文档视界 最新最全的文档下载
当前位置:文档视界 › DHPLC系统工作原理及其应用

DHPLC系统工作原理及其应用

DHPLC系统工作原理及其应用
DHPLC系统工作原理及其应用

?综述与专论?

生物技术通报

B I O TECHNOLO G Y BULL ET I N

2006年增刊

D HP LC 系统工作原理及其应用

李莉 王翀 陈瑶生

(华南农业大学动物科学学院,五山 510642)

摘 要: 变性高效液相色谱(DHP LC )是一种高通量筛选DNA 序列变异的新技术,从该仪器设备的组成、工作原理、基本操作方法、主要技术特点等作一综述,并对其在基因组领域的应用如S NP 分析、双链DNA 片段分析、微卫星分析、mRNA 定量分析、引物纯度检测等方面及在医学、遗传学方面的应用作了较详细的综述。

关键词: DHP LC 原理 应用

W orki n g Pr i n c i ples and Appli cati on of DHP LC Syste m

L i L i W ang Chong Chen Yaosheng

(College of A ni m al Science,South China A gricultural U niversity,Guangzhou 510642)

Ab s tra c t: Denaturing H igh Perf or mance L iquid Chr omat ography (DHP LC )is a kind of high thr oughout ne w tech 2

nique t o detect the mutati on of the DNA sequence .The structure of the instru ment,working Princi p les,basic mani pulating method and main technical characteristic were revie wed .The app licati ons in the medicine,genetics and genome domain such as analysis of S NP,the frag ment of double strains,m icr osatellite,the quantitative mRNA,the pure detecti on of the p ri m e,et al were revie wed in detail .

Key wo rd s: DHP LC Princi p le App licati on

基金项目:国家自然科学基金资助(30300249)

作者简介:李莉(19822),女,硕士研究生,专业方向:动物遗传育种与繁殖,电话:020*********

通讯作者:王翀(19682),女,博士,副教授,主要研究方向:分子遗传学,电话:020*********,E 2mail:betty@scau .edu .cn

变性高效液相色谱(denaturing high perf or mance liquid chr omat ography,DHP LC )是一种新的高通量筛选DNA 序列变异的新技术,这一技术最先由美国Stanf ord 大学Oefner 及Underhill 等于1995年报道,

美国Transgenom ic 公司采用该原理制造专利化仪器,专利产品为WAVE μ

DNA 片段分析系统

(WAVE μDNA frag ment analysis syste m )。1.1 仪器主要组成部分

硬件部分:变性高效液相色谱仪(WAVE

μ

3500HT ):WAVE μ

L 27100型四元梯度溶液注入系

统(含四元梯度泵),WAVE μ

L 27250型Peltier 可冷

却、加热自动进样器,WAVE μ

L 27300p lus 型高精度Peltier 柱箱,WAVE

μ

L 27400型紫外/可见光检测

器,WAVE μ

L 2700在线去气装置:四通道,样品池(可容纳4个96孔PCR 板,以便进行大规模分析筛

查),WAVE μ

Maker 数据工作站系统(硬件)等。

软件部分:M icr os oft W indows μ

NT 操作系统,HS MD 27000数据工作站控制接口软件,WAVE μ

Maker 核苷酸片段分析系统专用软件包。1.2 DHP LC 基本原理及其应用

用离子对反向高效液相色谱法:①在不变性的温度条件下,检测并分离分子量不同的双链DNA 分子或分析具有长度多态性的片段,类似RF LP 分析,也可进行定量RT 2PCR 及微卫星不稳定性测定

(MSI );②在充分变性温度条件下,可以区分单链DNA 或RNA 分子,适用于寡核苷酸探针合成纯度

分析和质量控制;③在部分变性的温度条件下,变异型和野生型的PCR 产物经过变性复性过程,不仅分别形成同源双链,同时也错配形成异源双链,根据柱子保留时间的不同将同源双链和异源双链分离,

2006年增刊李莉等:DHP LC系统工作原理及其应用

从而识别变异型。根据这一原理,可进行基因突变检测、单核苷酸多态性分析(S NPs)等方面的研究。

1.3 DHP LC基本操作方法

在进行DHP LC检测之前应设定仪器的参数:①设定ds DNA分离柱的温度,对于部分变性的温度,导入所要检测的DNA序列,WAVE系统中的WAVEμMaker软件可根据待分析片段的DNA序列很方便地预测出柱温。另外斯坦福大学T

m

计算网站(htt p://inserti on.stanf https://www.docsj.com/doc/0a16177016.html,/melt.ht m l)提供的Melt软件也可辅助温度选择,解链曲线是确定柱温的最佳参考依据,但WAVEμMaker还可提供更有用的其它信息,最为重要的是分析单一片段中存在的多个解链域。因为一般软件预测的是整个序列的平均解链温度,这只是一系列合适温度条件的中点,最适检测温度还取决于期望检出变异所在区域的局部解链温度。对于ds DNA片段大小、微卫星及mR2 NA的定量分析,直接采用50℃的柱温,就是很理想的检测温度。对于RNA和O ligo的检测分析,80℃也是很合适的柱温,不需要另外找软件分析处理。

②设定流动相A液和B液的组成:A液含0.1mol/ L的TE AA、0.1mol/L的E DT A、0.1%的乙腈。B液含25%乙腈、0.1mol/L的TEAA、0.1mol/L的E D2 T A,至于运行时A液与B液的配合比例则视检测的目的不同而有所不同。③设定紫外检测器的波长为260n m。④设定自动加样器的取样样本号、进样量等。⑤根据研究的需要,设定将运行的程序名称并存盘。⑥设定实验结果储存的文件夹、文件名等。

1.4 DHP LC主要技术特点

DHP LC检测技术的主要特点是:①高通量(high thr oughout)检测,适合大规模的S NP筛查及微卫星分型的分析。②自动化程度高:减轻劳动强度,提高检测效率。③灵敏度及特异度均较高:与直接测序相当,检测未知的S NP可达95%以上,已有许多学者进行了DHP LC相关的方法学比较研究,均提示其敏感性和特异性可达96%~100%,明显高于常用的DGGE、CC M、CSGE、SSCP等变异检测技术[5,7,8,26,27,32],目前只有基于毛细管电泳技术发展起来的荧光单链构像多态性分析(F2SSCP)在敏感性和特异性方面能与DHP LC相媲美[12]。④所检测的DNA或RNA片段的长度变动范围广,较适合大片段DNA的筛查。⑤快速:每份样本的检测时间不超过10m in,对于高通量的洗脱柱,3m in便可检测一个样品。⑥相对价廉:平均每检测一份样本的费用约为10元人民币。将数份样品混合后组成样品池,成本可进一步降低。⑦检测结果以图表显示,直观易判断。

1.5 DHP LC应用

1.5.1 S NP检测 在部分变性温度情况下(柱温在53~78℃之间),DHP LC可进行基因突变的检测和未知S NPs筛查。基于异源双链的形成,一个杂合子个体的PCR产物一定含有野生型和突变型两种DNA,并且两者的比例为1∶1,将PCR产物进行变性复性过程,杂交会形成同源双链和异源双链。同样,当把野生型和突变型PCR产物混合后,进行变性复性过程,杂交后也会出现4种情况(图1),它们不仅形成同源双链,同时也错配形成异源双链,异源双链由于碱基对不匹配,在部分变性的温度条件下,就会在不匹配的碱基对处部分解链,由于单链DNA 带负电荷减少,结合力弱,因此,异源双链比同源双链先洗脱出来,根据柱子保留时间(retenti on ti m e)的差异将同源双链和异源双链分离(图2)。据此可检测反相柱(reverse2phase columns)中单个碱基置换、插入或缺失杂合二倍体的片段,可检测DNA片段大小在80~1000bp范围的单碱基突变,对于未知的S NP和单个核苷酸突变,系统检测的准确率大于96%,对于已知的S NP和单个核苷酸突变,系统检测的准确率大于99.9%。对于基因突变的检测及S NP的检测也是DHP LC的最主要用途。鉴于此,中外许多研究者利用DHP LC系统进行了基因突变的研究[16,24,25,27,31,34]、未知S NPs筛查[2,6,10,23,24,33]

图1 通过杂交形成同源和异源双链

121

生物技术通报B iotechnology B u lletin

2006

年增刊

图2 同源双链与异源双链在柱子上保留时间不同而分离

1.5.2 双链DNA 片段分析 在非变性温度条件下(柱温50~52℃),DHP LC 主要有三个方面的应用:

①双链DNA 片段的分析与纯化;②微卫星的分析;③RT 2PCR 产物的定量分析。

在非变性温度下,DNA 双链不解开,由于PCR 产物片段大小的不同,在柱子内停留的时间也有差异,小片段的DNA 分子首先被洗脱出来,通过紫外

吸收光(260nm )检测,WAVE μ

Maker 核苷酸片段分

析系统专用软件包将其转换为不同的峰型,参照分

子量标准,通过软件系统便可读出PCR

产物的不同

图3 DHP LC 系统和琼脂糖凝胶电泳对Hae Ⅲ酶切质粒pUC18分析图谱比较

片段大小。DHP LC 区分DNA 片段大小的灵敏度很高,每个峰能检测到0.5ng 的DNA 样品,且对产物

的大小分辨率可达到1%的水平,即100bp 左右的DNA 可分离出其相差1bp 的片段,1000bp 左右能分离相差10bp 的片段大小,分离范围广,约50~2000bp 内的片段大小均能很好分辨,图3展示了用Hae Ⅲ酶切质粒pUC18后的琼脂糖凝胶电泳图谱

和DHP LC 系统分析图谱,对于采用琼脂糖凝胶电泳不能分离较接近的片段,如257bp 和267bp,DH 2P LC 系统能有效分离,对于所需片段可根据峰的位置用Transgenom ic 自动收集器对DNA 片段进行纯化、回收一步完成,回收产物可用于进一步的测序或

克隆等。Huber 等(1995)[19]

用DHP LC 系统快速而

精确地分析了烷基化物多个负粒子DNA 片段的大小。1.5.3 微卫星分析 由于微卫星核心序列重复数的差异是形成多态性的基础,引发微卫星位点发生突变的原因主要为“滑链错配”,这将导致微卫星的等位基因之间会产生几个或十几个碱基的差异,且等位基因呈共显性,利用其等位基因片段大小的差异,便可通过DHP LC 系统将其不同的基因型区分开。图4展示了用DHP LC 系统和P AGE 胶对微卫星PCR 产物检测分析对照。Devaney 和Marino (2000)[11]利用DHP LC 分析了人HUMT H01位点的

2

21

2006年增刊李莉等:DHP LC

系统工作原理及其应用

图4 DHP LC系统和P AGE胶对微卫星

PCR产物检测分析对比

微卫星多态,候建国等(2003)[1]也用DHP LC系统分析了与猪经济性状紧密相关的7个微卫星位点, Pan等(2003)[29]用DHP LC高通量检测微卫星的不稳定性。

1.5.4 mRNA定量分析 对于目前研究较多的基因表达方面,DHP LC系统也有其独到的应用,特别是应用基因在不同物种或不同组织器官中表达水平的差异,通过检测RT2PCR产物的峰面积的大小,采用WAVEμMaker核苷酸片段分析系统专用软件可对产物量进行分析。在有标准样品或相对参照物的前提下,可以相对或绝对的定量出mRNA的表达量,以确定基因在组织内的表达情况。Hay ward等(1998)[18]利用DHP LC建立了竞争性RT2PCR的模型及分析方法。Doris等(1998)[13]采用DHP LC系统及竞争性RT2PCR快速分析基因表达。Hay ward 等(1995)[17]用单管内RT2PCR和DHP LC系统对基因表达进行精确而绝对的定量。王翀等(2003)[14]对用mRNA差异显示方法获得的在不同猪种肌肉组织中有差异表达的EST,采用DHP LC系统对不同组织中基因的表达进行相对定量,从而鉴定了差异表达的准确性。1.5.5 引物纯度检测 在完全变性温度(柱温80℃)情况下,形成单链DNA分子或RNA可从洗脱柱上分离,可用于对单链RNA的检测及脱氧核苷酸(如合成的引物等)进行检测和质量监控,对寡核苷酸(oligo)质量控制。5~80mer,可检测单碱基差别; 5~30mer,可检测相同长度寡核苷酸中单碱基序列的差别。对RNA的分析,检测范围在200~5000nts,在配备有收集器的情况下可对分离的单链DNA、oligo、RNA进行纯化,Huber等(1993, 1996)[20,21]曾作过相关的研究,田兴国等(2003)[3]在利用DHP LC系统对微卫星的分析方法探讨中,曾利用该原理对合成的引物进行检测分析,以确定合成引物的纯度,对有降解的引物及时要求公司重新合成,减少了研究时间和经费的浪费。

1.5.6 主要应用领域 DHP LC这一新兴的变异检测技术一经诞生,即被许多实验室采用,大多用以筛选候选基因中已知或未知变异。在最早成功地筛选出乳腺癌、卵巢癌相关基因(BRCA1)的突变后[15],现DHP LC已被用于肿瘤相关基因(TSC1、TSC2、AT M、p53等)、先天性长QT综合征(KCNQ1、KCNH2)、隐睾病(GRE AT)、血友病甲(F8C)、多发行硬化(MAG)等50多种疾病(候选基因)的变异筛选中。在肾脏疾病中,DHP LC也已被用于常染色体显性遗传的多囊肾相关基因PK D1和PK D2的突变筛选中[30]。

DHP LC在大量用于基因突变检测的同时,其功能被不断地开发拓展,已被应用于微卫星DNA鉴定、肿瘤杂合性缺失的检测、RT2PCR的竞争性定量、人种遗传学分析、基因作图、核酶中自身剪切反应的研究、CpG岛甲基化的分析[19]、细菌鉴定[22]、DNA片段大小测定及寡核苷酸的分析和纯化等许多基因组研究领域中。

DHP LC也进一步应用到mRNA的检测中,例如,Gall o等(2002)[14]建立了对mRNA的可变剪接或转录产物的编译进行检测的方法。Matin等(2002)[28]、王翀等(2003)[4]将DHP LC与差异显示mRNA法(mRNA differential dis p lay)的原理相结合,可用于鉴定差异表达的基因。

综上所述,随着研究者对其认识的不断深入和提高,以及寻找更多疾病相关基因或用于连锁或进

321

生物技术通报B iotechnology B u lletin2006年增刊

化分析的多态性标记的迫切需要,DHP LC这一高效、经济的检测技术在将来的基因组学研究领域中将继续发挥重要的作用。

参考文献

1 候建国,李加琪,陈瑶生,等.华南农业大学学报,2003,24(2):63~66.

2 沈靖,王润田,徐希平,国外医学?遗传分册,2001,(6):341~344.

3 田兴国,李加琪,王翀,等.变性高效液相色谱检测微卫星多态性方法研究,中国动物遗传育种研究进展.北京:中国农业科学技术出版社,2003,338~343.

4 王翀,陈瑶生,李重生,等.遗传学报,2003,30(12):1085~1089. 5 A rnold N,Gr oss E,Schwarz2Boeger U,et al.Hum Mutat,1999,14: 333.

6 CargillM,A ltshuler D,Ireland J,et al.Nature Genetics,1999,22: 231~238.

7 Choy Y S,Dabora S L,Hall F,et al.Ann Hum Genet,1999,63: 383.

8 Cott on R G H,B ray P J.J B i oche m B i oph Meth,2001,47:91.

9 Deng D,Deng G,S m ith M F,et al.Nucleic Acids Res,2002,30: E13.

10 Deng D,Zhou J,Zhu B D,et al.World Journal of Gastr oenter ol o2 gy,2003,9(1):26~29.

11 Devaney J and Marino M,2000.M icr osatellite DNA Analysis with the WAVEμNucleic Acid Frag ment Analysis Syste m.Transgenom ic

I nc.App licati on Note No.110,htt p://www.transgenom https://www.docsj.com/doc/0a16177016.html,/

pdf/AN110.pdf

12 Dobs on2St one C,Cox R D,Lonie L,et al.Eur J Hum Genet, 2000,8:24.

13 Doris P A,Chilt on B S,Oefner P J,et al.Journal of Chr omat ogra2 phy,1998,806:47~60.

14 Gall o A,Thom s on E,B rindle J,et al.Nucleic Acids Res,2002, 30:3945.

15 Gr oss E,A rnold N,Goette J,et al.Hum Genet,1999,105:72. 16 Gr oss E,Kiechle M,A rnold N.B i ophys Methods,2001,47:73~

81.

17 Hay ward2Lester A,Oefner P J,Sabatini S,et al.Genome Re2

search,1995,5:494~499.

18 Hay ward2Lester A,Oefner P J,Sabatini S,et al.Nucleic Acids Research,1998,26:2511~2518.

19 Huber C G,Oefner P J,Bonn G K.Analytical Chem istry,1995, 67:578~585.

20 Huber C G,Oefner P J,Bonn G K.AnalyticalB i oche m istry,1993, 212:351~358.

21 Huber C G,Sti m pfl E,Oefner P J,et al.A comparis on of m icr o2 pellicular ani on exchange and reversed2phase stati onary phases f or HP LC analysis of oligonucleotides,1996,14(2):114~127.

22 Hurtle W,Shoemaker D,Henchal E,et al.Denaturing HP LC for i2 dentifying bacteria.B i otechniques,2002,33:386.

23 Kuklin A,Muns on K,Gjerde D,et al.Genetic Testing,1998,1: 201~206.

24 L illeberg S L.I n2dep th mutati on and S NP discovery using DHP LC gene scanning.Current Op ini on in D rug D iscovery&Devel opment, 2003,6(2):237~252.

25 L i pken S M,W ang V,St oler D L,et al.Hum Mutat,2001,17: 389~396.

26 L iuW,Oefner P J,Q ian C,et al.D Genetic Testing,1997,1(4): 237~242.

27 L iu W,S m ith D I,Rechtzigel K J,et al.Nucleic Acids Research, 1998,26:1396~1400.

28 Matin M M,Andre ws P W,Hornby D P.Anal B i oche m,2002, 304:47.

29 Pan K F,L iu W G,Lu Y Y,et al.Human Mutati on,2003,22: 388~394.

30 Rossetti S,Chauveau D,W alker D,et al.A comp lete mutati on screen of the ADPK D genes by DHP LC.Kidney I nt,2002,61: 1588.

31 Shiri2Sverdl ov R,Oefner P,Green L,et al.Hum Mutat,2000,16: 491~501.

32 Skopek T R,Glaab W E,Monr oe J J,et al.Mutat Res,1999,430:

13.

33 Wolf ord J,B lunt D,Ballecer C,et al.Hum Genet,2000,107:483~487.

34 Zi m mer R,P Thomas.Cancer Res,2001,61:2822~2826.

421

igbt工作原理及应用

igbt工作原理及应用 绝缘栅双极型晶体管(IGBT)的保护 引言 绝缘栅双极型晶体管IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,因此,可以把其看作是MOS输入的达林顿管。它融和了这两种器件的优点,既具有MOSFET器件驱动简单和快速的优点,又具有双极型器件容量大的优点,因而,在现代电力电子技术中得到了越来越广泛的应用。在中大功率的开关电源装置中,IGBT由于其控制驱动电路简单、工作频率较高、容量较大的特点,已逐步取代晶闸管或GTO。但是在开关电源装置中,由于它工作在高频与高电压、大电流的条件下,使得它容易损坏,另外,电源作为系统的前级,由于受电网波动、雷击等原因的影响使得它所承受的应力更大,故IGBT的可靠性直接关系到电源的可靠性。因而,在选择IGBT时除了要作降额考虑外,对IGBT的保护设计也是电源设计时需要重点考虑的一个环节。 1 IGBT的工作原理 IGBT的等效电路如图1所示。由图1可知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止 由此可知,IGBT的安全可靠与否主要由以下因素决定:

——IGBT栅极与发射极之间的电压; ——IGBT集电极与发射极之间的电压; ——流过IGBT集电极-发射极的电流; ——IGBT的结温。 如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。 2 保护措施 在进行电路设计时,应针对影响IGBT可靠性的因素,有的放矢地采取相应的保护措施。 2.1 IGBT栅极的保护 IGBT的栅极-发射极驱动电压VGE的保证值为±20V,如果在它的栅极与发射极之间加上超出保证值的电压,则可能会损坏IGBT,因此,在IGBT的驱动电路中应当设置栅压限幅电路。另外,若IGBT的栅极与发射极间开路,而在其集电极与发射极之间加上电压,则随着集电极电位的变化,由于栅极与集电极和发射极之间寄生电容的存在,使得栅极电位升高,集电极-发射极有电流流过。这时若集电极和发射极间处于高压状态时,可能会使IGBT发热甚至损坏。如果设备在运输或振动过程中使得栅极回路断开,在不被察觉的情况下给主电路加上

触摸屏的种类及工作原理

触摸屏种类及原理 随着多媒体信息查询的与日俱增,人们越来越多地谈到触摸屏,因为触摸屏不仅适用于中国多媒体信息查询的国情,而且触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。利用这种技术,我们用户只要用手指轻轻地碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术大大方便了那些不懂电脑操作的用户。 触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。将来,触摸屏还要走入家庭。 随着使用电脑作为信息来源的与日俱增,触摸屏以其易于使用、坚固耐用、反应速度快、节省空间等优点,使得系统设计师们越来越多的感到使用触摸屏的确具有具有相当大的优越性。触摸屏出现在中国市场上至今只有短短的几年时间,这个新的多媒体设备还没有为许多人接触和了解,包括一些正打算使用触摸屏的系统设计师,还都把触摸屏当作可有可无的设备,从发达国家触摸屏的普及历程和我国多媒体信息业正处在的阶段来看,这种观念还具有一定的普遍性。事实上,触摸屏是一个使多媒体信息或控制改头换面的设备,它赋予多媒体系统以崭新的面貌,是极富吸引力的全新多媒体交互设备。发达国家的系统设计师们和我国率先使用触摸屏的系统设计师们已经清楚的知道,触摸屏对于各种应用领域的电脑已经不再是可有可无的东西,而是必不可少的设备。它极大的简化了计算机的使用,即使是对计算机一无所知的人,也照样能够信手拈来,使计算机展现出更大的魅力。解决了公共信息市场上计算机所无法解决的问题。 随着城市向信息化方向发展和电脑网络在国民生活中的渗透,信息查询都已用触摸屏实现--显示内容可触摸的形式出现。为了帮助大家对触摸屏有一个大概的了解,笔者就在这里提供一些有关触摸屏的相关知识,希望这些内容能对大家有所用处。 一、触摸屏的工作原理 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 二、触摸屏的主要类型

DHPLC系统工作原理及其应用

?综述与专论? 生物技术通报 B I O TECHNOLO G Y BULL ET I N 2006年增刊 D HP LC 系统工作原理及其应用 李莉 王翀 陈瑶生 (华南农业大学动物科学学院,五山 510642) 摘 要: 变性高效液相色谱(DHP LC )是一种高通量筛选DNA 序列变异的新技术,从该仪器设备的组成、工作原理、基本操作方法、主要技术特点等作一综述,并对其在基因组领域的应用如S NP 分析、双链DNA 片段分析、微卫星分析、mRNA 定量分析、引物纯度检测等方面及在医学、遗传学方面的应用作了较详细的综述。 关键词: DHP LC 原理 应用 W orki n g Pr i n c i ples and Appli cati on of DHP LC Syste m L i L i W ang Chong Chen Yaosheng (College of A ni m al Science,South China A gricultural U niversity,Guangzhou 510642) Ab s tra c t: Denaturing H igh Perf or mance L iquid Chr omat ography (DHP LC )is a kind of high thr oughout ne w tech 2 nique t o detect the mutati on of the DNA sequence .The structure of the instru ment,working Princi p les,basic mani pulating method and main technical characteristic were revie wed .The app licati ons in the medicine,genetics and genome domain such as analysis of S NP,the frag ment of double strains,m icr osatellite,the quantitative mRNA,the pure detecti on of the p ri m e,et al were revie wed in detail . Key wo rd s: DHP LC Princi p le App licati on 基金项目:国家自然科学基金资助(30300249) 作者简介:李莉(19822),女,硕士研究生,专业方向:动物遗传育种与繁殖,电话:020********* 通讯作者:王翀(19682),女,博士,副教授,主要研究方向:分子遗传学,电话:020*********,E 2mail:betty@scau .edu .cn 变性高效液相色谱(denaturing high perf or mance liquid chr omat ography,DHP LC )是一种新的高通量筛选DNA 序列变异的新技术,这一技术最先由美国Stanf ord 大学Oefner 及Underhill 等于1995年报道, 美国Transgenom ic 公司采用该原理制造专利化仪器,专利产品为WAVE μ DNA 片段分析系统 (WAVE μDNA frag ment analysis syste m )。1.1 仪器主要组成部分 硬件部分:变性高效液相色谱仪(WAVE μ 3500HT ):WAVE μ L 27100型四元梯度溶液注入系 统(含四元梯度泵),WAVE μ L 27250型Peltier 可冷 却、加热自动进样器,WAVE μ L 27300p lus 型高精度Peltier 柱箱,WAVE μ L 27400型紫外/可见光检测 器,WAVE μ L 2700在线去气装置:四通道,样品池(可容纳4个96孔PCR 板,以便进行大规模分析筛 查),WAVE μ Maker 数据工作站系统(硬件)等。 软件部分:M icr os oft W indows μ NT 操作系统,HS MD 27000数据工作站控制接口软件,WAVE μ Maker 核苷酸片段分析系统专用软件包。1.2 DHP LC 基本原理及其应用 用离子对反向高效液相色谱法:①在不变性的温度条件下,检测并分离分子量不同的双链DNA 分子或分析具有长度多态性的片段,类似RF LP 分析,也可进行定量RT 2PCR 及微卫星不稳定性测定 (MSI );②在充分变性温度条件下,可以区分单链DNA 或RNA 分子,适用于寡核苷酸探针合成纯度 分析和质量控制;③在部分变性的温度条件下,变异型和野生型的PCR 产物经过变性复性过程,不仅分别形成同源双链,同时也错配形成异源双链,根据柱子保留时间的不同将同源双链和异源双链分离,

触摸屏系统系统架构和原理教学内容

触摸屏系统 架 构 和 原 理

目录 一、系统开发理念 0 二、系统开发功能描述 0 2.1 触控查询 0 2.2用户角色管理 0 2.3局域网共享 (1) 2.4 管理控制台的页面内容本地更新 (1) 三、系统功能特点列表 (1) 四、系统开发原理 (2) 五、系统运行环境需求 (3)

一、系统开发理念 系统采用B/S结构实现,通过专用浏览器进行信息的浏览查询与交互。系统将采用先进的多媒体技术,采用直观生动图文并茂的方式,给用户提供最优质最便捷的服务。 本系统是一个用于公共信息、公告等内容的发布和触摸查询显示的系统,系统具有声音、图像、文字等表现方式。后台管理主程序、数据库查询部分部分采用C#语言进行开发,前台动画的实现采用PhotoShop、Dreamweaver等多媒体处理技术。 多媒体查询服务终端采用自助服务(Self-service)方式。可透过Ethernet 网络与后端各式内容服务器连结,支持多种通信协议,透过模块化的应用程序开发,可使自助服务的应用程序可以达成高度的便利性。 二、系统开发功能描述 2.1 触控查询 通过触摸屏对公开信息进行查询阅读。 2.2用户角色管理 系统设置高级管理员,拥有系统最高权限,包括:用户管理、角色管理、权限管理。高级管理员可分配管理用户,新用户由高级管理员授权后方可登录系统,并可以在登录系统后更改用户密码,用户可以根据需要增加多个高级管理员;高级管理员可以增加下级管理员,并可根据管理需要设置多级管理员;可以新增、删除各级管理员,修改管理权限密码等,并可以进行角色的授权设置。 各用户根据高级管理员分配的权限,可进行后台查看、发布、编辑信息等操作。可任意编辑图文内容,插入多幅图片、FLASH、媒体,图文混排,还具上传内容源码查看功能,对于少量修改,可使用在线网页编辑器修改。修改制作版面,使用网页制作软件进行编辑。

比较器工作原理及应用

电压比较器(以下简称比较器)就是一种常用得集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A /D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用得电压比较器。 什么就是电压比较器 简单地说,电压比较器就是对两个模拟电压比较其大小(也有两个数字电压比较得,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)就是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“—”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这就是个单电源比较器),同相端输入电压VA,反相端输入VB。VA与VB得变化如图1(b)所示。在时间0~t1时,VA〉VB;在t1~t2时,VB〉VA;在t2~t3时,V A〉VB。在这种情况下,Vout得输出如图1(c)所示:VA>VB 时,Vout输出高电平(饱与输出);VB>VA时,Vout输出低电平。根据输出电平得高低便可知道哪个电压大.

如果把VA输入到反相端,VB输入到同相端,VA及VB得电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示.与图1(c)比较,其输出电平倒了一下。输出电平变化与VA、VB得输入端有关。 图2(a)就是双电源(正负电源)供电得比较器.如果它得VA、VB输入电压如图1(b)那样,它得输出特性如图2(b)所示。VB〉VA时,Vout输出饱与负电压。

如果输入电压VA与某一个固定不变得电压VB相比较,如图3(a)所示。此VB称为参考电压、基准电压或阈值电压.如果这参考电压就是0V(地电平),如图3(b)所示,它一般用作过零检测。 比较器得工作原理 比较器就是由运算放大器发展而来得,比较器电路可以瞧作就是运算放大器得一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门得比较器集成电路。 图4(a)由运算放大器组成得差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与V A、VB及4个电阻得关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA—(RF/R1)VB。若R1=R2,R3=RF,则Vout=RF/R1(VA—VB),RF/R1为放大器得增益.当R1=R2=0(相当于R1、R2短路),

开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用(二) (低轴阻发电机参考资料) 1 引言 开关磁阻电机驱动系统(SDR)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力。这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。本文将从SR电机电动和发电运行这两个角度阐述SR电机的运行原理。 2 电动运行原理 2.1 转矩产生原理 控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令(正转或反转),导通相应的定子相绕组的主开关元件。对应相绕组中有电流流过,产生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置。当转子转到被吸引的转子磁极与定子激磁相相重合(平衡位置)时,电磁转矩消失。此时控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断当

前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行。 图1 三相sr电动机剖面图 从上面的分析可见,电流的方向对转矩没有任何影响,电动机的转向与电流方向无关,而仅取决于相绕组的通电顺序。若通电顺序改变,则电机的转向也发生改变。为保证电机能连续地旋转,位置检测器要能及时给出定转子极间相对位置,使控制器能及时和准确地控制定子各相绕组的通断,使srm能产生所要求的转矩和转速,达到预计的性能要求。 2.2 电路分析

比较器工作原理及应用

电压比较器(以下简称比较器)就是一种常用得集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F 变换电路、 A /D 变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用得电压比较器。 什么就是电压比较器 简单地说,电压比较器就是对两个模拟电压比较其大小(也有两个数字电压比较得,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)就是比较器,它有两个输入端:同相输入端(“ + ” 端)及反相输入端(“一”端),有一个输出端Vou t (输出电平信号)。另外有电源V+ 及地(这就是个单电源比较器),同相端输入电压VA,反相端输入VB。V A与VB得变化如图1(b )所示。在时间0~ t 1时,V A > V B ;在上1?t 2时,V B > VA ;在上2~t3时,V A> VB。在这种情况下,Vo u t得输出如图1 (c)所示:V A>VB 时,Vou t输出高电平(饱与输出);V B >V A时,V o u t输出低电平。根据输出电平得高低便可知道哪个电压大.

如果把V A 输入到反相端,V E 输入到同相端,VA 及V B 得电压变化仍然如图1(b)所示则Vout 输出如图1(d )所示.与图 1 (c )比较,其输出电平倒了一下。输出电平变化与 VA 、VE 得输入 端有关。 图2⑻就是双电源(正负电源)供电得比较器?如果它得 VA 、VB 输入电压如图1 (b )那样,它得输出特性如图2(b)所示。VB > V A 时,Vou t 输出饱与负电压。 国1 ■KT \ I V 咚庄

触摸屏工作原理

0 引言 随着信息技术的飞速发展,人们对电子产品智能化、便捷化、人性化要求也不断提高,触摸屏作为一种人性化的输入输出设备,在我国的应用范围非常广阔,是极富吸引力的多媒体交互没备。目前,触摸屏的需求动力主要来自于消费电子产品,如手机、PDA、便携导航设备等。随着触摸屏技术的不断发展,它在其他电子产品中的应用也会得到不断延伸。现在市面上已有的触摸屏控制器普遍价格比较高且性能相对比较固定,一些场合下无法满足用户的实际需求。本文基于上述考虑,根据电阻式触摸屏的工作原理,选用51系列单片机作为控制核心,设计一种实用且低成本的触摸屏控制系统。 1 触摸屏的工作原理 触摸屏由触摸检测部件和触摸屏控制器件组成(如图1所示);触摸检测部件用于检测用户触摸位置,接收后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息送给控制器,它同时能接收控制器发来的命令并加以执行。

触摸屏的主要3大种类是:电阻技术触摸屏、表面声波技术触摸屏、电容技术触摸屏。其中,电阻式触摸屏凭借低廉的价格以及对于手指及输入笔触摸的良好响应性,涵盖了100多家触摸屏元件制造商中的2/3,成为过去5年中销售量最高的触摸屏产品。在这里根据要设计应用的触摸屏控制器,重点介绍一下四线电阻式触摸屏。 电阻触摸屏的屏体部分是一块与显示器表面相匹配的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。当手指触

摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y轴方向的5 V均匀电压场,使得侦测层的电压由零变为非零,这种接通状态被控制器侦测到后,进行A/D转换,并将得到的电压值与5 V相比即可得到触摸点的Y轴坐标,同理得出X轴的坐标,这就是四线电阻式触摸屏基本原理,其原理如图2所示。 2 触摸屏控制系统硬件设计 根据四线电阻式触摸屏的工作原理可以看出,在硬件设计上的主要工作就在于将触摸点所在的X轴及Y轴坐标通过控制驱动模块加以精确识别。 2.1 总体结构设计 触摸屏控制器的设计关键在于对驱动模块的控制,本文采用AT89C2051作为驱动电路的控制核心,通过ADS7843模块接收触摸屏上得到的信号并控制驱动电

喷码机触摸屏的工作原理与应用

喷码机触摸屏的工作原理与应用 一、触摸屏的工作原理为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU 发来的命令并加以执行。二、触摸屏的主要类型从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。其中矢量压力传感技术触摸屏已退出历史舞台。触摸屏红外屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容屏设计理论好,但其图象失真问题很难得到根本解决;电阻屏的定位准确,但其价格颇高,且怕刮易损。表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰抗暴,适于各种场合,缺憾是屏表面的水滴、尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、红外线式、电容感应式以及表面声波式,下面笔者就对上述的各种类型的触摸屏进行简要介绍: 1、电阻式触摸屏电阻触摸屏的屏体部分是一块与显示器表面非常配合的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(OTI,氧化铟),上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层OTI,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。当手指接触屏幕,两层OTI 导电层出现一个接触点,因其中一面导电层接通Y轴方向的5V 均匀电压场,使得侦测层的电压由零变为非零,控制器侦测到这个接通后,进行A/D 转换,并将得到的电压值与5V 相比,即可得触摸点的Y 轴坐标,同理得出X 轴的坐标,这就是电阻技术触摸屏共同的最基本原理。电阻屏根据引出线数多少,分为四线、五线等多线电阻触摸屏。五线电阻触摸屏的A面是导电玻璃而不是导电涂覆层,导电玻璃的工艺使其的寿命得到极大的提高,并且可以提高透光率。 电阻式触摸屏的OTI 涂层比较薄且容易脆断,涂得太厚又会降低透光且形成内反射降低清晰度,OTI 外虽多加了一层薄塑料保护层,但依然容易被锐利物件所破坏;且由于经常被触动,表层OTI 使用一定时间后会出现细小裂纹,甚至变型,如其中一点的外层OTI 受破坏而断裂,便失去作为导电体的作用,触摸屏的寿命并不长久。但电阻式触摸屏不受尘埃、水、污物影响。这种触摸屏利用压力感应进行控制。它用两层高透明的导电层组成触摸屏,两层之间距离仅为2.5 微米。当手指按在触摸屏上时,该处两层导电层接触,电阻发生变化,在X 和Y 两个方向上产生信号,然后送触摸屏控制器。这种触摸屏能在恶劣环境下工作,但手感和透光性较差,适合配带手套和不能用手直接触控的场合。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:A、ITO,氧化铟,弱导电体,特性是当厚度降到1800 个(埃=10-10 米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300 埃厚度时又上升到80%。ITO 是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO 涂层。B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 2、电容式触摸屏电容式触摸屏的构造主要是在玻璃屏幕上镀一层透明的薄膜体层,再在导体层外加上一块保护玻璃,双玻璃设计能彻底保护导体层及感应器。电容式触摸屏在

触摸屏的原理与应用

触摸屏的原理与应用触摸屏又称为“触控屏”、“触控面板”,是一种可接收触头等输入讯号的感应式液晶显示装置,当接触了屏幕上的图形按钮时,屏幕上的触觉反馈系统可根据预先编程的程式驱动各种连结装置,可用以取代机械式的按钮面板,并借由液晶显示画面制造出生动的影音效果。 触摸屏原理:主要由其二大特性决定。第一:绝对坐标系统,第二:传感器。 首先先来区别下,鼠标与触摸屏的工作原理有何区别?借此来认识绝对坐标系统和相对坐标系统的区别。 鼠标的工作原理是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的鼠标箭头的移动,属于相对坐标定位系统。而绝对坐标系统要选哪就直接点那,与鼠标这类相对定位系统的本质区别是一次到位的直观性。绝对坐标系的特点是每一次定位坐标与上一次定位坐标没有关系,触摸屏在物理上是一套独立的坐标定位系统,每次触摸的数据通过校准数据转为屏幕上的坐标。 第二:定位传感器 检测触摸并定位,各种触摸屏技术都是依靠各自的传感器来工作的,甚至有的触摸屏本身就是一套传感器。各自的定位原理和各自所用的传感器决定了触摸屏的反应速度、可靠 性、稳定性和寿命。 通过以上两个特性,触摸屏工作时,首先用手指或其它物体触摸安装

在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置(即绝对坐标系统)来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器(即传感器);而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU它同时能接收CPU发来的命令并加以执行。触摸屏传感器技术从触摸屏传感器技术原理来划分:有可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。 其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质,把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解哪种触摸屏适用于哪种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。 下面对上述的各种类型的触摸屏进行简要介绍一下: 1、表面声波屏 声波屏的三个角分别粘贴着X,Y 方向的发射和接收声波的换能器(换

表面声波式触摸屏原理

表面声波式触摸屏原理--- 表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、LCD或是等离子显示器屏幕的前面。这块玻璃平板只是一块纯粹的强化玻璃,区别于别类触摸屏技术是没有任何贴膜和覆盖层。玻璃屏的左上角和右下角各固定了竖直和水平方向的超声波发射换能器,右上角则固定了两个相应的超声波接收换能器。玻璃屏的四个周边则刻有45°角由疏到密间隔非常精密的反射条纹。 工作原理以右下角的X-轴发射换能器为例: 发射换能器把控制器通过触摸屏电缆送来的电信号转化为声波能量向左方表面传递,然后由玻璃板下边的一组精密反射条纹把声波能量反射成向上的均匀面传递,声波能量经过屏体表面,再由上边的反射条纹聚成向右的线传播给X-轴的接收换能器,接收换能器将返回的表面声波能量变为电信号。 当发射换能器发射一个窄脉冲后,声波能量历经不同途径到达接收换能器,走最右边的最早到达,走最左边的最晚到达,早到达的和晚到达的这些声波能量叠加成一个较宽的波形信号,不难看出,接收信号集合了所有在X轴方向历经长短不同路径回归的声波能量,它们在Y轴走过的路程是相同的,但在X轴上,最远的比最近的多走了两倍X轴最大距离。因此这个波形信号的时间轴反映各原始波形叠加前的位置,也就是X轴坐标。 发射信号与接收信号波形在没有触摸的时候,接收信号的波形与参照波形完全一样。当手指或其它能够吸收或阻挡声波能量的物体触摸屏幕时,X轴途经手指部位向上走的声波能量被部分吸收,反应在接收波形上即某一时刻位置上波形有一个衰减缺口。 接收波形对应手指挡住部位信号衰减了一个缺口,计算缺口位置即得触摸坐标控制器分析到接收信号的衰减并由缺口的位置判定X坐标。之后Y轴同样的过程判定出触摸点的Y坐标。除了一般触摸屏都能响应的X、Y坐标外,表面声波触摸屏还响应第三轴Z轴坐标,也就是能感知用户触摸压力大小值。其原理是由接收信号衰减处的衰减量计算得到。三轴一旦确定,控制器就把它们传给主机。 ---表面声波触摸屏特点--- 表面声波触摸屏第一大特点就是抗暴,因为表面声波触摸屏的工作面是一层看不见、打不坏的声波能量,触摸屏的基层玻璃没有任何夹层和结构应力(表面声波触摸屏可以发展到直接做在CRT表面从而没有任何“屏幕”),因此非常抗暴力使用,适合公共场所。 表面声波第二大特点就是清晰美观,因为结构少,只有一层普通玻璃,透光率和清晰度都比电容电阻触摸屏好得多。反应速度快,是所有触摸屏中反应速度最快的,使用时感觉很顺畅。 表面声波第四大特点是性能稳定,因为表面声波技术原理稳定,而表面声波触摸屏的控制器靠测量衰减时刻在时间轴上的位置来计算触摸位置,所以表面声波触摸屏非常稳定,精度也非常高,目前表面声波技术触摸屏的精度通常是4096×4096×256级力度。 表面声波触摸屏的缺点是触摸屏表面的灰尘和水滴也阻挡表面声波的传递,虽然聪明的控制卡能分辨出来,但尘土积累到一定程度,信号也就衰减得非常厉害,此时表面声波触摸屏变得迟钝甚至不工作,因此,表面声波触摸屏一方面推出防尘型触摸屏,一方面建议别忘了每年定期清洁触摸屏。 表面声波触摸屏能聪明的知道什么是尘土和水滴,什么是手指,有多少在触摸。因为:我们的手指触摸在4096×4096×256级力度的精度下,每秒48次的触摸数据不可能是纹丝不变的,而尘土或水滴就一点都不变,控制器发现一个“触摸”出现后纹丝不变超过三秒钟即自动识别为干扰物。 表面声波触摸屏还具有第三轴Z轴,也就是压力轴响应,这是因为用户触摸屏幕的力量越大,接收信号波形上的衰减缺口也就越宽越深。目在所有触摸屏中只有声波触摸屏具有能感知触摸压力这个性能,有了这个功能,每个触摸点就不仅仅是有触摸和无触摸的两个

触摸屏的工作原理及常见问题解析

一、什么是触摸屏 所谓触摸屏,从市场概念来讲,就是一种人人都会使用的计算机输入设备,或者说是人人都会使用的与计算机沟通的设备。不用学习,人人都会使用,是触摸屏最大的魔力,这一点无论是键盘还是鼠标,都无法与其相比。 从技术原理角度讲,触摸屏是一套透明的绝对寻址系统,首先它必须保证是透明的,因此它必须通过材料科技来解决透明问题,像数字化仪、写字板、电梯开关,它们都不是触摸屏;其次它是绝对坐标,手指摸哪就是哪,不需要第二个动作,不像鼠标,是相对定位的一套系统,我们可以注意到,触摸屏软件都不需要游标,有游标反倒影响用户的注意力,因为游标是给相对定位的设备用的,相对定位的设备要移动到一个地方首先要知道现在在何处,往哪个方向去,每时每刻还需要不停的给用户反馈当前的位置才不致于出现偏差。这些对采取绝对坐标定位的触摸屏来说都不需要;再其次就是能检测手指的触摸动作并且判断手指位置,各类触摸屏技术就是围绕“检测手指触摸”而八仙过海各显神通的。 二、触摸屏的工作原理 触摸屏做为一种特殊的计算机外设,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。尤其是公共场合信息查询服务,它的使用与推广大大方便了人们查阅和获取各种信息。可你对触摸屏了解多少呢? 触摸屏的基本原理是,用手指或其他物体触摸安装在显示器前端的触摸屏时,所触摸的位置(以坐标形式)由触摸屏控制器检测,并通过接口(如RS-232串行口)送到CPU,从而确定输入的信息。

触摸工作原理

电容触摸感应MCU工作原理与基本特征 现在的电子产品中,触摸感应技术日益受到更多关注和应用,并不断有新的技术和IC 面世。与此同时,高灵敏度的电容触摸技术也在快速地发展起来,其主要应用在电容触摸屏和电容触摸按键,但由于电容会受温度、湿度或接地情况的不同而变化,故稳定性较差,因而要求IC的抗噪性能要好,这样才能保证稳定正确的触摸感应。 针对市场的需求,来自美国的高效能模拟与混合信号IC创新厂商Silicon Laboratories (简称:Silicon Labs)公司特别推出了C8051F7XX和C8051F8XX系列的MCU(单片机),专门针对电容触摸感应而设计,在抗噪性能和运算速度上表现的非常突出。 一、Silicon Labs公司的电容触摸系列MCU 目前Silicon Labs公司推出的C8051F7xx和C8051F8xx等电容触摸系列MCU,以高信噪比高速度的特点在业界表现尤为出色。同时,灵活的I/O配置,给设计带来更多的方便。另外,由于该系列MCU内部集成了特殊的电容数字转换器(CDC),所以能够进行高精度的电容数字转换实现电容触摸功能。 CDC的具体工作原理: 如图1所示,IREF是一个内部参考电流源,CREF是内部集成的充电电容,ISENSOR 属于内部集成的受控电流源,CSENSOR为外部电容传感器的充电电容,由于人体的触摸引起CSENSOR的变化,通过内部调整过的ISENSOR对CSENSOR进行瞬间的充电,在CSENSOR上产生一个电压VSENSOR,然后相对内部参考电压经过一个共模差分放大器进行放大;同理IC内部的IREF对CREF充电后也产生一个参考电压并相对同样的VREF 经过差分放大,最后将2个放大后的信号通过SAR(逐次逼近模数转换器)式的ADC采样算出ISENSOR的值。 图1 Silicon Labs SAR式的ADC采样可选择12-16位的分辨率,如图2所示,采用16位的分辨率进行逐位比较采样:首先从确定最高位第16位(IREF=0x8000)开始,最高位的

比较器工作原理及应用

电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 什么是电压比较器 简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。VA和VB的变化如图1(b)所示。在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。在这种情况下,Vout 的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA 时,Vout输出低电平。根据输出电平的高低便可知道哪个电压大。 如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。与图1(c)比较,其输出电平倒了一下。输出电平变化与VA、VB的输入端有关。

图2(a)是双电源(正负电源)供电的比较器。如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。VB>VA时,Vout输出饱和负电压。 如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。此VB称为参考电压、基准电压或阈值电压。如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。 比较器的工作原理 比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。

屏幕和触屏手套的工作原理

12月的帝都,凉风刺骨,小伙伴们有没有感受到丝丝的寒意呢?是不是已经穿秋裤、带手套了呢?手套呢,最重要的就是暖和,你冷不冷啊,我给你买一副啊!此时此刻,突然女友(含老婆)来了电话,左划划,右划划,此处省略1万字……那边都挂了,这还没划开,很抓狂啊,有木有!!!回家要跪遥控器啊,有木有!!! 咦??对面的MM怎么带着手套还能聊微信,旁边的屌丝怎么带着手套还能聊陌陌呢?凭什么TA的手套就能玩手机? 小叭带你见证奇迹,下图是真相!!! 坑爹啊!不带这么糊弄人的!好啦,以上只是玩笑啦,下面切入正题: 咱们使用的手机大多采用电容式触屏技术,一般手套无法滑动,触屏手套的诞生恰恰解决了这一历史难题!! 想了解触屏手套是如何工作的,需要先要了解电容屏的工作原理:电容式触摸屏技术基

于人体的电流感应,而电容式触摸屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO(不懂化学的,就把它当作化学物A吧),最外层是一薄层矽土玻璃保护层,这个ITO涂层就是工作面,四个角上引出四个电极,内层ITO为屏蔽层以保证良好的工作环境。 当触摸电容屏时,由于人体电场,手指和工作面形成一个耦合电容,因为工作面上接有高频信号,于是手指吸收走一个很小的电流,这个电流分别从屏的四个角上的电极中流出,且理论上流经四个电极的电流与手指头到四角的距离成比例,控制器通过对四个电流比例的精密计算,得出位置。说白了,就是通过电流感应使电容屏工作。 戴上厚厚的保暖手套后,绝缘材料做成的手套使手指与ITO涂层之间的距离隔得太远,无法形成有效电容,所以小叭才接不到电话,以至于回家跪遥控器的。触屏手套在手指的部位使用了导电纤维(通常是含有金属的纤维,例如镀有银涂层的尼龙线)织成的织物,使得指尖依然能通过导电纤维与ITO涂层之间耦合形成电容,将人体上的电荷传递到触摸屏上。怪不得对面的MM操作无压力,原来她带的是触屏手套。

水文地质结构系统的基本原理及其应用

水文地质结构系统的基本原理及其应用 摘要:近些年来,随着我国经济、科学技术、建筑行业的发展,我国的工程建 设越来越多,工程建设的过程中因为人的不当行为、工程的某些要求,对工程建 设周边的地下水资源的破坏比较严重,随着工程建筑的不断增多,对地下水资源 的破坏在不断的加重,而水文地质条件对环境的效应有一定的影响,而对水文地 质结构系统的基本原理研究可以解决一些环境问题,所以研究水文地质结构系统 的原理和应用具有十分重要的现实意义。 关键词:水文地质;结构系统;基本原理;应用 1水文地质学发展简史 水文地质学的发展经历了萌芽、奠基、形成和发展四个阶段。5700年的浙江 余姚河姆渡古文化遗址水井,约3000年前中西亚及北非的干旱地带出现的坎儿 井(Biswas,1970;Todd等,2005),表明人类从远古时代就开了地下水的利用,代表了水文地质学的萌芽。欧洲工业革命时期,由于工业的快速发展,需水量大 大增加,人们对井的出水有了量的需求。1856年,法国水利工程师达西 (H.Darcy),通过室内水通过沙的控制性实验,得出线性渗透定律,即著名的达 西定律,奠定了水文地质学的基础。法国人裘布依(A.Dupuit)、美国人泰斯(C.V.Theis)都先后加入到地下水的定量计算中,并且将其推到了一个新的高度。该阶段人们已经通过实践得到了水文地质相关的基本理论,并且将其应用到了地 下水的研究之中,为水文地质学的发展奠定了好的基础。第一次世界大战之后, 合理开发、科学管理与保护地下水资源,越来越受到人们重视。20世纪40~60 年代,雅克布(C.E.Jacob)及汉图什(M.S.Hantush)等论述了孔隙承压含水层的 越流现象,“含水层思维”受到冲击,逐渐产生含水系统的概念。随后英国的博尔 顿(N.S.Boulton)和美国的纽曼(Neuman)分别导出了潜水完整井非稳定流方程。至此,水文地质学已经完成了从找水型向资源型的转变,各方面理论研究已经构 建了较完备的结构框架,水文地质学的发展已经初步成型。第二次世界大战以后,随着生产力与科学技术的迅速发展,世界人口急剧增长,消费需求也急剧升高, 因而人类开始大规模改造自然环境,大量消耗了包括地下水在内的各种资源,破 坏了环境,打破了生态平衡,进而导致了生态环境的急剧恶化,如土地荒漠化、 土壤盐碱化、地面沉降、水土流失等。保护生态环境刻不容缓,水文地质工作者 开始寻求新的发展模式,水文地质学开始进入了以生态环境为研究核心的阶段, 期间面临的问题错综复杂,以及在全球信息化大的背景下,原有的思维模式、概念、理论以及方法已经难以满足发展需求。加拿大的托特提出了地下水流动系统 理论,为水文地质学的发展开拓了新的发展前景。新技术、新理论的不断引入, 使得水文地质学越来越系统,概念越来越完善,技术越来越成熟,分支学科的划 分也越来越明确,其发展也越来越迅速,至此,水文地质学进入了新的发展时期。从水文地质学发展的四个阶段我们可以清晰地看出,其是一门与生活实践密不可 分的学科。水文地质学的发展贯穿于人类文明的发展之中。 2水文地质结构系统的基本思想 结构系统的概念是系统理论中基本概念的扩展。系统科学强调从系统的结构 与功能的观点出发去研究整个客观世界,这也是水文地质结构系统理论的出发点。 由不同等级、不同形态、不同成因(建造)、经受不同改造作用、具有不同结构和水力学性质的水文地质综合体的有机组合所构成的、具有控水功能、并且不断 运动演化的有机整体,这就是水文地质结构系统的定义。这里,结构系统既指各

四大触摸屏技术工作原理及特点分析

四大触摸屏技术工作原理及特点分析 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1.电阻式触摸屏

电阻式触摸屏的工作原理 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X 和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:(1)ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。 (2)镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 1.1 四线电阻屏 四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。总共需四根电缆。特点:高解析度,高速传输反

相关文档
相关文档 最新文档