深印象的效果。利用计算机辅助教学进行信号与系统分析的模拟,使学员对于抽象理论有更为直观的认识和了解,同时也培养了学员自己动手的能力。 五、课程设计思路 1、框架设计与内容安排 该课程的学习力求以统一的观点来阐明信号和系统的重要概念,培养学员以系统的观点看待信号处理过程以及电子信号检测系统,使学员在关注细节的同时注重整体,能够以全局的角度考虑问题。本课程可以概括为两类系统(连续时间系统和离散时间系统),三大变换(傅里叶变换,拉普拉斯变换和Z变换)和两类分析方法(时域分析方法和变换域分析方法)。本课程要求学员树立从不同角度(时域、频域与复频域)来观察信号的思想,尤其是频率域角度;全面掌握线性时不变系统的不同分析方法(时域法、频域法、复频域法、Z域法、状态变量法);通过习题练习与讲解以及Matlab软件进行计算机仿真等方式,加深对各种分析方法的理解与掌握。

信号与系统课程设计报告材料

课程设计报告 课程名称信号与系统课程设计指导教师 设计起止日期 学院信息与通信工程 专业电子信息工程 学生 班级/学号 成绩 指导老师签字

目录 1、课程设计目的 (1) 2、课程设计要求 (1) 3、课程设计任务 (1) 4、课程设计容 (1) 5、总结 (11) 参考文献 (12) 附录 (12)

1、课程设计目的 “信号与系统”是一门重要的专业基础课,MATLAB作为信号处理强有力的计算和分析工具是电子信息工程技术人员常用的重要工具之一。本课程设计基于MATLAB完成信号与系统综合设计实验,以提高学生的综合应用知识能力为目标,是“信号与系统”课程在实践教学环节上的必要补充。通过课设综合设计实验,激发学生理论课程学习兴趣,提高分析问题和解决问题的能力。 2、课程设计要求 (1)运用MATLAB编程得到简单信号、简单信号运算、复杂信号的频域响应图; (2)通过对线性时不变系统的输入、输出信号的时域和频域的分析,了解线性时不变系统的特性,同时加深对信号频谱的理解。 3、课程设计任务 (1)根据设计题目的要求,熟悉相关容的理论基础,理清程序设计的措施和步骤; (2)根据设计题目的要求,提出各目标的实施思路、方法和步骤; (3)根据相关步骤完成MATLAB程序设计,所编程序应能完整实现设计题目的要求; (4)调试程序,分析相关理论; (5)编写设计报告。 4、课程设计容 (一)基本部分 (1)信号的时频分析 任意给定单频周期信号的振幅、频率和初相,要求准确计算出其幅度谱,并准确画出时域和频域波形,正确显示时间和频率。 设计思路: 首先给出横坐标,即时间,根据设定的信号的振幅、频率和初相,写出时域波形的表达式;然后对时域波形信号进行傅里叶变化,得到频域波形;最后使用plot函数绘制各个响应图。 源程序: clc; clear; close all; Fs =128; % 采样频率 T = 1/Fs; % 采样周期 N = 600; % 采样点数 t = (0:N-1)*T; % 时间,单位:S x=2*cos(5*2*pi*t);

(完整word版)《信号与系统》教学大纲

《信号与系统》教学大纲 通信工程教研室 电子信息科学与技术教研室 课内学时:54学时 学分:3 课程性质:学科平台课程 开课学期:3 课程代码:181205 考核方式:闭卷 适用专业:通信工程,电子信息工程,电子信息科学与技术,电子科学与技术,物联网工程开课单位:通信工程专业教研室,电子信息科学与技术专业教研室 一、课程概述 《信号与系统》是电子信息类各专业的学科平台课程,该课程的基本任务在于学习信号与系统理论的基本概念和基本分析方法。主要包括信号的属性、描述、频谱、带宽等概念以及信号的基本运算方法;包括系统的属性、分类、幅频特性、相频特性等概念以及系统的时域分析、傅里叶分析和复频域分析的方法;包括频域分析在采样定理、调制解调、时分复用、频分复用等方面的应用等。使学生掌握从事信号及信息处理与系统分析工作所必备的基础理论知识,为后续课程的学习打下坚实的基础。 二、课程基本要求 1、要求对信号的属性、描述、分类、变换、取样、调制等内容有深刻的理解,重点掌握冲击信号、阶跃信号的定义、性质及和其它信号的运算规则;重点掌握信号的频谱、带宽等概念。 2、掌握信号的基本运算方法,重点掌握卷积运算、正交分解、傅里叶级数展开方法、傅里叶变换及逆变换的运算、拉普拉斯变换及逆变换的运算等。 3、对系统的属性、分类、描述等概念有深刻的理解,重点掌握线性非时变系统的性质,系统的电路、微分方程、框图、流图等描述方法;重点掌握系统的冲击响应、系统函数、幅频特性以及相频特性等概念。 4、对系统的各种分析方法有深刻的理解,重点掌握系统的频域分析方法;重点掌握频域分析方法在采样定理、调制解调、时分复用、频分复用、电路分析、滤波器设计、系统稳定性判定等实际方面的应用。 5、了解信号与系统方面的新技术、新方法及新进展,尤其是时频分析、窗口傅里叶变换以及小波变换的基本概念,适应这一领域日新月异发展的需要。 三、课程知识点与考核目标 1.信号与系统的基本概念 1)要点: (1)信号的定义及属性; (2)信号的描述方法; (3)信号的基本分类方法; (4)几种重要的典型信号的特性; (5)信号的基本运算、分解和变换方法; (6)系统的描述、性质、及分类 (7)线性非时变系统的概念及性质。 2)考核目标: 熟悉信号与系统的基本概念,熟悉信号与系统的基本描述及分类方法,掌握冲击信号及线性

信号与系统实验总结及心得体会

信号与系统实验总结及心得体会 2011211204 刘梦颉2011210960 信号与系统是电子信息类专业的一门重要的专业核心基础课程,该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,是将学生从电路分析领域引入信号处理与传输领域的关键性课程,为此开设必要的实验对我们加强理解深入掌握基本理论和分析方法,以及对抽象的概念具体化有极大的好处,而且为后续专业课程的学习提供了理论和大量实验知识储备,对以后的学术科研和创新工作都是十分重要的。下面我将从实验总结、心得体会、意见与建议等三方面作以总结。 一.实验总结 本学期我们一共做了四次实验,分别为:信号的分类与观察、非正弦周期信号的频谱分析、信号的抽样与恢复(PAM)和模拟滤波器实验。 1.信号的分类与观察 主要目的是:观察常用信号的波形特点以及产生方法,学会用示波器对常用波形参数进行测量。主要内容是:利用实验箱中的S8模块分别产生正弦信号、指数信号和指数衰减正弦信号,并用示波器观察输出信号的波形,测量信号的各项参数,根据测量值计算信号的表达式,并且与理论值进行比较。 2.非正弦信号的频谱分析 主要目的是:掌握频谱仪的基本工作原理和正确使用方法,掌握非正弦周期信好的测试方法,理解非正弦周期信号频谱的离散性、谐波性欲收敛性。主要内

容是:通过频谱仪观察占空比为50%的方波脉冲的频谱,和占空比为20%的矩形波的频谱,并用坐标纸画图。 3.信号的抽样与恢复 主要目的是:验证抽样定理,观察了解PAM信号的形成过程。主要内容是:通过矩形脉冲对正弦信号进行抽样,再把它恢复还原过来,最后用还原后的图形与原图形进行对比,分析实验并总结。 4.模拟滤波器实验 主要目的是:了解RC无源和有源滤波器的种类、基本结构及其特性,比较无源和有源滤波器的滤波特性,比较不同阶数的滤波器的滤波效果。主要内容:利用点频法通过测试无源低通、高通、带通和有源带阻,以及有源带通滤波器的幅频特性,通过描点画图形象地把它们的特点表现出来。 通过对信号与实验课程的学习,我掌握了一些基本仪器的使用方法,DDS 信号源、实验箱、示波器、频谱仪等四种实验仪器。初步了解了对信号的测试与分析方法对以前在书本上看到的常见信号有了更加具体的认识,使得书本上的知识不再那么抽象。 DDS信号源,也就是函数发生器,可以产生固定波形,如正弦波、方波或三角波,频率和幅度可以调节。实验箱是很多个信号实验装置的集合,可谓集多种功能于一身,其中包括函数发生器、模拟滤波器、函数信号的产生与测量、信号的抽样与恢复等模块。示波器能把抽象的电信号转换成具体的图像,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同的信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不

信号与系统课时安排

信号与系统课时安排 绪论 第1章信号与系统6学时 1.0 引言 1.1 连续时间和离散时间信号 1.1.1 举例与数学表示 1.1.2 信号能量与功率 1.2 自变数的变换 1.2.1 自变数变换举例 1.2.2 周期信号 1.2.3 偶信号与奇信号 1.3 指数信号与正弦信号 1.3.1 连续时间复指数信号与正弦信号 1.3.2 离散时间复指数信号与正弦信号 1.3.3 离散时间复指数序列的周期性质 1.4 单位冲激与单位阶跃函数 1.4.1 离散时间单位脉冲和单位阶跃序列 1.4.2 连续时间单位阶跃和单位冲激函数 1.5 连续时间和离散时间系统 1.5.1 简单系统举例 1.5.2 系统的互联 1.6 基本系统性质 1.6.1 记忆系统与无记忆系统 1.6.2 可逆性与可逆系统 1.6.3 因果性 1.6.4 稳定性 1.6.5 时不变性 1.6.6 线性 1.7 小结 习题 第2章线性时不变系统6学时 2.0 引言 2.1 离散时间LTI系统:卷积和 2.1.1 用脉冲表示离散时间信号 2.1.2 离散时间LTI系统的单位脉冲响应及卷积和表示2.2 连续时间LTI系统:卷积积分 2.2.1 用冲激表示连续时间信号 2.2.2 连续时间LTI系统的单位冲激响应及卷积积分表示2.3 线性时不变系统的性质 2.3.1 交换律性质 2.3.2 分配律性质 2.3.3 结合律性质 2.3.4 有记忆和无记忆LTI系统 2.3.5 LTL系统的可逆性

2.3.6 LTI系统的因果性 2.3.7 LTI系统的稳定性 2.3.8 LTI系统的单位阶跃响应 2.4 用微分和差分方程描述的因果LTI系统 2.4.1 线性常系数微分方程 2.4.2 线性常系数差分方程 2.4.3 用微分和差分方程描述的一阶系统的方框图表示 2.5 奇异函数 2.5.1 作为理想化短脉冲的单位冲激 2.5.2 通过卷积定义单位冲激 2.5.3 单位冲激偶和其它的奇异函数 2.6 小结 习题 第3章周期信号的傅里叶级数表示4学时 3.0 引言 3.1 历史回顾 3.2 LTI系统对复指数信号的响应 3.3 连续时间周期信号的傅里叶级数表示 3.3.1 成谐波关系的复指数信号的线性组合 3.3.2 连续时间周期信号傅里叶级数表示的确定 3.4 傅里叶级数的收敛 3.6 离散时间周期信号的傅里叶级数表示 3.6.1 成谐波关系的复指数信号的线性组合 3.6.2 周期信号傅里叶级数表示的确定 3.7 离散时间傅里叶级数性质 3.7.1 相乘 3.7.2 一阶差分 3.7.3 离散时间周期信号的帕斯瓦尔定理 3.7.4 举例 3.9 滤波 3.9.1 频率成形滤波器 3.9.2 频率选择性滤波器 3.10 用微分方程描述的连续时间滤波器举例 3.10.1 简单RC低通滤波器 3.10.2 简单RC高通滤波器 3.11 用差分方程描述的离散时间滤波器举例 3.11.1 一阶递归离散时间滤波器 3.11.2 非递归离散时间滤波器 3.12 小结 习题 第4章连续时间傅里叶变换10学时4.0 引言 4.1 非周期信号的表示:连续时间傅里叶变换 4.1.1 非周期信号傅里叶变换表示的导出

信号与系统_复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ① 连续正弦信号一定是周期信号。 ② 两连续周期信号之和不一定是周期信号。 周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()s i n ()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: s i n ()t Sa t t = 奇异信号 (1) 单位阶跃信号 1()u t ={ 0t =是()u t 的跳变点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞ -∞ =-=? ? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞ =? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; (0) t <(0)t > ()1t dt δ∞ -∞ =? ()0t δ=(当0t ≠时)

信号与系统课程总结

信号与系统课程总结 The final edition was revised on December 14th, 2020.

信号与系统总结 一信号与系统的基本概念 1信号的概念 信号是物质运动的表现形式;在通信系统中,信号是传送各种消息的工具。 2信号的分类 ①确定信号与随机信号 取决于该信号是否能够由确定的数学函数表达 ②周期信号与非周期信号 取决于该信号是否按某一固定周期重复出现 ③连续信号与离散信号 取决于该信号是否在所有连续的时间值上都有定义 ④因果信号与非因果信号 取决于该信号是否为有始信号(即当时间t小于0时,信号f(t)为零,大于0时,才有定义) 3系统的概念 即由若干相互联系,相互作用的单元组成的具有一定功能的有机整体 4系统的分类 无记忆系统:即输出只与同时刻的激励有关 记忆系统:输出不仅与同时刻的激励有关,而且与它过去的工作状态有关 5信号与系统的关系 相互依存,缺一不可 二连续系统的时域分析 1零输入响应与零状态响应 零输入响应:仅有该时刻系统本身具有的起始状态引起的响应 零状态响应:在起始状态为0的条件下,系统由外加激励信号引起的响应 注:系统的全响应等于系统的零输入响应加上零状态响应 2冲激响应与阶跃响应 单位冲激响应:LTI系统在零状态条件下,由单位冲激响应信号所引起的响应

单位阶跃响应:LTI系统在零状态条件下,由单位阶跃响应信号所引起的响应 三傅里叶变换的性质与应用 1线性性质 2脉冲展缩与频带变化 时域压缩,则频域扩展 时域扩展,则频域压缩 3信号的延时与相位移动 当信号通过系统后仅有时间延迟而波形保持不变,则系统将使信号的所有频率分量相位滞后 四拉普拉斯变换 1傅里叶变换存在的条件:满足绝对可积条件 注:增长的信号不存在傅里叶变换,例如指数函数 2卷积定理 表明:两个时域函数卷积对应的拉氏变换为相应两象函数的乘积 五系统函数与零、极点分析 1系统稳定性相关结论 ①稳定:若H(s)的全部极点位于s的左半平面,则系统是稳定的; ②临界稳定:若H(s)在虚轴上有s=0的单极点或有一对共轭单极点,其余极点全在s的左半平面,则系统是临界稳定的; ③不稳定:H(s)只要有一个极点位于s的右半平面,或者虚轴上有二阶或者二阶以上的重极点,则系统是不稳定的。 六离散系统的时域分析 1常用的离散信号 ①单位序列②单位阶跃序列③矩阵序列④正弦序列⑤指数序列 七离散系统的Z域分析 1典型Z变换 ①单位序列②阶跃序列③指数序列④单边正弦和余弦序列 2Z变化的主要性质 ①线性性质②移位性质③尺度变换④卷和定理 八连续和离散系统的状态变量分析 1状态方程

《城市轨道交通通信与信号》课程标准82474

《城市轨道交通通信与信号》课程标准 一、课程性质与任务 《城市轨道交通通信与信号》是城市轨道交通运营管理专业学生的一门必修专业课。主要内容包括:信号基础设备与通信系统的安全,信号基础设备,轨道电路,车站联锁,区间闭塞,列车自动控制(ATC)系统,ATO与ATS系统,城市轨道交通CBTC系统,城市轨道交通通信系统。本课程主要是为了适应我国城市现代建设与城市轨道交通发展的需求,尤其是为了满足城市轨道交通发展中对人才培养的迫切而设置的。 二、课程目标。 1.了解信号与通信系统的基本内容,掌握故障安全原理的基本内容了解信号安全技术原则。 2.了解信号机的分类及结构,熟悉信号机设置的原则,了解道岔的种类和转辙机的种类及特点。 3.掌握轨道电路的工作原理,了解轨道电路的主要参数,熟悉轨道电路的分类及特点,熟悉常用轨道电路,掌握计轴器的工作原理及结构。 4.掌握联锁的基本概念了解联锁图表编制方法,掌握6502电气集中联锁的基本操作方式,掌握计算机联锁的基本结构和操作方式 5.了解列车定位技术的分类,掌握固定闭塞、准移动闭塞和移动闭塞的原理,掌握无线移动通信、查询应答器定位,掌握移动闭塞与固定闭塞的区别。 6.掌握ATC系统的组成和功能和模式转换条件,了解不同制式ATC 系统的特点,掌握ATP的基本概念和ATP设备的组成及功能,熟悉ATP

的基本工作原理。 7.了解CBTC系统结构,熟悉CBTC系统子系统和组成设备,掌握CBTC系统运行模式,掌握CBTC系统功能。 8.了解城市轨道交通通信系统的组成及作用,掌握城市轨道交通电话子系统构成及功能,掌握城市轨道交通广播子系统的结构和功能,掌握城市轨道交通闭路电视子系统的结构和功能,了解城市轨道交通UPS电源和接地系统。 9. 锻炼学生的团结合作精神和认真严谨的学习态度。鼓励他们热爱本专业技术工作,具有创新意识,具有一定的沟通知识和技巧。

信号与系统课程大纲

《信号与系统》课程教学大纲 英文名称:Signal and System 课程号:13202002 一、课程基本情况 1.学分:3.5 2.学时:56(其中:理论学时:56 实验学时:0上机学时:0 ) 3.课程类别:大类平台必修课 4.适用专业:电子信息类 5.先修课程:高等数学 6.后续课程:数字信号处理、通信原理等 7.开课单位:通信工程 二、课程介绍 《信号与系统》是与通信工程、电子信息工程等专业有关的一门基础学科。 它的主要任务是: 1.在时间域及频率域下研究时间函数f(t)及离散序列x(n)的各种表示方式; 2.在时间域及频率域下研究系统特性的各种描述方式; 3.在时间域及频率域下研究激励信号通过系统时所获得的响应。 信号与系统课程研究信号与系统理论的基本概念和基本分析方法。初步认识如何建立信号与系统的数学模型,经适当的数学分析求解,对所得结果给以物理解释、赋予物理意义。课程的主要内容包括连续系统的时域分析、傅里叶变换、拉普拉斯变换、连续时间系统的s域分析、离散时间系统的时域分析、Z变换、离散时间系统的Z域分析等。要求学生掌握基本概念和基本分析方法。 学习本课程使学生掌握信号与系统的基本理论和基本分析方法,培养学生灵活运用理论知识分析和解决实际问题的能力。 三、课程的主要内容及基本要求 第一章信号与系统概述(共10学时) (一)教学内容: 第一节信号与系统概述 知识要点:信号与系统分析的研究内容与方法,信号与系统理论的应用,信号的定义。 第二节信号的描述和分类 知识要点:信号的描述,信号的分类。

第三节典型基本连续信号 知识要点:正弦信号,指数信号,复指数信号,抽样信号,单位阶跃信号,单位冲激信号。 第四节信号的基本运算 知识要点:信号的微分、积分运算;移位运算,反褶运算,尺度变换运算,以及组合。 第五节冲激信号及其性质 知识要点:冲激信号及其性质,相关计算题。 第六节冲激偶信号及其性质 知识要点:冲激偶信号及其性质,相关计算题。可以作为选讲部分。 第七节信号的分解 知识要点:信号的直流与交流分解,信号的偶、奇分解,信号的实部与虚部分解,信号的脉冲分量分解,信号的正交函数分解。 第八节系统的描述和分类 知识要点:系统的描述,系统的分类,系统的联结。 第九节线性时不变系统 知识要点:连续时间线性时不变系统,离散时间线性时不变系统。 教学重点:信号的分类、典型基本连续信号、冲激信号及其性质、系统的描述,系统的分类。 教学难点:建立信号的概念、建立系统的概念、信号的周期、能量等运算。 (二)教学基本要求: 1.基本知识、基本理论:信号与系统概念,信号与系统的分类,线性时不变系统的特点及分析方法;周期和非周期信号、能量信号和功率信号;基本连续信号的表达方式及其波形;冲激信号及其性质;冲激偶信号及其性质;信号波形相加、相乘、求导、积分的运算;信号波形平移、反转、压缩、扩展的变换;任意连续信号的冲激函数表示;信号的分解;系统的分类,系统的性质;线性时不变系统的性质。 2.能力、技能培养:理解信号的概念,了解不同类型信号的时域表现形式,掌握不同类型信号及系统的识别方法;熟练掌握信号周期的求解方法;掌握典型信号及性质,能够做到给出信号表达式会画信号波形图,给出信号波形图能写出信号表达式;能够用阶跃信号表示分段函数;掌握与冲激信号、冲激偶信号相关的乘积、微分、积分等运算。掌握对多个信号进行相加、相乘,对于不同频率的正弦信号要注意相加、相乘之后的规律;掌握对信号波形进行平移、反转、压缩、扩展的变换;了解系统的概念,了解系统的分类,了解系统的性质;掌握系统的稳定性、因果性、线性时不变性等;掌握线性时不变系统的积分、微分、频率保持、分解等性质。 (三)实践与练习 根据学生学习情况,针对不同层次的学生留作业,作业可以是书后习题,可以由任课教师自选。 (四)考核要求 理解信号与系统的概念及分类,掌握线性时不变系统的特点及分析方法;会判断周期和非周期信号、能量和功率信号,计算信号的功率;会判断是信号否为周期信号,会计算周期信号的周期,

《城市轨道交通通信与信号》课程标准

《城市轨道交通通信与信号》课程标准 1.课程定位与设计思路 1.1课程定位 《城市轨道交通通信与信号》课程是城市轨道交通控制专业一门专业核心课程。本课程与前修课程《城市轨道交通概论》相衔接,使学生进一步对城市轨道交通通信信号系统基础设备基础知识了解与掌握,与后续课程《车站信号计算机连锁》、《区间信号自动控制》等相衔接,为后续课程的学习奠定坚实的基础。 1.2设计思路 本课程所面向的职业岗位为城市轨道交通通信信号设备操作员、施工工艺员、检修员、维护员等,主要从事城轨交通通信信号施工、设备检修、维护、实验调试等工作。根据职业岗位分析,确定本课程的建设思路是:遵循系统化原则,将教学内容分为城轨信号系统与城轨通信系统两大部分。通过本课程的学习,使学生掌握城轨通信信号系统基础设备的组成和作用,并具有一定的操作检修能力,为学生走向工作岗位打下坚实的基础。 2.课程目标 2.1能力目标 (1)能够熟练观察城轨通信信号设备正常工作状态及正常工作指标。 (2)能使用常见电工、电子仪表对进行城轨通信信号设备的特性测试。 (3)能够熟练完成信号机、轨道电路、转辙机的日常维护检修。 (4)能够熟练完成列车自动控制ATC设备的运行维护。 (5)能了解无限集中调度系统的应用。 (6)能够完成城轨电话系统、闭路电视系统的日常维护。 (7)能够完成时钟系统的调整维护。 2.2知识目标 (1)了解城轨交通通信信号设备的概况及特点。 (2)掌握城轨交通信号基础设备相关知识。 (3)掌握车辆段及正线连锁设备基本结构与操作方式相关知识。

(4)掌握列车自动控制ATC设备的构成、功能和维护等相关知识。 (5)掌握城轨交通通信系统的组成及功能相关知识。 (6)掌握城轨交通电话系统、无线调度系统、闭路电视系统、广播系统及时钟系统相关知识。 (7)掌握城轨交通通信信号设备的技术指标和正常工作参数,使学生具有城轨通信信号设备使用、检测和维护等基本技能。 2.3素质目标 (1)培养学生共享知识的能力,即团队合作能力。 (2)培养学生发现知识的能力,即创新能力和创造能力。 (3)培养学生知识传播能力,即交流沟通能力。 (4)培养学生获取、领会和理解外界信息的能力。 (5)培养学生诚实守信、敬业爱岗的良好职业道德素养。 (6)培养学生的语言表达能力和对事物分析判断的能力。 (7)培养学生勇于创新、与时俱进的工作作风。 3.教学内容 依据城市轨道交通控制专业人才培养目标要求,本课程教学内容为通信与信号两大部分,由继电器、轨道电路、信号机、转辙机、车辆段连锁设备、正线连锁设备、ATC 系统、列车自动防护系统、列车自动驾驶系统、列车自动监控系统、无线集中调度系统、闭路电视系统、广播系统和时钟系统等十六个项目组成,其内容涵盖城轨交通通信信号系统各个组成部分的基础知识,具体内容如下: 表1 教学内容描述

信号与系统课程教学大纲

《信号与线性系统》课程教学大纲 课程编号:28121008 课程类别:学科基础课程 授课对象:信息工程、电子信息工程、通信工程等专业 开课学期:第4学期 学 分:3学分 主讲教师:王加俊、孙兵、胡丹峰 指定教材:管致中,《信号与线性系统》(第4版),高等教育出版社,2004年 教学目的: 《信号与线性系统》课程讨论确定信号经过线性时不变系统传输与处理的基本理论和基本分析方法。掌握连续时间信号分析,连续时间系统的时域、频域、复频域的分析方法,通过连续时间系统的系统函数,描述系统的频率特性及对系统稳定性的判定;连续时间信号转换到离散时间信号的采样理论及转换不失真的条件。 第一章 绪论 课时:1周,共4课时 第一节 引言 一、信号的概念 二、系统的概念 思考题: 1、什么是信号?举例说明。 2、什么是系统?举例说明。 第二节 信号的概念 一、信号的分类 周期信号与非周期信号、连续时间信号与离散时间信号、能量信号与功率信号。 二、典型信号 指数信号、复指数信号、三角信号、抽样信号。 思考题: 1、复合信号的周期是如何判定的?若复合信号是周期信号,其周期如何计算? 2、如何判定一个信号是能量信号还是功率信号,或者两者都不是? 第三节 信号的简单处理 一、信号的运算 信号的相加、相乘、时移、尺度变换等。 二、信号的分解 一个信号可以分解成奇分量与偶分量之和。 思考题: 1、 若信号由)(t f 转换至)(0t at f ±,说明转换的分步次序。 2、 若信号由)(0t at f ±转换至)(t f ,说明转换的分步次序。 3、说明信号的奇偶分解的方法。 第四节 系统的概念 一、系统的分类 线性系统和非线性系统、时不变系统和时变系统、连续时间系统和离散时间系统、因果系统和非因果系统。 二、系统的性质 1. 线性:满足齐次性与叠加性 2. 时不变:系统的性质不随时间而改变 思考题:

信号与系统课程设计报告 信号与系统课程设计题目

信号与系统课程设计报告信号与系统课程设计题目 信号与系统课程设计报告 ——频分复用通信系统的仿真设计 指导老师:XXX 小组成员: 摘要: 通过对信号与系统这门课程第八章通信系统学习,我们对频分复用(FDMA )技术产生了浓厚的兴趣,于是决定自己利用MATLAB 强大的仿真功能来对频分复用系统进行仿真。本文首先录制三段不同的语音信号。然后通过推导,确定合适的载波信号的频率,对信号进行调制,调制后整合到一个复用信号上。再在复用信号上加一个随机的高斯白噪声得到在信道中传输的信号。之后根据通过对复用信号的频谱分析,得出切比雪夫滤波器的各项参数,通过设计好的滤波器进行信号分离后分别根据载波信号进行解调,再通过一个低通滤波器,得到原始信号。通过此次对FDMA 的仿真,我们更清楚了解了频分复用的工作原理,以及AM 调制解调方法,和滤波器的设计方法。频分复用技术对与通信系统节省资源有着重要的意义。

关键词: 频分复用 MATLAB 高斯白噪声 引言: 在电话通信系统中,语音信号频谱在300—3400Hz 内,而一条干线的通信资源往往远大于传送一路语音信号所需的带宽。这时,如果用一条干线只传一路语音信号会使资源大大的浪费,所以常用的方法是“复用”,使一条干线上同时传输几路电话信号,提高资源利用率。 本文是基于MATLAB 的简单应用,首先录制三段不同的语音信号。然后选择合适的高频载波,对信号进行调制,调制后整合到一个复用信号上。确定合适的信噪比,在复用信号上加一个随机的高斯白噪声得到在信道中传输的信号。之后根据载波信号设计合适的带通滤波器将三种信号进行分离,信号分离后分别进行同步解调,再通过一个低通滤波器,得到通过频分复用系统传输后得到的各个信号,将得到的信号与原信号对比,要保证信号与原信号吻合较好。 正文:

信号与系统知识点总结

ε(k )*ε(k ) = (k+1)ε(k ) f (k)*δ(k) = f (k) , f (k)*δ(k – k0) = f (k – k0) f (k)*ε(k) = f 1(k – k1)* f 2(k – k2) = f (k – k1 – k2) ?[f 1(k)* f 2(k)] = ?f 1(k)* f 2(k) = f 1(k)* ?f 2(k) f1(t)*f2(t) = f(t) 时域分析: 以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数之和,即 而任意信号作用下的零状态响应yzs(t) yzs (t) = h (t)*f (t) 用于系统分析的独立变量是频率,故称为频域分析。 学习3种变换域:频域、复频域、z 变换 ⑴ 频域:傅里叶表变换,t →ω;对象连续信号 ⑵ 复频域:拉普拉斯变换,t →s ;对象连续信号 ⑶ z 域:z 变换,k →z ;对象离散序列 设f (t)=f(t+mT)----周期信号、m 、T 、 Ω=2π/T 满足狄里赫利Dirichlet 条件,可分解为如下三角级数—— 称为f (t)的傅里叶级数 注意: an 是n 的偶函数, bn 是n 的奇函数 式中,A 0 = a 0 可见:A n 是n 的偶函数, ?n 是n 的奇函数。a n = A ncos ?n , b n = –A nsin ?n ,n =1,2,… 傅里叶级数的指数形式 虚指数函数集{ej n Ωt ,n =0,±1,±2,…} 系数F n 称为复傅里叶系数 欧拉公式 cos x =(ej x + e –j x )/2 sin x =(ej x - e –j x )/2j 傅里叶系数之间关系 n 的偶函数:a n , A n , |F n | n 的奇函数: b n ,?n 常用函数的傅里叶变换 1.矩形脉冲 (门函数) 记为g τ(t) ? ∞ ∞--=ττδτd )()()(t f t f ∑ ∑∞=∞ =Ω+Ω+=1 10)sin()cos(2)(n n n n t n b t n a a t f ∑∞=+Ω+=10)cos(2)(n n n t n A A t f ?2 2n n n b a A +=n n n a b arctan -=? e )(j t n n n F t f Ω∞-∞ =∑= d e )(122 j ?-Ω-=T T t n n t t f T F )j (21e 21e j n n n j n n b a A F F n n -===??n n n n A b a F 212122=+=??? ??-=n n n a b arctan ?n n n A a ?cos =n n n A b ?sin -=

《信号与系统》课程教学大纲

《信号与系统》课程教学大纲 课程编码:A0303051 总学时:64 理论学时:64 实验学时:0 学分:4 适用专业:通信工程 先修课程:电路,高等数学,复变函数与积分变换,线性代数 一、课程的性质与任务 《信号与系统》是电类专业的一门重要的专业课程。它的任务是研究信号和线性非时变系统的基本理论和基本分析方法,要求掌握最基本的信号变换理论,并掌握线性非时变系统的分析方法,为学习后续课程,以及从事相关领域的工程技术和科学研究工作奠定坚实的理论基础。通过本课程的学习,学生将理解信号的函数表示与系统分析方法,掌握连续时间系统和离散时间系统的时域分析和频域分析,连续时间系统的S域分析和离散时间系统的Z域分析,以及状态方程与状态变量分析法等相关内容。通过实验,使学生掌握利用计算机进行信号与系统分析的基本方法,加深对信号与线性非时变系统的基本理论的理解,训练学生的实验技能和科学实验方法,提高分析和解决实际问题的能力。

二、课程学时分配 教学章节理论实践 第一章:信号与系统导论6 第二章:连续系统的时域分析8 第三章:信号与系统的频域分析18 第四章:连续系统的复频域分析10 第五章:系统函数的零、极点分析8 第六章:离散系统的时域分析6 第七章:离散系统的Z域分析8 总计64 三、课程的基本教学内容及要求 第一章信号与系统导论(6学时) 1.教学内容 (1)历史的回顾,应用领域,信号的概念 (2)系统的概念,常用的基本信号 (3)信号的简单处理,单位冲激函数 2.重点及难点 教学重点:信号的描述、阶跃信号与冲激信号;信号的运算;线性时不变系统判据;系统定义 教学难点:信号及其分类,信号分析与处理,系统分析 3.课程教学要求

信号与系统课程学习体会

.心得体会 本学期我们专业不仅开设了信号与系统的理论课,让我们的课内知识得以丰富,而且还设有相关的实验和实训课,使我们的动手能力得到锻炼。尤其是最近的实训课。首先,我学会了MATLAB的使用,这个软件对我们这次的实训提供了很大的帮助,很多需要大量计算的公式,在MA TLAB的帮助下,很快的得以实现。我们的信号与系统的实训基本都是利用MATLAB实现的。利用MATLAB进行仿真模拟计算,为我们更好的了解信号与系统这门课程做了很大的贡献。 经过此次实训,我对信号的很多知识都得以充分了解。例如,熟悉MATLAB软件及基本命令,通过仿真理解信号运算的波形变换结果;对于任务二,通过仿真实验深刻理解冲激响应、阶跃响应和零状态响应,验证理论上得出的有关冲激响应、阶跃响应和零状态响应和有关信号卷积的结果;任务三,离散系统时域仿真分析,通过仿真实验深刻理解单位序列响应、零状态响应和卷积和公式及结果,并且掌握MATLAB提供的单位序列响应IMPZ、求零状态响应函数filter、卷积命令CONV和产生全1的ones()命令及产生全0的zeros()命令;任务四,学会用MATLAB提供的标准函数法和数学近似法来求傅里叶变换;任务五,s域的仿真分析,学会了部分分式展开,拉氏变换及其的反变换,学会如何判断系统的稳定性;对于任务六,z域仿真分析,学会了简单的z变换及逆z变换,求单位序列响应,及零极点的分析。在这次的实训中,并不是都是顺利的,在s域的仿真和离散系统时域仿真分析时,也遇到了困难,但我并没气馁,和自己小组的人一起讨论,一起把问题顺利的解决了。并从中深深体会到了团队的力量,让我知道了以后不管在学习中还是生活中,我们应当相互团结,共同帮助,共同进步,才能取得真正的成功。 这次宝贵的实训即将结束,但我从中受益颇深,不仅把自己所学的知识得以运用,还加强了自己的动手能力,还懂得了团队的重要性。我感谢这次的实训,因为它让我在以后参加工作时又提供了有利的条件,我深信以后我会更加努力学习,并更好地展示在以后的工作中。

信号与系统重点概念公式总结

信号与系统重点概念公 式总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复 数的辐角。(复平面) 2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(2 1 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(21 21* * ==?≠=???

其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

相关文档
相关文档 最新文档