文档视界 最新最全的文档下载
当前位置:文档视界 › 典型例题(第一章概率论的基本概念) 古典概型

典型例题(第一章概率论的基本概念) 古典概型

典型例题(第一章概率论的基本概念) 古典概型
典型例题(第一章概率论的基本概念) 古典概型

第一章 概率论的基本概念练习题

第一章 概率论的基本概念练习题 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件 D C B A BC C A B A AB ---+,,,,中的样本点。 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和: C B A ++,C AB +,AC B -. 6. 若事件C B A ,,满足C B C A +=+,试问B A =是否成立?举例说明。 7. 对于事件C B A ,,,试问C B A C B A +-=--)()(是否成立?举例说明。 8. 设 31)(=A P ,21 )(=B P ,试就以下三种情况分别求)(A B P : (1)Φ=AB , (2)B A ?, (3) 81 )(=AB P . 9. 已知 41)()()(===C P B P A P ,161 )()(==BC P AC P ,0)(=AB P 求事件C B A ,,全不发生的概率。 10. 每个路口有红、绿、黄三色指示灯,假设各色灯的开闭是等可能的。一个人骑车经过三个路口,试求下列事件的概率:=A “三个都是红灯”=“全红”; =B “全绿”; =C “全黄”; =D “无红”; =E “无绿”; =F “三次颜色相同”; =G “颜色全不相同”; =H “颜色不全相同”。 11. 设一批产品共100件,其中98件正品,2件次品,从中任意抽取3件(分三种情况:一次拿3件;每次拿1件,取后放回拿3次;每次拿1件,取后不放回拿3次),试求: (1)(1)取出的3件中恰有1件是次品的概率; (2)(2)取出的3件中至少有1件是次品的概率。 12. 从9,,2,1,0 中任意选出3个不同的数字,试求下列事件的概率: {}501与三个数字中不含=A ,{}502或三个数字中不含=A 。 13. 从9,,2,1,0 中任意选出4个不同的数字,计算它们能组成一个4位偶数的概率。 14. 一个宿舍中住有6位同学,计算下列事件的概率: (1)6人中至少有1人生日在10月份;

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

概率论与数理统计总复习 公式概念定理

概率论与数理统计总复习 第一章 概率论的基本概念 1. 事件的关系及运算 互不相容事件:AB =Φ 即A,B 不能同时发生。 对立事件:A B =ΩU 且AB =Φ 即A B B ==Ω- 差事件:A B - 即 A 发生但B 不发生的事件 切记: ()A B AB A AB A B B -==-=-U 2. 概率的性质 单 调 性 : 若 B A ?,则 )()()(A P B P A B P -=- 加法定理:)()()() (AB P B P A P B A P -+=Y )()()()()(AB P C P B P A P C B A P -++=Y Y )()()(ABC P CA P BC P +-- 例1 设 ,,()0.7,()0.4,A C B C P A P A C ??=-= ()0.5P AB =,求()P AB C -。 解:()()()P A C P A P AC -=- ()()P A P C =- (AC C =Q ) 故 ()()()0.70.40.3P C P A P A C =--=-= 由此 ()()()P AB C P AB P ABC -= - ()()P AB P C =- (ABC C =Q ) 0.50.30.2=-=

注:求事件的概率严禁画文氏图说明,一定要用概率的性质 计算。 3. 条件概率与三个重要公式 乘法公式 全概率公式 1()()(/)n i i i P A P B P A B ==∑ 贝叶斯公式(求事后概率) 例2、(10分)盒中有6个新乒乓球,每次比赛从其中任取两个球来用,赛后仍放回盒中,求第三次取得两个新球的概率。 解:设A i ——第2次摸出i 个新球(i =0,1,2), B ——第3次摸出两个新球 ∵ A 0,A 1,A 2构成Ω的一个划分 ∴ 由全概率公式 其中 故 ; )/()()(A B P A P AB P =()(/) (/)() i i i P B P A B P B A P A = 2 ()()(|) k k k P B P A P B A ==∑201102 244224012222 666186(),()()151515C C C C C C P A P A P A C C C ======202002 334242012222 666631 (|)(|)(|)151515 C C C C C C P B A P B A P B A C C C ======4 ()0.16 25 P B ==

第一章 概率论的基本概念

第一章 概率论的基本概念 一、随机事件其运算 1.随机试验、样本点和样本空间 (1)随机试验 随机试验具有如下特点的试验. 1、在相同的条件下,试验可以重复进行. 2、试验的所有可能结果是预先知道的,并且不止一个. 3、每一次试验出现那一个结果事先不能确定. (2)样本点和样本空间 随机试验的每一个可能的(不可分解的)结果,称为这个随机试验的一个样本点,记为ω. 随机试验的所有样本点组成的集合,称为这个随机试验的样本空间,记为. Ω2.随机事件、基本事件、必然事件和不可能事件 在随机试验中,可能发生也可能不发生的事情称为该试验的随机事件,记为A ,B 等. 随机试验的随机事件可以表示为它的一些样本点组成的集合.在一次试验中,若试验结果是随机事件A 中的一个样本点,则称在一次试验中事件A 发生. 只包含一个样本点的事件称为基本事件. 在任何一次试验中都发生的事件,称为必然事件,它就是Ω所表示的事件,因而用Ω表示必然事件. 在任何一次试验中都不发生的事件,称为不可能事件,它就是由φ所表示的事件,因而用φ表示不可能事件. 3.事件之间的关系和运算 (1)包含关系 设A ,B 为二事件,若A 发生必导致B 发生,则称事件A 包含于事件B ,或事件B 包含事件A ,记为B A ?.B A ??A ∈?ω必有B ∈ω,见图1—1. (2)相等关系 设A ,B 为二事件,若B A ?并且A B ?,则称A 与B 相等,记为B A =,见图1—2. (3)事件的并 设A ,B 为二事件, 称事件“A ,B 至少一个发生(A 发生或B 发生)”为A ,B 的并(或和),记为.B A ∪B A ∪}|{B A ∈∈=ωωω或.见图1—3. (4)事件的交 设A ,B 为二事件,称事件“A ,B 同时发生(A 发生且B 发生)”为A ,B 的交(或积).记为或B A ∩AB .AB }|{B A ∈∈=ωωω且.见图1—4. (5)事件的差 设A ,B 为二事件, 称事件“A 发生且B 不发生”为A 减去B 的差,记为B A ?.B A ? }|{B A ?∈=ωωω且.见图1—5. (6)互不相容关系

第一章概率论习题解答附件

教 案 概率论与数理统计 (Probability Theory and Mathematical Statistics ) Exercise 1.1 向指定目标射三枪,观察射中目标的情况。用1A 、2A 、 3A 分别表示事件“第1、2、3枪击中目标” ,试用1A 、2A 、3A 表示以下各事件: (1)只击中第一枪; (2)只击中一枪; (3)三枪都没击中; (4)至少击中一枪。 Solution (1)事件“只击中第一枪”,意味着第二枪不中,第三枪也不中。所以,可以表示成 1A 32A A 。 (2)事件“只击中一枪”,并不指定哪一枪击中。三个事件“只击中第一枪”、“只击中第二枪”、“只击中第三枪”中,任意一个发生,都意味着事件“只击中一枪”发生。同时,因为上述三个事件互不相容,所以,可以表示成 123A A A +321A A A +321A A A . (3)事件“三枪都没击中”,就是事件“第一、二、三枪都未击中”,所以,可以表示成 123A A A . (4)事件“至少击中一枪”,就是事件“第一、二、三枪至少有一次击中”,所以,可以表示成 321A A A 或 123A A A +321A A A +321A A A +1A 32A A +321A A A +321A A A + 321A A A . Exercise 1.2 设事件B A ,的概率分别为 21,31 .在下列三种情况下分别求)(A B P 的值: (1)A 与B 互斥; (2);B A ? (3)81)(=AB P . Solution 由性质(5),)(A B P =)()(AB P B P -. (1) 因为A 与B 互斥,所以φ=AB ,)(A B P =)()(AB P B P -=P(B)= 21 (2) 因为;B A ?所以)(A B P =)()(AB P B P -=)()(A P B P -= 6 13121=-

第一章 概率论的基本概念重点和难点

第一章概率论的基本概念 一、重点、难点概要复述 随机事件的定义及事件间的关系;概率的定义及性质;常见的三大概率模型:古典概型,几何概型,贝努利概型;条件概率与三大公式:乘法公式,全概公式,贝叶斯公式;事件的独立性。 1.设事件表示“甲产品畅销,乙产品滞销”,则表示_________________. 2.设为事件,则都发生可表示为___________________;发生但与不发生可表示为_______________;中不多于一个发生可表示为 ________________. 3.设为随机事件,则。 A.B. C.D. 4. 设为随机事件,则。 A. B. C. D. 5.设事件满足,则 _______. 6.将20本书随机放入书架,则指定的某3本书挨在一起的概率是 ____________. 7.向半径为的圆内随机抛一质点,则质点落入圆内接正方形区域的概率为__________. 8.将一枚骰子连续抛掷100次,则事件“出现1点或6点”至少发生2次的概率为_______. 9. 一批灯泡共100只,其中10只为次品。做不放回抽取,每次取1只,则第3 次才取到正品的概率为___________. 10. 三个箱子,第一个箱子有4个黑球、1个白球,第二个箱子有3个黑球、3个白球,第三个箱子有3个黑球、5个白球。现随机地取一个箱子,再从这个箱子中任取一个球,则这个球为白球的概率为 ___________。若已知取得的球为白球,则此球属于第二个箱子的概率

为__________. 二、常见问题及解法 (一) 随机事件的表示: 1.随机事件的表示:设为随机事件,则 i)同时发生可表示为; ii)至少有一个发生可表示为; iii)发生但不发生可表示为 (二)随机事件概率的求法 1.利用加法公式: 2. 应用乘法公式:,其中. ,其中。 注:若,则由乘法公式可得 从而,也即与可以相互转换。又因 ; 故,可相互转换。 3. 在古典概型中求事件的概率: 4. 在几何概型中求事件概率: 5. 在贝努利概型中求事件的概率:在重貝努利试验中,事件每次发生的 概率为,则事件 恰发生次的概率为:,。 6. 利用全概公式与逆概公式求概率:设是完备事件组,,是任一个事 件,则 (i)全概公式: (ii)逆概公式:,其中。 (三)事件独立性的判断 1. 根据实际问题直观判断 2. 根据定义来判断或证明:事件相互独立当且仅当。 三、拓展练习 1.设事件满足求 2.设事件满足,已知,求。 3.设事件满足,,, 求至少有一个发生的概率为。 4. 设事件满足 则有 (A) (B) (C) (D) 5. 设事件满足则

概率论与数理统计习题及答案__第一章

《概率论与数理统计》习题及答案 第 一 章 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况, A =‘甲盒中至少有一球’ ; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’, B =‘通过的汽车不少于3台’ 。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论第四章习题解答

第四章 随机变量的数字特征 I 教学基本要求 1、理解随机变量的数学期望与方差的概念,掌握它们的性质与计算,会求随机变量函数的数学期望; 2、掌握两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望与方差; 3、了解切比雪夫不等式及应用; 4、掌握协方差、相关系数的概念与性质,了解矩和协方差矩阵的概念; 5、了解伯努利大数定理、切比雪夫大数定律、辛钦大数定理; 6、了解林德伯格-列维中心极限定理、棣莫弗―拉普拉斯中心极限定理,掌握它们在实际问题中的应用. II 习题解答 A 组 1、离散型随机变量X 的概率分布为 求()E X 、(35)E X +、2 ()E X ? 解:()(2)0.4000.3020.300.2E X =-?+?+?=-; (35)3()5 4.4E X E X +=+=; 2222()(2)0.4000.3020.30 1.8E X =-?+?+?=. 2、某产品表面瑕疵点数服从参数0.8λ=的泊松分布,规定若瑕疵点数不超过1个为一等品,每个价值10元,多于4个为废品,不值钱,其它情况为二等品,每个价值8元.求产品的平均价值? 解:设X 为产品价格,则0X =、8、10.通过查泊松分布表可知其相应概率分布为 则()80.1898100.80889.61E X =?+?≈(元). 3、设随机变量X 的分布函数为0 0()/40414x F x x x x ≤?? =<≤??>? .求()E X ?

解:由分布函数知X 的密度函数为 1/404 ()0 x f x <≤?=? ?其它 则4 ()()24 x E X xf x dx dx +∞ -∞ = ==? ? . 4、设随机变量X 服从几何分布,即1 ()(1)k p X k p p -==-(1,2,)k =L ,其中 01p <<是常数.求()E X ? 解:1 11 1 ()(1) (1)k k k k E X kp p p k p +∞ +∞ --=== -=-∑∑ 由级数 21 2 1123(1) k x x kx x -=+++++-L L (||1)x <,知 211 ()[1(1)]E X p p p =? =--. 5、若随机变量X 服从参数为λ的泊松分布,即 ()! k p X k e k λλ-== (0,1,2,)k =L 求()E X 、2 ()E X ? 解:1 00 ()!(1)!k k k k E X k e e e e k k λ λ λλλλλλλ-+∞ +∞ --- === ===-∑∑; 12 2 010 (1)()[]! (1)!!k k k k k k k k E X k e e e k k k λ λ λ λλλλλ-+∞ +∞ +∞ ---===+===-∑∑∑ 1 21 []()(1)! ! k k k k e e e e k k λ λλλλλλλλλλλ-+∞ +∞ --===+=+=+-∑ ∑ . 6、某工程队完成某项工程的时间X (单位:月)服从下述分布 (1) 求该工程队完成此项工程的平均时间; (2) 设该工程队获利50(13)Y X =-(万元).求平均利润? 解:(1) ()100.4110.3120.2130.111E X =?+?+?+?=(月);

第一章概率论的基本概念

第一章 随机事件及其概率 一、选择题: 1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( ) A .A B A C + B .()A B C + C .ABC D .A B C ++ 2.设B A ? 则 ( ) A .()P A B =1-P (A ) B .()()()P B A P B A -=- C . P(B|A) = P(B) D .(|)()P AB P A = 3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立 A .()()()P A B P A P B = B .P (A|B )=0 C .P (A|B )= P (B ) D .P (A|B )= ()P A 4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( ) A .a-b B .c-b C .a(1-b) D .b-a 5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( ) A .A 与 B 互不相容 B .A 与B 相互独立 C .A 与B 互不独立 D .A 与B 互不相容 6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ?,则一定成立的关系式是( ) A .P (A| B )=1 B .P(B|A)=1 C .(|A)1p B = D .(A|)1p B = 7.设A 、B 为任意两个事件,则下列关系式成立的是 ( ) A .()A B B A -= B .()A B B A -? C .()A B B A -? D .()A B B A -= 8.设事件A 与B 互不相容,则有 ( ) A .P (A B )=p (A )P (B ) B .P (AB )=0 C .A 与B 互不相容 D .A+B 是必然事件

第一章 概率论的基本概念习题答案

第三章 多维随机变量及其分布习题答案 3. 220,(1)(1),4,(,),0.5940, x y x y e e c F x y --<<+∞?--==? ? 其它 . 4. 2012.4(2),()0,X x x x f x ≤≤?-=??,其它201 2.4(34),()0,Y y y y y f y ≤≤?-+=? ? 其它. 5. ???=,0,4),(y x f ,),(其它G y x ∈???+=,0,48)(x x f X ,05.0其它<≤-x ?? ?-=, 0,22)(y y f Y 其它10<≤y . 6. (1) (|)(1),0,1,;,m m n m n P Y m X n C p p n m n -===-=≤否则(|)0P Y m X n ===; (2)(,)(1)/!,0,1,;,m m n m n n P Y m X n C p p e n n m n λλ--===-=≤否则(|)0P Y m X n ===. 7. 10. ⑴0y ≥时|0 ,(|)0 0,x X Y x e f x y x -≥?=?

11. ⑴放回抽样 ⑵ 不放回抽样 X 的条件分布律与上相同,再结合联合分布律可以看出: 放回抽样时独立,不放回抽样时不独立。 12. 1c = ; 当10x -<<时,|1/2,||(|)0, Y X x y x f y x -<-?=? ? 其它 ; 当| |1y <时,|1/(1||),1|| (|)0,X Y y x y f x y --<<-?=? ? 其它 . 13. ⑴ (2|2)5/16,(3|0)1/5P X Y P Y X ====== ; ⑶ ⑷ . ;0.375 . 16. ? ? ?<≥-=--00 ,0,)1()(6/3/z z e e z f z z Z . 17. ⑴(2)30 3!,()00,t T t t e f t t ->?=?≤? ;⑵(3)50()00,t T t t e f t t ->?=?≤?.

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =??==733 103.07.0}3{C P ξ0.0090 至少命中3炮的概率, 为1减去命中不到3炮的概率, 为 =??-=<-=≥∑=-2 010103.07.01}3{1}3{i i i i C P P ξξ0.9984 因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为 =??=≤∑=-2 0101099.001.0}2{i i i i C P ξ0.9999 3. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此 2061.02.08.0}18{}15 270 {}27015{}270{20 18 2020=??==≥=≥ =≥=≥∑=-i i i i C P P P P ξξξη 4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不 大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此 ∑=-??=≤=≤=≤3 20209.01.0}3{}15.020 { }15.0{i i i i C P P P ξξ η=0.867 5. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20 件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率 } 2{} 23{}2|3{≥≥?≥= ≥≥ξξξξξP P P 因事件}3{}2{≥?≥ξξ, 因此2}23{≥=≥?≥ξξξ 因此

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

概率论的基本概念

概率论的基本概念 1.1 随机试验 1.随机现象在一定条件下具有多个可能的结果,个别几次观察中结果呈现出随机性(不确定性),在大量重复观察中结果又呈现出固有的客观规律性的自然现象称为随机现象. 随机现象的三大特点: (1)在一定条件下具有多个可能的结果,所有可能的结果已知; (2)在一次观察中,结果呈现出随机性,不能确定哪一个结果将会出现; (3)在大量的重复观察(相同条件下的观察)中,结果的出现又呈现出固有的客观规律性. 2.随机试验具有以下几个特点的实验称为随机实验,常用E 来表示 1)可以在相同的条件下重复进行; 2)试验的结果不止一个,并且能事先明确试验所有可能的结果; 3)进行一次试验之前不能确定哪一个结果会出现. 注:随机试验即可在相同条件下重复进行的针对随机现象的试验.

1.2 样本空间与随机事件 1. 样本空间与随机事件的概念 1) 样本空间 随机试验E的所有可能结果E的样本空间,记为S. 样本空间的元素,即E的每个结果,称为样本点. 样本空间依据样本点数可分为以下三类 (1)有限样本空间:样本空间中样本点数是有限的; (2)无限可列样本空间:样本空间中具有可列无穷多个样本点; (3)无限不可列样本空间:样本空间中具有不可列无穷多个样本点. 2) 随机事件一般,称随机试验E的样本空间S的任何一个子集为E的随机事件,简称为事件. 在一次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生. 注:(1):随机事件在一次试验中可能发生,也可能不发生; (2):由一个样本点构成的单点集,称为基本事件; (3):样本空间S是必然事件,空集 是不可能事件,它们两个发生与否不具有随机性,为了方便将它们两个也称为随机事件。

概率论第四章课后习题解答

概率论第四章习题解答 1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。 “THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y (3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。 解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为 所 以 151115()234988884 E X =?+?+?+?=。 (2)因为Y 的取值为2,3,4,9 当2Y =时,包含的字母为“O ”,“N ”,故 1 21 {2}3015 C P Y == =; 当3Y =时,包含的3个字母的单词共有5个,故 当4Y =时,包含的4个字母的单词只有1个,故 当9Y =时,包含的9个字母的单词只有1个,故

112314673 ()234915215103015 E Y =? +?+?+?== 。 (3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12; 若第一次得到的不是6点,则他的得分为1,2,3,4,5。由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。 2 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如果发现其中的次品多于1,就去调整设备。以X 表示一天中调整设备的次数,试求()E X 。(设诸产品是否为次品是相互独立的。) 解 (1)求每次检验时产品出现次品的概率 因为每次抽取0件产品进行检验,且产品是否为次品是相互独立的,因而可以看作是进行10次独立的贝努利试验,而该产品的次品率为,设出现次品的件数为 Y ,则(10,0.1)Y B :,于是有 1010{}(0.1)(0.9)k k k P Y k C -== (2 )一次检验中不需要调整设备的概率 则需要调整设备的概率 {1}1{}10.73610.2639P Y P Y >=-≤=-= (3)求一天中调整设备的次数X 的分布律

概率论的基本概念

第一章概率论的基本概念 第一节随机事件、频率与概率 一、教学目的: 1.通过本节起始课序言简介,使学生初步了解概率论简史、特色,从 而引导学生了解本课程概况及学习本课程的思想方法 2.通过本次课教学,使学生理解随机事件概念、频率与概率的概念, 了解随机试验、样本空间的概念,掌握事件的关系和运算,掌握 概率的基本性质及其运算 二、教学重点:概率的概念 三、教学难点:事件关系的分析与运算 四、教学内容: 1.序言:⑴简史⑵学法 2.§1.随机试验: ⑴实例⑵确定性现象⑶随机现象 3.§2.样本空间、随机事件: ⑴样本空间⑵随机事件⑶事件关系 与运算 4.§3. 频率与概率⑴频率定义、性质⑵概率定义、性质 五、小结: 六、布置作业: 标准化作业第一章题目 第二节古典概型、条件概率 一、教学目的: 通过本节教学使学生了解古典概型的定义,理解条件概率的概念,并能够解决一些古典概型、条件概率的有关实际问题. 二、教学重点:古典概率、条件概率计算 三、教学难点:古典概型与条件概率分析与建模 四、教学内容: 1.§4.古典概型 2.§5.条件概率(一) 五、小结: 六、布置作业: 标准化作业第一章题目 第三节乘法公式、全概率公式、Bayes公式、独立性 一、教学目的: 1.通过本节教学使学生在理解条件概率概念的基础上,掌握乘法公

式、全概率公式、Bayes公式以及能够运用这些公式进行概率计算。 2.理解事件独立性概念,掌握用独立性概念进行计算. 二、教学重点: 1.乘法公式及其使用 2.独立性概念及其应用 三、教学难点:应用公式分析与建模 四、教学内容: 1.§5.条件概率(二、三)2.§6.独立性 五、小结: 六、布置作业: 标准化作业第一章题目 第四节习题课 一、教学目的: 通过本习题课教学使学生全面系统对概率论的基本概念进一步深化,同时熟练掌握本章习题类型,从而提高学生的分析问题与解决问题的能力. 二、教学重点: 1.知识内容系统化 2.几类问题解决方法 三、教学难点:实际问题转化为相应的数学模型 四、教学内容: 1.本章知识内容体系归纳 2.习题类型: ⑴古典概型计算 ⑵事件关系与运算 ⑶条件概率计算 ⑷乘法公式、全概率公式、Bayes公式使用与计算. ⑸独立性问题的计算 五、讲练习题 第二章随机变量及其分布 第一节随机变量、离散型随机变量的概率分布 一、教学目的: 通过本节教学使学生理解随机变量的概念,理解离散型随机变量的分布及其性质,掌握二项分布、泊松分布,并会计算有关事件的概率及其分布.

第一章概率论的基本概念

第一章随机事件及其概率 一、选择题: 1.设A、B、C是三个事件,与事件A互斥的事件是:() A.AB AC +B.() + A B C C.ABC D.A B C ++ 2.设B A ?则() A.() =1-P(A)B.()()() P A B -=- P B A P B A C.P(B|A) = P(B) D.(|)() P A B P A = 3.设A、B是两个事件,P(A)> 0,P(B)> 0,当下面的条件()成立时,A与B一定独立 A.()()() = B.P(A|B)=0 P A B P A P B C.P(A|B)= P(B)D.P(A|B)= () P A 4.设P(A)= a,P(B)= b, P(A+B)= c, 则() P A B为:()A.a-b B.c-b C.a(1-b) D.b-a 5.设事件A与B的概率大于零,且A与B为对立事件,则不成立的是()A.A与B互不相容B.A与B相互独立 C.A与B互不独立D.A与B互不相容 6.设A与B为两个事件,P(A)≠P(B)> 0,且A B ?,则一定成立的关系式是()A.P(A|B)=1 B.P(B|A)=1 C.(|A)1 p B= p B=D.(A|)1 7.设A、B为任意两个事件,则下列关系式成立的是()A.() -? A B B A -= A B B A B.() C.() A B B A -= D.() A B B A -? 8.设事件A与B互不相容,则有() A.P(AB)=p(A)P(B)B.P(AB)=0 C.A与B互不相容D.A+B是必然事件

9.设事件A 与B 独立,则有 ( ) A .P (A B )=p (A )P (B ) B .P (A+B )=P (A )+P (B ) C .P (AB )=0 D .P (A+B )=1 10.对任意两事件A 与B ,一定成立的等式是 ( ) A .P (A B )=p (A )P (B ) B .P (A+B )=P (A )+P (B ) C .P (A|B )=P (A ) D .P (AB )=P (A )P (B|A ) 11.若A 、B 是两个任意事件,且P (AB )=0,则 ( ) A .A 与 B 互斥 B .AB 是不可能事件 C .P (A )=0或P (B )=0 D .AB 未必是不可能事件 12.若事件A 、B 满足A B ?,则 ( ) A .A 与 B 同时发生 B .A 发生时则B 必发生 C .B 发生时则A 必发生 D .A 不发生则B 总不发生 13.设A 、B 为任意两个事件,则P (A-B )等于 ( ) A . ()()P B P AB - B .()()()P A P B P AB -+ C .()()P A P AB - D .()()()P A P B P AB -- 14.设A 、B 、C 为三事件,则AB BC AC 表示 ( ) A .A 、 B 、 C 至少发生一个 B .A 、B 、C 至少发生两个 C .A 、B 、C 至多发生两个 D .A 、B 、C 至多发生一个 15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( ) A .A 与 B 互不相容 B .A 与B 相互独立 C .A 与B 相互对立 D .A 与B 互不独立 16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则P A B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.3 17掷两枚均匀硬币,出现一正一反的概率为 ( ) A .1/2 B .1/3 C .1/4 D .3/4 18.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率 为2p ,则该零件加工的成品率为 ( ) A .121p p -- B .121p p - C .12121p p p p --+ D .122p p -- 19.每次试验的成功率为)10(<

相关文档
相关文档 最新文档