文档视界 最新最全的文档下载
当前位置:文档视界 › matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法
matlab实现Kmeans聚类算法

kmeans函数:输入为类别数量k和数据矩阵A;输出为聚类结果A,和迭代次数,并将聚类结果数据以excel形式保存在工作路径下

function km(k,A)%函数名里不要出现“-”

warning off

[n,p]=size(A);%输入数据有n个样本,p个属性

cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性

%A(:,p+1)=100;

A(:,p+1)=0;

for i=1:k

%cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心

m=i*floor(n/k)-floor(rand(1,1)*(n/k))

cid(i,:)=A(m,:);

cid;

end

Asum=0;

Csum2=NaN;

flags=1;

times=1;

while flags

flags=0;

times=times+1;

%计算每个向量到聚类中心的欧氏距离

for i=1:n

for j=1:k

dist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离

end

%A(i,p+1)=min(dist(i,:));%与中心的最小距离

[x,y]=find(dist(i,:)==min(dist(i,:)));

[c,d]=size(find(y==A(i,p+1)));

if c==0 %说明聚类中心变了

flags=flags+1;

A(i,p+1)=y(1,1);

else

continue;

end

end

i

flags

for j=1:k

Asum=0;

[r,c]=find(A(:,p+1)==j);

cid(j,:)=mean(A(r,:),1);

for m=1:length(r)

Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2));

end

Csum(1,j)=Asum;

end

sum(Csum(1,:))

%if sum(Csum(1,:))>Csum2

% break;

%end

Csum2=sum(Csum(1,:));

Csum;

cid; %得到新的聚类中心

end

times

display('A矩阵,最后一列是所属类别');

A

for j=1:k

[a,b]=size(find(A(:,p+1)==j));

numK(j)=a;

end

numK

times

xlswrite('data.xls',A); %把矩阵A写到excel文件中,保存在工作路径下display('数据已保存为excel格式');

matlab、lingo程序代码14-模糊聚类(聚类分析)

模糊聚类 function c=fuz_hc(a,b) %模糊矩阵的合成运算程序 %输入模糊矩阵a,b,输出合成运算结果c m=size(a,1);n=size(b,2);p=size(a,2); %错误排除 if size(a,2)~=size(b,1) disp('输入数据错误!');return; end %合成运算 for i=1:m for j=1:n for k=1:p temp(k)=min(a(i,k),b(k,j)); end c(i,j)=max(temp); end end disp('模糊矩阵a与b作合成运算后结果矩阵c为:'); c % 求模糊等价矩阵 function r_d=mhdj(r) [m,n]=size(r); for i=1:n for j=1:n for k=1:n r1(i,j,k)=min(r(i,k),r(k,j)); end r1max(i,j)=r1(i,j,1); end end for i=1:n for j=1:n for k=1:n

if r1(i,j,k)>r1max(i,j) r1max(i,j)=r1(i,j,k); end end r_d(i,j)=r1max(i,j); end end %模糊聚类程序 function f=mujl(x,lamda) %输入原始数据以及lamda的值 if lamda>1 disp('error!') %错误处理 end [n,m]=size(x); y=pdist(x); disp('欧式距离矩阵:'); dist=squareform(y) %欧氏距离矩阵 dmax=dist(1,1); for i=1:n for j=1:n if dist(i,j)>dmax dmax=dist(i,j); end end end disp('处理后的欧氏距离矩阵,其特点为每项元素均不超过1:'); sdist=dist/dmax %使距离值不超过1 disp('模糊关系矩阵:'); r=ones(n,n)-sdist %计算对应的模糊关系矩阵 t=mhdj(r); le=t-r; while all(all(le==0)==0)==1 %如果t与r相等,则继续求r乘以r r=t; t=mhdj(r); le=t-r;

聚类分析Matlab程序实现

2. Matlab程序 2.1 一次聚类法 X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900]; T=clusterdata(X,0.9) 2.2 分步聚类 Step1 寻找变量之间的相似性 用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore 函数进行标准化。 X2=zscore(X); %标准化数据 Y2=pdist(X2); %计算距离 Step2 定义变量之间的连接 Z2=linkage(Y2); Step3 评价聚类信息 C2=cophenet(Z2,Y2); //0.94698 Step4 创建聚类,并作出谱系图 T=cluster(Z2,6); H=dendrogram(Z2); Matlab提供了两种方法进行聚类分析。 一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。 1.Matlab中相关函数介绍 1.1 pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。’ X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2 squareform函数 调用格式:Z=squareform(Y,..) 说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3 linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量;

实验三 K-均值聚类算法实验报告

实验三 K-Means聚类算法 一、实验目的 1) 加深对非监督学习的理解和认识 2) 掌握动态聚类方法K-Means 算法的设计方法 二、实验环境 1) 具有相关编程软件的PC机 三、实验原理 1) 非监督学习的理论基础 2) 动态聚类分析的思想和理论依据 3) 聚类算法的评价指标 四、算法思想 K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。 实验代码 function km(k,A)%函数名里不要出现“-” warning off [n,p]=size(A);%输入数据有n个样本,p个属性 cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性 %A(:,p+1)=100; A(:,p+1)=0; for i=1:k %cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心 m=i*floor(n/k)-floor(rand(1,1)*(n/k)) cid(i,:)=A(m,:); cid; end Asum=0; Csum2=NaN; flags=1; times=1; while flags flags=0; times=times+1; %计算每个向量到聚类中心的欧氏距离 for i=1:n

for j=1:k dist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离 end %A(i,p+1)=min(dist(i,:));%与中心的最小距离 [x,y]=find(dist(i,:)==min(dist(i,:))); [c,d]=size(find(y==A(i,p+1))); if c==0 %说明聚类中心变了 flags=flags+1; A(i,p+1)=y(1,1); else continue; end end i flags for j=1:k Asum=0; [r,c]=find(A(:,p+1)==j); cid(j,:)=mean(A(r,:),1); for m=1:length(r) Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2)); end Csum(1,j)=Asum; end sum(Csum(1,:)) %if sum(Csum(1,:))>Csum2 % break; %end Csum2=sum(Csum(1,:)); Csum; cid; %得到新的聚类中心 end times display('A矩阵,最后一列是所属类别'); A for j=1:k [a,b]=size(find(A(:,p+1)==j)); numK(j)=a; end numK times xlswrite('data.xls',A);

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM 聚类算法。FCM 算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第 1 章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚” 。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid 算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means, FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn [10] 首先将其推广到加权WGSS 函数,后来由Bezdek 扩展到加权WGSS 的无限族,形成了FCM 聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第 2 章聚类分析方法 2-1 聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

数学实验05聚类分析---用matlab做聚类分析

用matlab做聚类分析 Matlab提供了两种方法进行聚类分析。 一种是利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。1.Matlab中相关函数介绍 1.1pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算X数据矩阵中对象之间的距离。’X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2squareform函数 调用格式:Z=squareform(Y,..)

说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量; method:可取值如下: ‘single’:最短距离法(默认);‘complete’:最长距离法; ‘average’:未加权平均距离法;‘weighted’:加权平均法; ‘centroid’:质心距离法;‘median’:加权质心距离法; ‘ward’:内平方距离法(最小方差算法) 返回:Z为一个包含聚类树信息的(m-1)×3的矩阵。 1.4dendrogram函数 调用格式:[H,T,…]=dendrogram(Z,p,…) 说明:生成只有顶部p个节点的冰柱图(谱系图)。 1.5cophenet函数 调用格式:c=cophenetic(Z,Y) 说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。 1.6cluster函数 调用格式:T=cluster(Z,…) 说明:根据linkage函数的输出Z创建分类。

matlab实现Kmeans聚类算法

题目:matlab实现Kmeans聚类算法 姓名吴隆煌 学号41158007

背景知识 1.简介: Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans 等。 Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定标记样本调整类别中心向量。K均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是一种概率密度梯度估计方法(优点:无需求解出具体的概率密度,直接求解概率密度梯度。),所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans 和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些

点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点。 当然,聚类算法并不局限于2维的点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量) 2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。但这也并不意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上

最短距离聚类的matlab实现-1(含聚类图-含距离计算)

最短距离聚类的matlab实现-1 【2013-5-21更新】 说明:正文中命令部分可以直接在Matlab中运行, 作者(Yangfd09)于2013-5-21 19:15:50在MATLAB R2009a(7.8.0.347)中运行通过 %最短距离聚类(含距离计算,含聚类图) %说明:此程序的优点在于每一步都是自己编写的,很少用matlab现成的指令, %所以更适合于初学者,有助于理解各种标准化方法和距离计算方法。 %程序包含了极差标准化(两种方法)、中心化、标准差标准化、总和标准化和极大值标准化等标准化方法, %以及绝对值距离、欧氏距离、明科夫斯基距离和切比雪夫距离等距离计算方法。 %==========================>>导入数据<<============================== %变量名为test(新建一个以test变量,双击进入Variable Editor界面,将数据复制进去即可)%数据要求:m行n列,m为要素个数,n为区域个数(待聚类变量)。 % 具体参见末页测试数据。 testdata=test; %============================>>标准化<<=============================== %变量初始化,m用来寻找每行的最大值,n找最小值,s记录每行数据的和 [M,N]=size(testdata);m=zeros(1,M);n=9999*ones(1,M);s=zeros(1,M);eq=zeros(1,M); %为m、n和s赋值 for i=1:M for j=1:N if testdata(i,j)>=m(i) m(i)=testdata(i,j); end if testdata(i,j)<=n(i) n(i)=testdata(i,j); end s(i)=s(i)+testdata(i,j); end eq(i)=s(i)/N; end %sigma0是离差平方和,sigma是标准差 sigma0=zeros(M); for i=1:M for j=1:N sigma0(i)=sigma0(i)+(testdata(i,j)-eq(i))^2; end end sigma=sqrt(sigma0/N);

MATLAB的统计工具箱中的多元统计分析中提供了聚类分析的两种方法

MATLAB的统计工具箱中的多元统计分析中提供了聚类分析的两种方法: 1.层次聚类hierarchical clustering 2.k-means聚类 这里用最简单的实例说明以下层次聚类原理和应用发法。 层次聚类是基于距离的聚类方法,MATLAB中通过pdist、linkage、dendrogram、cluster等函数来完成。层次聚类的过程可以分这么几步: (1) 确定对象(实际上就是数据集中的每个数据点)之间的相似性,实际上就是定义一个表征对象之间差异的距离,例如最简单的平面上点的聚类中,最经常使用的就是欧几里得距离。 这在MATLAB中可以通过Y=pdist(X)实现,例如 >> X=randn(6,2) X = -0.4326 1.1892 -1.6656 -0.0376 0.1253 0.3273 0.2877 0.1746 -1.1465 -0.1867 1.1909 0.7258 >> plot(X(:,1),X(:,2),'bo') %给个图,将来对照聚类结果把 >> Y=pdist(X) Y = Columns 1 through 14 1.7394 1.0267 1.2442 1.5501 1.6883 1.8277 1.9648 0.5401 2.9568 0.2228 1.3717 1.1377 1.4790 1.0581 Column 15

2.5092 例子中X数据集可以看作包含6个平面数据点,pdist之后的Y是一个行向量,15个元素分别代表X 的第1点与2-6点、第2点与3-6点,......这样的距离。那么对于M个点的数据集X,pdist之后的Y 将是具有M*(M-1)/2个元素的行向量。Y这样的显示虽然节省了内存空间,但对用户来说不是很易懂,如果需要对这些距离进行特定操作的话,也不太好索引。MATLAB中可以用squareform把Y转换成方阵形式,方阵中位置的数值就是X中第i和第j点之间的距离,显然这个方阵应该是 个对角元素为0的对称阵。 >> squareform(Y) ans = 0 1.7394 1.0267 1.2442 1.5501 1.6883 1.7394 0 1.8277 1.9648 0.5401 2.9568 1.0267 1.8277 0 0.2228 1.3717 1.1377 1.2442 1.9648 0.2228 0 1.4790 1.0581 1.5501 0.5401 1.3717 1.4790 0 2.5092 1.6883 2.9568 1.1377 1.0581 2.5092 0 这里需要注意的是,pdist可以使用多种参数,指定不同的距离算法。help pdist把。 另外,当数据规模很大时,可以想象pdist产生的Y占用内存将是很吓人的,比如X有10k个数据点,那么X占10k*8*2Bytes=160K,这看起来不算啥,但是pdist后的Y会有10k*10k/2*8Bytes=400M 。怕了把,所以,废话说在前面,用MATLAB的层次聚类来处理大规模数据,大概是很不合适的。 (2) 确定好了对象间的差异度(距离)后,就可以用Z=linkage(Y)来产生层次聚类树了。 >> Z=linkage(Y) Z = 3.0000 4.0000 0.2228 2.0000 5.0000 0.5401 1.0000 7.0000 1.0267

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

聚类分析matlab程序设计代码

function varargout = lljuleifenxi(varargin) % LLJULEIFENXI MATLAB code for lljuleifenxi.fig % LLJULEIFENXI, by itself, creates a new LLJULEIFENXI or raises the existing % singleton*. % % H = LLJULEIFENXI returns the handle to a new LLJULEIFENXI or the handle to % the existing singleton*. % % LLJULEIFENXI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LLJULEIFENXI.M with the given input arguments. % % LLJULEIFENXI('Property','Value',...) creates a new LLJULEIFENXI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before lljuleifenxi_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to lljuleifenxi_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help lljuleifenxi % Last Modified by GUIDE v2.5 07-Jan-2015 18:18:25 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @lljuleifenxi_OpeningFcn, ... 'gui_OutputFcn', @lljuleifenxi_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before lljuleifenxi is made visible. function lljuleifenxi_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB

利用Matlab软件实现聚类分析范文

§8.利用Matlab和SPSS软件实现聚类分析 1. 用Matlab编程实现 运用Matlab中的一些基本矩阵计算方法,通过自己编程实现聚类算法,在此只讨论根据最短距离规则聚类的方法。 调用函数: min1.m——求矩阵最小值,返回最小值所在行和列以及值的大小 min2.m——比较两数大小,返回较小值 std1.m——用极差标准化法标准化矩阵 ds1.m——用绝对值距离法求距离矩阵 cluster.m——应用最短距离聚类法进行聚类分析 print1.m——调用各子函数,显示聚类结果 聚类分析算法 假设距离矩阵为vector, a阶,矩阵中最大值为max,令矩阵上三角元素等于max 聚类次数=a-1,以下步骤作a-1次循环: 求改变后矩阵的阶数,计作c

求矩阵最小值,返回最小值所在行e和列f以及值的大小g for l=1:c,为vector(c+1,l)赋值,产生新类 令第c+1列元素,第e行和第f行所有元素为,第e列和第f列所有元素为max 源程序如下: %std1.m,用极差标准化法标准化矩阵 function std=std1(vector) max=max(vector); %对列求最大值 min=min(vector); [a,b]=size(vector); %矩阵大小,a为行数,b为列数 for i=1:a for j=1:b std(i,j)= (vector(i,j)-min(j))/(max(j)-min(j)); end end %ds1.m,用绝对值法求距离 function d=ds1(vector); [a,b]=size(vector); d=zeros(a); for i=1:a for j=1:a for k=1:b d(i,j)=d(i,j)+abs(vector(i,k)-vector(j,k)); end end end fprintf('绝对值距离矩阵如下:\n'); disp(d) %min1.m,求矩阵中最小值,并返回行列数及其值 function [v1,v2,v3]=min1(vector);%v1为行数,v2为列数,v3为其值 [v,v2]=min(min(vector')); [v,v1]=min(min(vector)); v3=min(min(vector));

FCMClust(模糊c均值聚类算法MATLAB实现)

function [center, U, obj_fcn] = FCMClust(data, cluster_n, options) % FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类 % 用法: % 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options); % 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster); % 输入: % data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值 % N_cluster ---- 标量,表示聚合中心数目,即类别数 % options ---- 4x1矩阵,其中 % options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0) % options(2): 最大迭代次数(缺省值: 100) % options(3): 隶属度最小变化量,迭代终止条件(缺省值: 1e-5) % options(4): 每次迭代是否输出信息标志(缺省值: 1) % 输出: % center ---- 聚类中心 % U ---- 隶属度矩阵 % obj_fcn ---- 目标函数值 % Example: % data = rand(100,2); % [center,U,obj_fcn] = FCMClust(data,2); % plot(data(:,1), data(:,2),'o'); % hold on; % maxU = max(U); % index1 = find(U(1,:) == maxU); % index2 = find(U(2,:) == maxU); % line(data(index1,1),data(index1,2),'marker','*','color','g'); % line(data(index2,1),data(index2,2),'marker','*','color','r'); % plot([center([1 2],1)],[center([1 2],2)],'*','color','k') % hold off; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个 error('Too many or too few input arguments!'); end data_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数 in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度 % 默认操作参数 default_options = [2; % 隶属度矩阵U的指数 100; % 最大迭代次数 1e-5; % 隶属度最小变化量,迭代终止条件

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM聚类算法。FCM算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第1章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚”。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means,FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn[10]首先将其推广到加权WGSS函数,后来由Bezdek扩展到加权WGSS的无限族,形成了FCM聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第2章聚类分析方法 2-1聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

MATLAB 层次聚类

MATLAB 层次聚类应用简述 MATLAB的统计工具箱中的多元统计分析中提供了聚类分析的两种方法: 1.层次聚类hierarchical clustering 2.k-means聚类 这里用最简单的实例说明以下层次聚类原理和应用发法。 层次聚类是基于距离的聚类方法,MATLAB中通过pdist、linkage、dendrogram、cluster等函数来完成。 层次聚类的过程可以分这么几步: (1) 确定对象(实际上就是数据集中的每个数据点)之间的相似性,实际上就是定义一个表征对象之间差异的距离,例如最简单的平面上点的聚类中,最经常使用的就是欧几里得距离。 这在MATLAB中可以通过Y=pdist(X)实现,例如 >> X=randn(6,2) X = -0.4326 1.1892 -1.6656 -0.0376 0.1253 0.3273 0.2877 0.1746 -1.1465 -0.1867 1.1909 0.7258 >> plot(X(:,1),X(:,2),'bo') %给个图,将来对照聚类结果把 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~图1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ >> Y=pdist(X) Y =

Columns 1 through 14 1.7394 1.0267 1.2442 1.5501 1.6883 1.8277 1.9648 0.5401 2.9568 0.2228 1.3717 1.1377 1.4790 1.0581 Column 15 2.5092 例子中X数据集可以看作包含6个平面数据点,pdist之后的Y是一个行向量,15个元素分别代表X 的第1点与2-6点、第2点与3-6点,......这样的距离。那么对于M个点的数据集X,pdist之后的Y 将是具有M*(M-1)/2个元素的行向量。Y这样的显示虽然节省了内存空间,但对用户来说不是很易 懂,如果需要对这些距离进行特定操作的话,也不太好索引。MATLAB中可以用squareform把Y转 换成方阵形式,方阵中位置的数值就是X中第i和第j点之间的距离,显然这个方阵应该是 个对角元素为0的对称阵。 >> squareform(Y) ans = 0 1.7394 1.0267 1.2442 1.5501 1.6883 1.7394 0 1.8277 1.9648 0.5401 2.9568 1.0267 1.8277 0 0.2228 1.3717 1.1377 1.2442 1.9648 0.2228 0 1.4790 1.0581 1.5501 0.5401 1.3717 1.4790 0 2.5092 1.6883 2.9568 1.1377 1.0581 2.5092 0 这里需要注意的是,pdist可以使用多种参数,指定不同的距离算法。help pdist把。 另外,当数据规模很大时,可以想象pdist产生的Y占用内存将是很吓人的,比如X有10k个数据点 ,那么X占10k*8*2Bytes=160K,这看起来不算啥,但是pdist后的Y会有10k*10k/2*8Bytes=400M 。怕了把,所以,废话说在前面,用MATLAB的层次聚类来处理大规模数据,大概是很不合适的。 (2) 确定好了对象间的差异度(距离)后,就可以用Z=linkage(Y)来产生层次聚类树了。 >> Z=linkage(Y) %Z=linkage(Y,’method’)说明:用‘method’参数指定的算法计算系统聚类树。 Z = 3.0000 4.0000 0.2228 2.0000 5.0000 0.5401 1.0000 7.0000 1.0267 6.0000 9.0000 1.0581 8.0000 10.0000 1.3717 对于M个元素的X,前面说了Y是1行M*(M-1)/2的行向量,Z则是(M-1)*3的矩阵。 Z数组的前两列是索引下标列,最后一列是距离列。例如上例中表示在产生聚类树的计算过程中

模糊数学在聚类分析中的作用(matlab代码)[1]

function [M,N] = Example8_11 X=[1.8 2.1 3.2 2.2 2.5 2.8 1.9 2.0; 95 99 101 103 98 102 120 130; 0.15 0.21 0.18 0.17 0.16 0.20 0.09 0.11]; X=X' %X=[80 10 6 2;50 1 6 4;90 6 4 6;40 5 7 3;10 1 2 4] [M,N]=fuzzy_jlfx(4,5,X); end %% function [M,N]=fuzzy_jlfx(bzh,fa,X)%得到聚类结果 [X]=F_JlSjBzh(bzh,X);%数据标准化 [R]=F_JlR(fa,X);%建立相似矩阵 [A]=fuzzy_cdbb(R);%得到传递闭包矩阵 [Alamd]=fuzzy_lamdjjz(A);%得到lamdf截矩阵从而得到聚类结果[M,N]=F_JlDtjl(R);%动态聚类并画出聚类图 %% function [M,N]=F_JlDtjl(R) %clc; [A]=fuzzy_cdbb(R); U=unique(A); L=length(U); M=1:L; for i=L-1:-1:1 [m,n]=find(A==U(i)); N{i,1}=n; N{i,2}=m; A(m(1),:)=0; mm=unique(m); N{i,3}=mm; len=length(find(m==mm(1))); depth=length(find(m==mm(2))); index1=find(M==mm(1)); MM=[M(1:index1-1),M(index1+depth:L)]; % index2=find(MM==mm(2)); M=M(index1:index1+depth-1); M=[MM(1:index2-1),M,MM(index2:end)]; end M=[1:L;M;ones(1,L)]; h=(max(U)-min(U))/L; figure text(L,1,sprintf('%d',M(2,L))); text(L+1,1-h,sprintf('%d',L)); text(0,1,sprintf('%3.2f',1)); text(0,(1+min(U))/2,sprintf('%3.2f',(1+min(U))/2)); text(0,min(U),sprintf('%3.2f',min(U))); hold on for i=L-1:-1:1 m=N{i,2};

相关文档
相关文档 最新文档