文档视界 最新最全的文档下载
当前位置:文档视界 › 高中概率知识要点

高中概率知识要点

高中概率知识要点
高中概率知识要点

概率知识要点

一、随机事件的概率

1 事件的有关概念

(1)必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 简称必然事件

(2)不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。简称不可能事件

(3)确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。

(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。简称随机事件

(5)事件及其表示方法:确定事件和随机事件统称为事件,一般用大写字母A 、B 、C,…,表示 2 随机试验

对于随机事件,知道它的发生可能性大小是非常重要的,要了解随机事件发生的可能性大小,最直接的方法就是试验

一个试验如果满足下述条件:

(1)试验可以在相同的情形下重复进行;

(2)试验的所有结果是明确可知的,但不止一个;

(3)每次试验总是出现这些结果中的一个, 但是一次试验之前却不能确定这次试验会出现哪一个结果

我们称这样的试验为随机试验 3 频数、频率和概率

(1)频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数。

(2)频率:在相同条件S 下重复n 次试验,时间A 出现的比例n

n A f A

n =

)(称为事件A 出现的频率

(3)概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 定义

符号表示

包含关系 对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B )

()B A A B ??

相等关系

若B A A B ??且,则称事件A 与事件B 相等

A=B

并事件(和事件) 某事件发生当且仅当事件A 发生或事件B 发生。 )(B A B A +或Y 交事件(积事件) 某事件发生当且仅当事件A 发生且事件B 发生。 )(AB B A 或I

5 互斥事件与对立事件

(1)互斥 事件A 与事件B 互斥:B A I 为不可能事件,即?=B A I ,即事件A 与事件B 在任何一次试验中并不会同时发生。

(2)对立 事件A 与事件B 互为对立事件:B A I 为不可能事件,B A Y 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。 6 概率的几个基本性质

(1)1)(0≤≤A P A P )的取值范围:(概率.

(2)必然事件E 的概率为1 ,即1)(=E P . (3)不可能事件F 的概率为0. 即 0)(=F P .

(4)若事件A 与事件B 互斥时,P(A Y B)=P(A)+P(B)——概率的加法公式。

(5)事件B 与事件A 互为对立事件,则A Y B 为必然事件, 所以P(A Y B)=P(A)+P(B)=1, 从而P(A)=1 - P(B)

二、古典概型

1、古典概型的概念 (1)基本事件

一次试验中可能出现的每一个结果陈为一个基本事件 (2)基本事件的特点

①任何两个基本事件都是互斥的,一次试验中,只可能出现一种结果,即产生一个基本事件。 ②基本事件是试验中不能再分的最简单的随机事件,任何事件(除不可能事件)都可以表示成基本事件的和

(3)古典概型的定义

①试验中所以可能出现的基本事件只有有限个 ②每个基本事件出现的可能性相等

我们将具有这两个特点的概率模型称为古典概率模型,检查古典概型。 古典概型是一种特殊的概率模型,其特征有两个:①有限性;②等可能性 2、古典概型的概率计算公式

一般地,如果一次试验中共有n 种等可能的结果,那么每一个基本事件发生的概率都是n

1,如果事件A 包含的结果有m 个,那么事件A 发生的概率n

m

A A P ==

总的基本事件个数包含的基本事件个数)(

三、几何概型

1、基本概念:

(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;

(2)几何概型的概率公式: )

的总测度(面积或体积试验的全部结果所构成的测度(面积或体积)

构成事件A A P =)(

(3)几何概型的特点:

①无限性:试验中所有可能出现的结果(基本事件)有无限多个; ②等可能性:每个基本事件出现的可能性相等

四、条件概率与相互独立事件同时发生的概率

1、条件概率

(1)条件概率的定义:设A,B 为两个事件,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率记作)(A B P ,读作“A 发生的条件下B 的概率”

注意:已知A 发生,在此条件下B 发生,相当于AB 发生,要求)(A B P 相当于把A 看做新

的基本事件空间来计算AB 发生的概率,即)()()

()()

()

()()()(A P AB P n A n n AB n A n AB n A B P =ΩΩ==

(2)条件概率的性质 ①1)(0≤≤A B P

②如果B 和C 事两个互斥事件,则)()()(A C P A B P A C B P +=Y

2、事件的独立性 (1)相互独立事件

设A,B 为两个事件,如果P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。事件A 是否发生对事件B 发生的概率没有影响,即)(A B P =P(B),这是我们称两个事件A,B 相互独立,并把这两个事件叫做相互独立事件。

一般地,当事件A,B 相互独立时,A 与B ,A 与B, A 与B 也都相互独立

3、独立重复试验

(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,每次试验都只有两种结果,即要么发生,要么不发生,且任何一次试验中某事件发生的概率均相等。

(2)在n 次独立重复试验中,设事件A 发生的次数为X,在每次试验中事件A 发生的概率为p ,

那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为k

n k k n p p C k X P --==)1()(,

k=1,2,…,n

高中数学知识点总结(精华版)

高中数学知识点总结 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.

新课标高中数学必修三《概率》知识点

高中数学必修3(新课标) 第三章 概 率(知识点) 3.1 随机事件的概率及性质 1、 基本概念: (1)必然事件:一般地,在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件; (5)确定事件与随机事件统称为事件,一般用大写字母表示A 、B 、C ……表示. (6)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A 为事件A 出现的频率: 对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。 (7)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值n n A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小,接近某个常数。我们把这个常数叫做随机事件的概率,概率从数量

上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 (8)任何事件的概率是0~1之间的一个确定的数,它度量该事件发生的的可能性. 2 概率的基本性质 1)一般地、对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B?A(或A?B).不可能事件记作?,任何事件都包含不可能事件. 2)如果事件C1发生,那么事件D1一定发生,反过来也对,这时我们说这两个事件相等,记作C1=D1. 一般地,若B?A,且A?B,那么称事件A与事件B相等,记作A=B. 3)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A或事件B的并事件(或和事件),记作A∪B(或A+B). 4)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB). 5)若A∩B为不可能事件(A∩B=?),那么称事件A与事件B互斥.不可能同时发生. 6)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件.有且仅有一个发生. 任何事件的概率在0~1之间,即 0≤P(A)≤1. 必然事件的概率为1,不可能事件的概率为0. (4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).

高中概率知识要点

概率知识要点 一、随机事件的概率 1 事件的有关概念 (1)必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 简称必然事件 (2)不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。简称不可能事件 (3)确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。简称随机事件 (5)事件及其表示方法:确定事件和随机事件统称为事件,一般用大写字母A 、B 、C,…,表示 2 随机试验 对于随机事件,知道它的发生可能性大小是非常重要的,要了解随机事件发生的可能性大小,最直接的方法就是试验 一个试验如果满足下述条件: (1)试验可以在相同的情形下重复进行; (2)试验的所有结果是明确可知的,但不止一个; (3)每次试验总是出现这些结果中的一个, 但是一次试验之前却不能确定这次试验会出现哪一个结果 我们称这样的试验为随机试验 3 频数、频率和概率 (1)频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数。 (2)频率:在相同条件S 下重复n 次试验,时间A 出现的比例n n A f A n = )(称为事件A 出现的频率 (3)概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 定义 符号表示 包含关系 对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ) ()B A A B ?? 相等关系 若B A A B ??且,则称事件A 与事件B 相等 A=B 并事件(和事件) 某事件发生当且仅当事件A 发生或事件B 发生。 )(B A B A +或Y 交事件(积事件) 某事件发生当且仅当事件A 发生且事件B 发生。 )(AB B A 或I 5 互斥事件与对立事件 (1)互斥 事件A 与事件B 互斥:B A I 为不可能事件,即?=B A I ,即事件A 与事件B 在任何一次试验中并不会同时发生。 (2)对立 事件A 与事件B 互为对立事件:B A I 为不可能事件,B A Y 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。 6 概率的几个基本性质 (1)1)(0≤≤A P A P )的取值范围:(概率.

概率统计知识点汇总

概率第一章 (一)概率的加减乘除运算 (二) 概率的计算 1. 古典概型的计算 2. 条件概率的计算 (三) 全概率公式与贝叶斯公式 (四) n 重伯努利试验 概率第二章 (一)随机变量分布函数 1. 分布函数的定义及性质 2. 学会用分布函数表示随机变量落入指定区域的概率 (二)离散型随机变量 1. 具体问题会求解离散型随机变量的分布列 分布列要满足的条件 2. 由分布列会求解分布函数 3. 由分布函数会求解分布列 4. 掌握三个常见的离散型随机变量 (三)连续型随机变量 1. 由分布函数会求解分布密度 2. 由分布密度会求解分布函数 3. 利用分布密度求解未知参数 4. 掌握三个常见的连续型随机变量 (四)随机变量函数的分布 1. 离散型随机变量的函数 2. 连续型随机变量的函数 概率第三章 二维随机向量 (一)联合分布函数的定义及性质 联合概率分布函数定义为____),(=y x F 联合分布函数的性质: ___),(____,),(),(),(=+∞+∞=-∞-∞=-∞=-∞F F y F x F 用联合概率分布函数表示二维随机向量落入指定区域的概率 ____),(2121=≤<≤

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数 :()() n n i i i i x x y y x y nx y r ---?∑∑= = 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -= ++++ ②.犯错误上界P 对照表 3、独立性检验步骤

统计概率知识点归纳总结归纳大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性与随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率、 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5.掌握离散型随机变量的分布列、 6.掌握离散型随机变量的期望与方差、 7.掌握抽样方法与总体分布的估计、 8.掌握正态分布与线性回归、 考点1、求等可能性事件、互斥事件与相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复、 (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1、 (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(、其中P 为事件A 在一次试验中发生的概率,此式为二项式 [(1-P)+P]n 展开的第k+1项、

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤就是: 第一步,确定事件性质???????等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种、 第二步,判断事件的运算???和事件积事件 即就是至少有一个发生,还就是同时发生,分别运用相加或相乘事件、 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -?=???+=+???=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复、 考点2离散型随机变量的分布列 1、随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示、 ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量、 ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量、 2、离散型随机变量的分布列 ①离散型随机变量的分布列的概念与性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P(i x =ξ)=i P ,则称下表、

高中数学《统计》与《概率》知识点

第二章统计 一、简单随机抽样 1.总体和样本 把每个研究对象叫做个体. 把总体中个体的总数叫做总体容量. 为了研究总体的相关性质,一般从总体中随机抽取一部分:,,,研究, 我们称它为样本.其中个体的个数称为样本容量. 2.简单随机抽样,就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。 特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常仅仅在总体单位之间差异水准较小和数目较少时,才采用这种方法。 3.简单随机抽样常用的方法: (1)抽签法;⑵随机数表法;⑶计算机模拟法 4.抽签法: (1)给调查对象群体中的每一个对象编号; (2)准备抽签的工具,实施抽签 (3)对样本中的每一个个体实行测量或调查 5.随机数表法: 例:利用随机数表在所在的班级中抽取10位同学参加某项活动。 二、系统抽样 1.系统抽样(也叫等距离抽样): 把总体的单位实行排序,再计算出抽样距离,然后按照这个固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。 K(抽样距离)=N(总体)/n(样本个数) 前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存有某种与研究变量相关的规则分布。能够在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布有某种循环性规律,且这种循环和抽样距离重合。 2.系统抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。 三、分层抽样

1.分层抽样:先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。 两种方法: 1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。 2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样方法抽取样本。 2.分层抽样是把差异性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体。 分层标准: (1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。 (2)以保证各层内部同质性强、各层之间差异性强、突出总体内在结构的变量作为分层变量。 (3)以那些有明显分层区分的变量作为分层变量。 3.分层的比例问题: (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。 (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体实行专门研究或实行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料实行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。 四、用样本的数字特征估计总体的数字特征 1、样本均值:n x x x x n +++= 21 2、样本标准差:n x x x x x x s s n 2 22212)()()(-++-+-== (标准差是方差的算术平方根) 3.用样本估计总体时,如果抽样的方法比较合理,那么样本能够反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。 虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而仅仅一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。 4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变 (2)如果把一组数据中的每一个数据乘以一个共同的常数k ,标准差变为原来的k 倍, 五、两个变量的线性相关 1、概念:(1)回归直线方程 (2)回归系数 2.回归直线方程的应用 (1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系

高中数学统计与概率知识点(原稿)

高中数学统计与概率知识点(文) 第一部分:统计 一、什么是众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 二、.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 三 .众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同; (6)众数可能是一个或多个甚至没有; (7)平均数、众数和中位数都是描述一组数据集中趋势的量。

最新统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

初高中各学科知识点总结及口诀汇总 珍藏版

高中各学科知识点总结及口诀汇 总 语文 中国古代文化常识汇总 高考:语文基础知识口诀 中学语文:古典诗词鉴赏口诀 高考语文:语言运用解题歌诀 高考语文:语文基础知识考点歌诀 数学 高中数学公式定理记忆口诀 高中立体几何学习记忆口诀 高中数学知识点总结 高中数学常用公式及常用结论 英语 常用英语谚语100条 高中英语语法口诀 高中英语:语法学习记忆口诀初中各学科知识点总结及口诀大 全 语文 中考语文知识点梳理 初中语文名人名句大集合 初中古诗文中考必背知识点初中学科之语文知识点记忆口诀大全 数学 初中数学知识点总结 初中学科之数学知识点记忆口诀大全 英语 初中英语常见谚语 初中英语词组总结

高中英语:介词运用记忆口诀高考英语阅读题解题口诀 高考英语短文改错口诀 物理 高一物理:知识点理解记忆口诀高二物理:知识点理解记忆口诀高中物理:电学知识记忆口诀高中物理:基础知识理解记忆口诀 化学 高中化学口诀完全版 有机化学基础 高中化学方程式大全 高中化学记忆口诀 高中化学基本概念和基本理论 高中化学:基础知识记忆口诀 高中化学:实验操作知识点记忆口诀 生物 高中生物口诀大全初中学科之英语知识点巧记口诀大全 物理 初中物理知识点总结 初中物理公式 初中物理知识“顺口溜”总结 初中学科之物理知识点记忆口诀 化学 常见化学物质俗称大全 初中化学方程式大全1 初中化学方程式大全2 初中化学知识点总结完全版1 初中化学知识点总结完全版2 九年级化学中考化学考点总结

高中生物:知识要点理解记忆口诀 政治 高中政治知识点总结 高中政治:哲学常识速记口诀高中政治:哲学要点学习记忆口诀 历史 高考历史:历史朝代歌诀 高考历史:古代文化记忆口诀高考备考:中国古代史记忆口诀中国历史:科技文化主要成就歌诀 地理 高考地理雕虫小技:口诀记忆法高考地理:基础知识记忆歌诀高考地理:系列知识要点记忆口诀文综资料稳过270分 高中各科学法记忆口诀 美术初中学科之化学知识点记忆口诀大全 政治 初中政治知识点总结 初中学科之政治知识点记忆口诀大全 历史 历史中考知识点汇编 初中学科之历史知识点记忆口诀大全 地里 初中学科之地理知识点记忆口诀大全 生物 初中学科之生物知识记忆口诀

概率统计知识点全面总结

知识点总结:统计与概率 I 统计 1.三大抽样 (1)基本定义: ① 总体:在统计中,所有考查对象的全体叫做全体. ② 个体:在所有考查对象中的每一个考查对象都叫做个体. ③ 样本:从总体中抽取的一部分个体叫做总体的样本. ④ 样本容量:样本中个体的数目叫做样本容量. (2)抽样方法: ①简单随机抽样:逐个不放回、等可能性、有限性。=======★适用于总体较少★ 抽签法:整体编号( 1~N )放入不透明的容器中搅拌均匀逐个抽取n 次,即可得样本容量为 n 的样本。 随机数表法:整体编号(等位数,如001、111不能是1、111) 从0~9中随机取一行一列然后初方向随机 (上、下、左、右)重复,超过范围则忽略不计直至取得以n 为样本容量的样本。 ②系统抽样:容量大.等距,等可能。=======★适用于总体多★ 用随机方法编号,若N 无法被整除,则剔除后再分组,n N k 。再用简单随机抽样法来抽取一个个体,设为l ,则编号为l ,k+l ,2k+l ……(n-1)k ,抽出容量为n 的样本。(每组编号相同)。 ③分层抽样:总体差异明显.按所占比例抽取.等可能.=======★适用于由差异明显的几部分构成的总体★ 总体有几个差异明显的部分构成,经总体分成几个部分,然后按照所占比例进行抽样.抽样比为:k =n N 3.总体分布的估计: (1)一表二图: ①频率分布表——数据详实 ②频率分布直方图——分布直观 ③频率分布折线图——便于观察总体分布趋势 ★注:总体分布的密度曲线与横轴围成的面积为1。 (2)茎叶图: ①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数.众位数等。 ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来

高中数学选修计数原理概率知识点总结

选修2-3定理概念及公式总结 第一章基数原理 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法 N=m 1+m 2+……+m n 种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整” 3.两个计数原理的区别: 如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理, 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理. 4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-???--=m n n n n A m n 用于计算, 或m n A )! (! m n n -=() n m N m n ≤∈*,, 用于证明。 n n A =!n =()1231????-Λn n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 (1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m n C 表示 (2)组合数公式: (1)(2)(1) ! m m n n m m A n n n n m C A m ---+==L 用于计算, 或)! (!! m n m n C m n -= ),,(n m N m n ≤∈*且 用于证明。

概率论知识点总结及心得体会

概率论总结及心得体会 2008211208班 08211106号 史永涛 班内序号:01 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

高中概率知识点、高考考点、易错点归纳

概率知识要点 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例 ()= A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ??或A B)。 不可能事件记作?。 (2)相等。若B A A B ??且,则称事件A 与事件B 相等,记作A=B 。 (3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。 (4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。 (5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ? ,即事件A 与事件B 在任何一次试验中并不会同时发生。 (6)事件A 与事件B 互为对立事件:A B 为不可能事件,A B 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1P A ≤≤.(2)必然事件的概率为1.()1P E =.(3)不可能事件的概率为0. ()0P F =. (4)事件A 与事件B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。 (5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B = . 古典概型 1、基本事件: 基本事件的特点:(1)任何两个事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本时间的和。 2、古典概型:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。 具有这两个特点的概率模型称为古典概型。 3、公式:()= A P A 包含的基本事件的个数 基本事件的总数

高中数学概率统计知识点总结word版本

高中数学概率统计知 识点总结

高中数学概率统计知识点总结 一、抽样方法 1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法。 3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模) 4.分层抽样: 二、样本估计总体的方式 1、用样本的频率分布估计总体分布 (1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图; (4)总体密度曲线;(5)茎叶图。 2、用样本的数字特征估计总体的数字特征 (1)众数、中位数、平均数的算法;(2)标准差、方差公式。 3、样本均值:n x x x x n +++=Λ21 4、.样本标准差:n x x x x x x s s n 2 22212)()()(-++-+-==Λ 三、两个变量的线性相关 1、正相关 2、负相关 四、概率的基本概念 (1)必然事件(2)不可能事件(3)确定事件(4)随机事件 (5)频数与频率(6)频率与概率的区别与联系 五、 概率的基本性质 1、基本概念:(1)事件的包含并事件、交事件、相等事件

(2)若A∩B为不可能事件,即A∩B= ,那么称事件A与事件B互斥;(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对 立事件; (4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B); 若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1, 于是有P(A)=1—P(B)。 2、概率的基本性质: (1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; (2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B); (3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B); (4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形: (1)事件A发生且事件B不发生; (2)事件A不发生且事件B发生; (3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。 六、古典概型 1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

相关文档
相关文档 最新文档