文档视界 最新最全的文档下载
当前位置:文档视界 › 机电系统振动信号分析技术的研究

机电系统振动信号分析技术的研究

机电系统振动信号分析技术的研究

李燕,魏宗信,刘军

(河南农业大学机电工程学院,河南郑州450002)

ResearchontheAnalyticTechnologyofVibrationSignalsofElectro——mechanicalSystem

LIYah?WEIZaag—xiag。LIUJan

(CollegeofMechanicalandElectricalEngineering。Her,anAgricultureUniversity.Zhengzhou450002,Chim)

摘要:阐述了振动烈度分析和非平稳信号的时频分析。以振动烈度的计算为基础,分析了预警、报警限的设定方法;最后论述了非平稳信号分析法中的短时傅立叶变换和小波变换,为不同分析法的选用提供了参考。

关键词:机电系统;振动信号分析方法;短时傅立叶变换;小波分析

中图分类号:THll3

文献标识码:A

文章编号:lOOl一2257(2010)02—0030—03

Abstract:Introducedvibrationintensityandtime—frequencyanalysisofnon—stationarysignal,basedonthecalculationofvibrationintensity,ana—lyzedmethodofthefaultearlywarning,eventuallythediscussionofshort—-timeFouriertransformandwavelettransformaregoodreferenceforchoice.

Keywords:electro—mechanicalsystems;vibra—tionsignalanalysismethod;short——timefouriertransformation;waveletanalysis

0引言

现代机电系统在功能日益强大、智能化程度不断提高的同时,结构也越来越复杂,系统的故障征兆也越来越不明显。然而一旦系统发生故障便会影响系统的正常运行,造成工业生产的破坏,带来巨大的经济损失,甚至造成人员伤亡、环境污染等重大恶性事故。因此,及时掌握机电系统的状态并采取相应的维护措施便显得十分重要。在各种状态分析方法中,基于机电系统振动信号分析的方法得到了广泛

收稿日期:2009—09—10

基金项目:河南省科技攻关资助项目(082102210111)

?30?的应用。这是因为机电系统的振动信号包含了大量的、极其丰富的有用信息。如转子的轴线失中、动不平衡、轴承的腐蚀和缺陷等,这些信息在振动信号中都会有不同的反映。振动参数比起其它状态参数能更直接、快速、准确地反映机电系统的运行状态[¨。

1机电系统振动信号分析

机械振动是指在机电系统运行状态下,机器上某处观测点的位移量围绕其均值或相对基准随时问不断变化的过程。机电系统的振动情况可分为两大类,即稳态振动和随机振动,如图1所示。

稳态振动:r1波形按霄嬲霈则地重复

描述均值不变,叫宝㈣动机

厂方差又确定的

械变化范围

振L随机振动:H统霁藿!饕驾蒋蒿芜关

动均值和方差都

是时间函数叫统葬茬曩鐾舒蔷蓍数

图1机械振动的种类和特征

稳态振动是指在某一时间t后,其振动波形的均值不变,方差在一定的范围内波动,而随机振动是指信号的均值和方差都是时间的函数。稳态振动可以分为周期振动和非周期振动;随机振动可以分为平稳随机振动和非平稳随机振动[2]。利用振动信号获得系统状态信息的方法主要有振动烈度分析和时频分析等口】。

2振动信号的振动烈度分析

振动波形是振动振幅的瞬态值随时间延续而不断变化所形成的动态图像。振动烈度值,即振动速度的总均方根值,是振动信号的幅值域参数。由于振动烈度值主要体现机组整体振动量的大小,从而反映了机组整体的工作状态;同时振动烈度值与信号所含的能量关系密切,受频率变化的影响较小,并

《机械与电子}2010(2)

万方数据

005,振动信号的分析方法

振动信号的分析方法 在对设备进行监测和故障诊断中,大多都采用对设备进行振动状态监测,所以对振动信号进行有效地分析,使用不同的分析方法来获得振动信号的特性参数,这种方法是机械设备实现故障诊断的主要措施。常用的振动信号分析方法有时域分析法,频域分析法,阶次跟踪分析法,经验模态分析法和包络解调分析法,下面逐个对这五种分析方法进行详细说明。 1时域分析法 振动时域参数分析是对风力发电机组进行故障检测和诊断的简易方法,时域波形是经过DSP数据处理器去噪处理后的信号,包含较多的信息量。在时域诊断中,采用的参数有:均值、均方根值、峭度值、峰值、脉冲因子、裕度系数……通过监测这些特征参数是否超过设定的_值来诊断传动部件是否发生机械故障。幅域参数一般分为有量纲和无量纲2种类型的指标。均值、均方根值等为有量纲的时域参数。无量纲的时域参数包含偏态系数、波形因子、峰态系数、脉冲因子、裕度系数……现对时域分析中所涉及的主要釆用的参数进行简要介绍。 (1)均值:平均值又可称为直流分量,是用来评价信号是否稳定。表征了振 动信号变化的中心波动,是信号的常量分量,其表达式为 其中,n为总的采样点数;表示振动信号的样本函数。 (2)均方根值:均方根值,也叫方均根值,它是对信号先平方,再求取平均值后开方得到的,是对没有规律的信号比较有用。其表达式为 (3)峭度:峭度值是可以直接体现概率密度的一种可靠参数,概率密度函数分布形态偏移越大,峭度值的绝对值就越大。 峭度值可以反映概率密度图形的对称性。概率密度函数分布形态偏移越大,

峭度值的绝对值越大。 除此之外,还有几种比较常见的时域参数, 2频域分析法 时域振动信号的频谱分析是目前所知的研究故障特征方法中基础的方法之一,可以在频谱中,获得比较全面的故障信息。在频域中,主要从幅值频谱、功率频谱、倒频谱3个基本的频谱进行分析。频谱的功能是用来分析原始信号中轴承内圈、外圈的固有频率和故障频率,以及齿轮箱齿轮互相哨合产生的哨合频率;倒频谱的功能是用于容易地获得频谱的边频带中的周期成分,并确定故障发生的位置。 1.幅值谱分析 幅值频谱就是对传感器釆样所得的原始信号经处理后的振动信号进行一次傅立叶变换(FFT),计算并画出该时域振动信号的频率图谱,傅立叶变化的表达式为:

旋转机械中带传动的振动分析

旋转机械中带传动的振动分析 SpectraQuest Inc. 8205 Hermitage Road Richmond, VA 23228 摘要:带传动在各种动力传动中应用广泛。对于传送带不正确的安装和维护将对机器的运行和老化产生巨大的影响。广泛使用振动特征来研究带传动的故障。本文给出了由两个传送带驱动系统的实验结果,包括带张紧状态、运行速度、带轮的偏心度以及未校准等情况。结果表明:偏心带轮将产生调幅和较大的振动,带轮的偏心很容易使传送带达到固有频率。同时,偏心对振动特征的影响并不明显。 实验装置和过程 实验装置 本实验中用到的实验器材包括:SpectraQuest公司的机械故障仿真器(MFS),两个A42 V 的传动带,装有VibraQuest数据采集和分析软件的笔记本,SpectraPad的便携式数据采集器,两个PCB加速度计,Wilcoxon三轴的加速度计。 图1给出了MFS和加速度计以及结构的配置。 图1 实验装置 两个单轴的加速度计分别安装在外侧轴承座上的水平方向和竖直方向。三轴加速度计安装在轴承座基座的顶部,通过轴连接着带轮。图1中的数字代表在数据获得系统上的通道数。带传动的传动比是2.56。 实验过程 首先,记录下不同的转子速度和不同的张力下的基线数据。然后在驱动带轮上加入未校准的补偿量,并且在相同的速度和张力下记录数据。最后,用另一个偏心带轮代替驱动带轮并在相同的速度和张力下记录数据。在偏心带轮测试中,通过慢慢增加转子的速度观察传送带的共振数据。 数据记录的频率上限是2000Hz,每次记录时间是8s。两个被测试的转子的速度分别是20Hz 和40Hz。注意这些数据可以从电机控制器读出,但是由于控制器存在误差,实际速度与读数有所偏差。通过旋转螺钉改变两个带轮的中心距,调节传送带的张力。两个带轮的张力的高低是由手感决定的。

CATIA 机械运动分析与模拟实例

前言 CATIA软件是法国达索飞机制造公司首先开发的。它具有强大的设计、分析、模拟加工制造、设备管理等功能。其设计工作台多达60多个,就足以说明软件功能的强大。 本书是作者在出版系列CATIA软件功能介绍后,专门针对某一项功能写的实例教程。在讲解示例的过程中,作者也注意了将某些快捷功能插入进来,进行讲解。比如在装配设计工作台对零件进行重新设计,比如在装配图中直接导入或者插入新的零件。在同类的图书中,很难涉及到这些快捷功能。 本书是基于CATIA V5 R16写成的,在完成本书时,已经有R17版本了,读者在更高的版本上也可以使用此书。读者在阅读本书,使用软件时,需要反复练习,才能熟练运用本书所讲解的一些功能。可以根据本书的步骤,做一些自己学习和工作中遇到的模型,也可以拿机械设计的标准件来做练习实例。 本书适合做机械设计的专业人员和机械相关专业的学生使用。本书也同样适合想学习CATIA软件的其他读者。本书前面20章都是讲解某一项铰的设计方法,最后一章是综合前面各章内容做的一个实例。本书编写过程中考虑到了初学者可能对CATIA机械零件设计的功能还不是很熟悉,因此,对于各章所涉及到的零件,模型建立方法都做了详细的介绍。对于已经熟悉CATIA基本设计功能的读者,可以略读这部分内容,直接阅读各章最后一节的内容。对于只想了解CATIA 机械零件设计的读者,可以仔细阅读每章前面各节的内容,把本书作为机械设计的详细教程,未尝不可。 感谢我的家人,他们给了我很大的支持,使我能抽出时间完成此书。感谢我的单位领导对工作的支持,特别是反应堆结构室的领导和各位同仁,他们的鼓励和帮助,使我坚持下来完成此书,并使我受益匪浅。 本书由盛选禹和盛选军主编。 冯志江老师参加了本书第1、第2、第3章的编写工作。王存福同志参加了第6、第7、第8章的编写工作 参加本书编写工作的还有张宏志,王玉洁,孙新城,盛选贵,曹京文、陈树青、王恩标、于伟谦、盛帅、候险峰、盛硕、陈永澎、盛博、曹睿馨、张继革、刘向芳、富晶、孟庆元、宗纪鸿、唐守琴。 由于时间比较仓促,认识水平有限等,不能避免有错误出现,读者在阅读时发现错误,请通知编者,不胜感激。也希望就CATIA软件的问题和广大读者继续探讨。作者联系电子邮件:xuanyu@https://www.docsj.com/doc/074415206.html,。 编者 2006年12月于北京

旋转机械振动的基本特性

旋转机械振动的基本特性 概述 绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。 旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。 故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。 由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。 从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。 根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。 表1 旋转机械故障原因分类

机械振动与冲击 信号处理 第4部分:冲击响应谱分析(标准状态:现行)

I C S17.160 J04 中华人民共和国国家标准 G B/T29716.4 2018/I S O18431-4:2007 机械振动与冲击信号处理 第4部分:冲击响应谱分析 M e c h a n i c a l v i b r a t i o na n d s h o c k S i g n a l p r o c e s s i n g P a r t4:S h o c k-r e s p o n s e s p e c t r u ma n a l y s i s (I S O18431-4:2007,I D T) 2018-03-15发布2018-10-01实施中华人民共和国国家质量监督检验检疫总局

目 次 前言Ⅲ 引言Ⅳ 1 范围1 2 规范性引用文件1 3 术语和定义1 4 符号和缩略语1 5 冲击响应谱基本原理2 6 冲击响应谱的计算5 7 采样频率的影响9 参考文献12

前言 G B/T29716‘机械振动与冲击信号处理“由以下部分组成: 第1部分:引论; 第2部分:傅立叶变换的时域窗; 第3部分:时频分析方法; 第4部分:冲击响应谱分析; 第5部分:时基分析方法三 本部分为G B/T29716的第4部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分使用翻译法等同采用I S O18431-4:2007‘机械振动与冲击信号处理第4部分:冲击响应谱分析“三 与本部分中规范性引用的国际文件有一致性对应关系的我国文件如下: G B/T2298 2010机械振动二冲击与状态监测词汇(I S O2041:2009,I D T)三 本部分由全国机械振动二冲击与状态监测标准化技术委员会(S A C/T C53)提出并归口三 本部分起草单位:西北机电工程研究所二杭州亿恒科技有限公司二中国测试技术研究院二交通运输部公路科学研究所二孝感松林国际计测器有限公司二湖北省电力公司电力科学研究院二中船重工第七一一研究所三 本部分主要起草人:李超位二焦明纲二顾国富二王宝元二洪丽娜二赵玉刚三

MATLAB在机械振动信号中的应用

MATLAB在机械振动信号中的应用 申振 (山东理工大学交通与车辆工程学院) 摘要:综述了现代信号分析处理理论、方法如时域分析(包括时域参数识别、相关分析等)、频域分析(包括傅立叶变换、功率谱分解等),并结合MATLAB中的相关函数来对所拟合的振动信号进行时域分析和频域分析,并对绘出的频谱图进行说明。 关键词:时域分析频域分析 MATLAB 信号是信息的载体,采用合适的信号分析处理方法以获取隐藏于传感观测信号中的重要信息(包括时域与频域信息等),对于许多工程应用领域均具有重要意义。对获取振动噪声信号的分析处理,是进行状态监测、故障诊断、质量检查、源识别、机器产品的动态性能测试与优化设计等工作的重要环节,它可以预先发现机械部件的磨损和缺陷等故障,从而可以提高产品的质量,降低维护费用。随着测试技术的迅速发展,各种信号分析方法也随之涌现,并广泛应用在各个领域[1]。 时域描述简单直观,只能反映信号的幅值随时间的变化,而不能明确的揭示信号随时间的变化关系。为了研究信号的频率组成和各频率成分的幅值大小、相位关系,应对信号进行频谱分析,即把时域信号通过适当的数学方法处理变成频率f(或角频率 )为独立变量,相应的幅值或相位为因变量的频域描述。频域分析法将时域分析法中的微分或差分方程转换为代数方程,有利于问题的分析[2]。 MATLAB是MathWorks公司于1982年推出的一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、矩阵运算、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面良好的操作环境。随着其自身版本的不断提高,MATLAB的功能越来越强大,应用范围也越来越广,如广泛应用于信号处理、数字图像处理、仿真、自动化控制、小波分析及神经网络等领域[3]。 本文主要运用了MATLAB R2014a对机械振动信号进行分析。分析过程包括时域分析和频域分析两大部分,时域分析的指标包括随机信号的均值、方差以及均方值。频域分析的性能指标包括对功率谱分析、倒频谱分析。在进行上述分析之前先要对振动信号进

旋转机械振动的基本特性 (DEMO)

旋转机械振动的基本特性 一、转子的振动基本特性 大多数情况下,旋转机械的转子轴心线是水平的,转子的两个支承点在同一水平线上。设转子上的圆盘位于转子两支点的中央,当转子静止时.由于圆盘的重量使转子轴弯曲变形产生静挠度,即静变形。此时,由于静变形较小,对转子运动的影响不显著,可以忽略不计,即认为圆盘的几何中心O′与轴线AB上O点相重合,如图7—l所示。转子开始转动后,由于离心力的作用,转子产生动挠度。此时,转子有两种运动:一种是转子的自身转,即圆盘绕其轴线AO′B的转动;另一种是弓形转动,即弯曲的轴心线AO′B与轴承联线AOB组成的平面绕AB轴线的转动。 转子的涡动方向与转子的转动角速度ω同向时,称为正进动;与ω反方向时,称为反进动。 二、临界转速及其影响因素 随着机器转动速度的逐步提高,在大量生产实践中人们觉察到,当转子转速达到某一数值后,振动就大得使机组无法继续工作,似乎有一道不可逾越的速度屏障,即所谓临界转速。Jeffcott用—个对

称的单转子模型在理论上分析了这一现象,证明只要在振幅还未上升到危险程度时,迅速提高转速,越过临界转速点后,转子振幅会降下来。换句话说,转子在高速区存在着一个稳定的、振幅较小的、可以工作的区域。从此,旋转机械的设计、运行进入了一个新时期,效率高、重量轻的高速转子日益普遍。需要说明的是,从严格意义上讲,临界转速的值并不等于转子的固有频率,而且在临界转速时发生的剧烈振动与共振是不同的物理现象。 在正常运转的情况下: (1)ω<n ω时, 振幅A>0,O′点和质心G 点在O 点的同一侧,如图7—3(a)所示; (2)ω>n ω时,A<0,但A>e,G 在O 和O′点之间,如图 7—3(c)所示; 当ω≥n ω时,A e -≈或O O′≈-O′G,圆盘的质心G 近似 地落在固定点O,振动小。转动反而比较平稳。这种情况称为“自动对心”。 (3)当ω=n ω时,A ∞→,是共振情况。实际上由于存在阻尼,振幅A 不是无穷大而是较大的有限值,转轴的振动非常剧烈,以致有可 能断裂。n ω称为转轴的“临界角速度” ;与其对应的每分钟的转数则称为“临阶转速”。 如果机器的工作转速小于临界转速,则称为刚性轴;如果工作转速高于临界转速,则称为柔性轴。由上面分析可知,只有柔性轴的旋转机器运转时较为平稳 但在启动过程中,要经过临界转速。如果缓

转动设备常见振动故障频谱特征及其案例解析分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

基于LabVIEW的机械振动信号分析系统的应用

基于LabVIEW的机械振动信号分析系统的开发 随着现代化工业大生产的不断发展,机械设备的结构变得越来越复杂,并且经常运行于高速、重载以及恶劣环境等条件下。由于各种因素的干扰和影响,会导致机械设备发生故障,轻则降低生产质量或导致停产,重则会造成严重的甚至是灾难性的事故。为此,为尽最大可能地避免事故的发生,机械设备状态监测与故障诊断技术近年来得到了极为广泛的重视,其应用所达到的深入程度十分令人鼓舞。目前,机械设备状态监测与故障诊断已经基本上形成了一门既有理论基础、又有实际应用背景的交叉性学科。 在实际应用中,故障与征兆之间往往并不存在简单的一一对应关系,一种故障可能对应着多种征兆,反之一种征兆也可能是由于多种故障所致。因此,通常必须要借助信号处理等手段从采集的原始数据中加工出特征信息,提取特征量,从而保证有效、准确地进行故障诊断,也就是说,信号处理与故障诊断有着极为密切的联系,信号特征提取是故障诊断中必不可少的一个重要环节[1]。 故障诊断技术的各种理论研究和方法探讨最终都必须落实到具体诊断装置的研制上。而传统的测控仪器以硬件为关键,其开发与维护的费用高、技术更新周期长、价格高、仪器功能柔性差、不易与其他设备连接等特点,越来越不能满足科技进步的要求。虚拟仪器的出现改变了这样的局面,它充分利用了计算机技术来实现和扩展传统测试系统与仪器的功能。 NI公司的图形化编程语言LabVIEW成为当今虚拟仪器开发最流行的一种语言。LabVIEW 的最大特点是用图标代码来代替编程语言创建应用程序。LabVIEW有丰富的函数、工具包、软件包、数值分析、信号处理、设备驱动等功能,还有应用于专业领域的专业模块,解决了传统的虚拟仪器系统采用C、C++、汇编等语言存在的编程、调试过程繁琐、开发周期长、对编程人员要求高等问题,广泛地应用于航空、航天、电子、机械等众多领域[2,3]。 本文基于LabVIEW开发一个针对旋转机械故障诊断的振动信号分析系统,并在成都飞机设计研究所某航空设备监控上获得了应用。 系统设计 根据信号分析系统的设计原则,又考虑到LabVIEW具有图形化编程特点以及丰富的工具箱。因此,笔者选用NI公司的Lab VIEW 7.1作为信号分析系统的开发平台。 笔者开发的信号分析系统主要分为三大模块,即文件管理模块(文件的读取及存储)、信号分析模块、显示模块。按照图1所示的使用流程对这三个模块进行设计。

振动分析实例

旋转机械诊断监测管理系统(TDM)在电厂的应用 摘要:介绍了应用旋转机械诊断监测管理系统(TDM)的硬件及软件组成;深入分析了#4汽轮机组9瓦轴振异常的原因,获取包括转速、波德图、频谱、倍频的幅值和相位等故障特征数据,从而为专业的故障诊断人员提供数据及专业的图谱,协助机组诊断维护专家深入分析机组运行状态,并成功处理了9瓦的轴振异常。 关键词:应用旋转机械诊断监测管理系统(TDM),组成,异常振动,分析,解决 The Application of the Turbine Diagnosis Management (TDM) on Shanxi Zhangshan Electric Power co., Ltd Li Gang He Xiao Ming Kou Delin (The College of Power and Mechanical Engineering Wuhan University Wuhan 430072) Abstract: Introduce the hardware and software of the Turbine Diagnosis Management (TDM). Analysis the reasons of #9 bearing’s abnormal vibration of unit 4.Receives the characteristic data of the speed, Bode diagram, frequency phase, mult-frequency’s value and phase.Offers the professional data ,charts to the experts. Helps the experts diagnosis deeply the status of the unit 4. And solve the problem successfully. Key words:Turbine Diagnosis Management (TDM), Composition, abnormal vibration, Analysis, solution 引言 汽轮机轴系监测系统(TSI)可以对汽轮机轴系参数起到基本的监测和安全保护作用,但TSI 缺少对机组振动数据的深入挖掘,使得许多振动方面的问题停留在表面,如在机组冲转、在负荷变化,主、调汽阀门进行切换和单/顺阀切换等工况变化时振动的分析研究。而旋转机械诊断监测管理系统(TDM)则填补了此项功能。它的主要作用在于对机组运行过程中的数据进行深入分析,获取包括转速、振动波形,频谱、倍频的幅值和相位等故障特征数据,从而为专业的故障诊断人员提供波德图、频谱图、瀑布图、级联图、轴心轨迹等专业的数据及图谱,协助机组诊断维护专家深入分析机组轴系运行状态,解决机组在实际运行中遇到的问题。 1. TDM 的硬件及软件的组成 漳山电厂采用北京英华达公司生产的EN8001旋转机械振动监测分析故障诊断专家系统EN8001系统是由硬件系统和软件系统组成,硬件系统主要由下位高速智能数据采集、信息处理、信息数据存储管理系统和服务器、上位机工程师站及附件构成,硬件系统采用积木式模块化的结构,配置灵活,上下位硬件系统通过工业以太网络集成。系统软件由三大部分构成:数据采集软件,数据库软件和分析诊断软件构成。数据采集软件负责数据采集,它能自动识别机组的运行状态,如开停机、升降速及正常或异常状态,并根据机组的状态进行数据采集。在稳定运行状态下,数据硬件采集系统以定时方式进行采集,而在升降速状态下则根据转速的变化进行采集。数据库软件负责数据的存储,它由升降速数据库、历史数据库及事件数据库等组成,它根据机组的不同状态把有关数据存到不同的数据库中,以便于后续分析。分析诊断软件主要用于对各种数据进行在线或离线分析,以判断机组的运行状态并能自动给出机组故障原因和处理 1

高中物理《机械振动》知识梳理

《机械振动》知识梳理 【简谐振动】 1.机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。 机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。 回复力:使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2.简谐振动: 在机械振动中最简单的一种理想化的振动。 对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 (2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 【简谐运动的描述】 位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。 周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 频率f:振动物体单位时间内完成全振动的次数。 角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。【简谐运动的处理】 用动力学方法研究,受力特征:回复力F =- Kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 【单摆】 单摆周期公式简谐振动物体的周期和频率是由振动系统本身的条件决定的。 单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。【外力作用下的振动】 物体在周期性外力作用下的振动叫受迫振动。受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。 当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。共振是受迫振动的一种特殊情况。 1

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体,甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 ●旋转机械分类: Ⅰ类:为固定的小机器或固定在整机上的小电机,功率小于15KW。 Ⅱ类:为没有专用基础的中型机器,功率为15~75KW。刚性安装在专用基础上功率小于300KW的机器。 Ⅲ类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 Ⅳ类:为轻型结构基础上的大型旋转机械,如透平发电机组。 ●机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2旋转机械振动模糊诊断法的实现 隶属函数的确定

旋转机械振动故障诊断的图形识别方法研究

旋转机械振动故障诊断的图形识别方法研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

旋转机械振动故障诊断的图形识别方法研究我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则 采集诊断依据

被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选和处理,目前普遍采用专业的机器来对这些信息进行分析和研究以及进一步的转换,经过这些处理之后所得到的信息要保证具有至关、价值性强等特点。 对故障进行诊断 对旋转机械振动故障诊断方面对工作人员的要求比较高,要求其具有过硬的理论知识功底以及丰富的实际工作经验。工作人员应该充分了解机械方面的相关知识,熟练掌握机械的维修要点以及安装过程。正确的对机械振动故障进行诊断,并且能够对故障的发展形势进行预想,只有这

旋转机械振动的临界转速及其影响因素(一)

旋转机械振动的临界转速及其影响因素(一) 随着机器转动速度的逐步提高,在大量生产实践中人们觉察到,当转子转速达到某一数值后,振动就大得使机组无法继续工作,似乎有一道不可逾越的速度屏障,即所谓临界转 速。 Jeffcott用一个对称的单转子模型在理论上分析了这一现象,证明只要在振幅还未上升到危险程度时,迅速提高转速,越过临界转速点后,转子振幅会降下来。换句话说,转子在高速区存在着一个稳定的、振幅较小的、可以工作的区域。从此,旋转机械的设计、运行进入了一个新时期,效率高、重量轻的高速转子日益普遍。需要说明的是,从严格意义上讲,临界转速的值并不等于转子的固有频率,而且在临界转速时发生的剧烈振动与共振是不同的物理现象。 1.转子的临界转速 如果圆盘的质心G与转轴中心O′不重合,设e为圆盘的偏心距离,即O′G=e,如图1-2所示,当圆盘以角速度ω转动时,质心G的加速度在坐标上的位置为 图1-2 圆盘质心位置 (1-5) 参考式(1-2),则轴心O′的运动微分方程为 (1-6) 令则: (1-7)

式(1-7)中右边是不平衡质量所产生的激振力。令Z=x+iy,则式(1-7)的复变量形式为: (1-8) 其特解 为 (1-9) 代入式(1-8)后,可求得振幅 (1-10) 由于不平衡质量造成圆盘或转轴振动响应的放大因子β为 (1-11) 由式(1-8)和式(1-11)可知,轴心O′的响应频率和偏心质量产生的激振力频率相同,而相位也相同(ω<ω。时)或相差180°(ω>ω。时)。这表明,圆盘转动时,图1-2的O、O′和G三点始终在同一直线上。这直线绕过O点而垂直于OX Y平面的轴以角速度。转动。O′点和G点作同步进动,两者的轨迹是半径不相等的同心圆,这是正常运转的情况。如果在某瞬时,转轴受一横向冲击,则圆盘中心O′同时有自然振动和强迫振动,其合成的运动是比较复杂的。O、O′和G三点不在同一直线上,而且涡动频率与转动角度不相等。实际上由于有外阻力作用,涡动是衰减的。经过一段时间,转子将恢复其正常的同步进动。 在正常运转的情况下,由式(1-10)可知: (1)ω≤ωn时,A>0,O′点和G点在O点的同一侧,如图1-3(a)所示; (2)ω>ωn 时,A<0,但A>e ,G在O和O′点之间,如图1-3(c)所示; 当ω≥ωn 时,A≈-e,或OO′≈-O′G,圆盘的质心G近似地落在固定点O,振动很小,转动反而比较平稳。这种情况称为“自动对心”。

机械振动基础实验指导书

目录 实验一振动信号采集与处理相关软件和硬件设计介绍 (2) 实验二单自由度系统阻尼比的测定 (6) 实验三二自由度系统频响函数的测定 (9)

实验一 振动信号采集与处理相关软件和硬件设计介绍 一、 实验目的 1、熟悉振动信号采集与处理软件的基本功能和设置方法; 2、熟悉硬件中各通道代表的意义和设置方式; 3、掌握基本振动测试流程。 二、 振动信号采集和处理软件简介 软件名称 YE6251力学教学装置。 软件介绍 左面板 下面板 至少应为实验所需最大频率的2倍 力锤信号用信号触发,电磁激振器信号可选连续采样 试件类型 不用的通道双击使其为错号,使用的通道使其为对号 实验中可以使用的方法 采样状态栏

上面板和右面板 某测试全图 三、 振动信号采集和处理硬件简介 试件 单自由度系统 模拟单自由度的质量块、阻尼、弹簧系统振动。本实验台的力学模型如下: 时间波形 傅立叶分析 传函幅值,需设置输入和输出通道,用右键 仪器的软件开关 开始采样或停止采样 峰谷 值 等光标选择 缩小x 轴图形显示 放大x 轴图形显示 缩小y 轴图形显示 放大y 轴图形显示 自动量程

二自由度系统 模拟二自由度的质量块、阻尼、弹簧系统振动。本实验台的力学模型如下: 激励设备 力锤 给试件施加脉冲激振力并通过其内置的压力传感器感应力信号。有四个锤头,分别用来测量不同的频段,同时对应不同刚度的材料,本实验以铝制锤头为最佳。 信号发生器(通道2) 产生一定频率的电信号,分为手动调频和自动扫频两种操作方式。手动调频用于产生固定的激励频率;自动扫频是仪器在设定的频段内自动循环扫描。 功率放大器(通道1) 本实验台中,接在信号发生器的后端,电磁激振器的前端。由于信号发生器产生的频率信号通常较小,因此在将其传送到激振器之前,需要将信号通过功率放大器进行放大。 电磁激振器 对试件进行激励。 采集设备 位移传感器 采用非接触式感应试件位移。 加速度传感器 感应试件加速度。 力和加速度复合传感器 其输出包含两路信号:力和加速度。一般感应激振器的激振力并响应试件的加速度。 位移测量仪(通道4) 本实验台中,位移测量仪用来测量电涡流位移传感器的信号幅值大小,同时将该信号输入计算机以便于数据分析。 力测量仪(通道5) 通过该通道实时测量力值大小,同时将该信号输入计算机以便于数据分析。 加速度测量仪(通道6和通道7) 测量加速度传感器的电信号大小,同时将该信号输入计算机以便于数据分

石油化工旋转机械振动标准

第三章.石油化工旋转机械振动标准 (SHS01003-2004) 1总则 1.1主题内容与适用范围 1.1.1本标准规定了石油化工旋转机械振动评定的现场测量方法(包括测量参数、测量仪器、测点布置、测试技术要求、机器分类等)及评定准则。石油化工旋转机械振动分析的现场测量方法应满足本标准的规定但不仅限于此。 1.1.2本标准适用的设备包括电动机、发电机、蒸汽轮机、烟气轮机、燃气轮机、离心压缩机、离心泵和风机等类旋转机械。 按照本标准规定的方法进行测试得到的振动数据,可作为设备状态评定和设备验收的依据。经买卖双方协商认可,亦可采用制造厂标准或其他标准。 1.1.3本标准不适用于主要工作部件为往复运动的原动机及其传动装置。 本标准也不适用于振动环境中的旋转机械的振动测量。振动环境是指环境传输的振动值大于运行振动值1/3的情况。 1.1.4未能纳入本标准范围的其他旋转机械,暂按设备出厂标准进行检验和运行。 1.2编写修订依据 GB/T 6075.1-1999 在非旋转部件上测量和评价机器的机械振动第1部分:总则 GB/T 6075.3-2001 在非旋转部件上测量和评价机器的机械振动第3部分:额定功率大于15kw、额定转速在120~15000r/min之间的现场测量的工业机器 GB 11348.1-1999 旋转机械转轴径向振动的测量和评定第一部分:总则 1.3本标准提供两种振动评定方法,即机壳表面振动及轴振动 的评定方法。 在机壳表面,例如轴承部位测得的振动是机器内部应力或运动状态的一种反映。现场应用的多数机泵设备(电动机、各种油泵、水泵等),由

机壳表面测得的振动速度,可为实际遇到的大多数情况提供与实践经验相一致的可信评定。 汽轮机、离心压缩机等大型旋转机械(如炼油催化三机、化肥五大机组、乙烯三大机组和空分装置的空压机等)通常含有挠性转子轴系,在固定构件上(如轴承座)测得的振动响应不足以表征机器的运转状态,对这类设备必须测量轴振动,根据实际需要,结合固定构件上的振动情况评定设备的振动状态。 2机壳表面振动 2.1本标准适用于转速为10~200r/s(600~12000r/min)旋转机 械振动烈度的现场测量与评定。 2.2测量参数 本标准规定在机壳表面(例如轴承盖处)测得的、频率在10~1000Hz 范围内的振动速度的均方根(Vrms)作为表征机械振动状态的测量参数,在规定点和规定的测量方向上测得的最大值作为机器的振动烈度。 2.3测量点的布置 测点一般布置在每一主轴承或主轴承座上,并在径向和轴向两个方向上进行测量,如图1所示。对于立式或倾斜安装的机器,测量点应布置在能得出最大振动读数的位置或规定的位置上,并将测点位置和测量值一同记录。测点位置应固定,一般应作明显标记。机器护罩、盖板等零件不适宜作测点。 2.4测量仪器 2.4.1一般采用由传感器、滤波放大器、指示器和电源装置等组成的测量仪表。允许采用能取得同样结果的其他仪器。 2.4.2测量登记表滤波放大器的带通频率为10~1000Hz。 2.4.3测量仪表系统误差不超过±10%。 2.4.4传感器振动速度线性响应的最大值至少为感受方向上满量程振动速度的3倍,传感器横向灵敏度应小于10%。 2.4.5直读仪器应能指示或记录振动速度的均方根值。 2.4.6测量登记表尽可能采用电池为电源装置。 2.4.7测量仪表需定期校准,保证它具有可靠的测量结果。 2.5测量技术要求

机械振动信号分析及故障报警_课程设计

燕山大学 课程设计说明书 题目:机械振动信号分析及故障报警 学院(系):电气工程学院 年级专业: 10级仪表3班

电气工程学院《课程设计》任务书 课程名称:“单片机原理及应用——数字信号处理”课程设计 院(系):电气工程学院基层教案单位:自动化仪表系 说明:1、此表一式四份,系、指导教师、学生各一份,报送院教务科一份. 2、学生那份任务书要求装订到课程设计报告前面.

目录 第一章摘要 第二章总体设计方案 第三章基本原理 第四章MATLAB界面设计 第五章各模块设计及程序 第六章设计心得及总结 参考文献

第一章摘要 机械振动信号分析是现代机械故障诊断地一个有效方法.在诸多信号分析地手段中,小波分析与傅氏变换相结合地方法得到广泛应用.因为这种方法更适合于提取微弱机械振动地特征信号. 但是与其他分析工具一样,小波分析工具有自己地特点,如果不能正确使用,反而会影响对信号地正确分析.从本质上说,小波分析是用小波函数与被被分析地信号函数做一系列地互相关运算,因此选用小波函数不当会引起分析地误差或误判. 第二章总体设计方案 对机械振动信号进行采样,把采样地数据进行时域和频域上地分析,包括FFT,功率谱,倒谱分析.提取时域波形指标如均值、峰峰值、峭度、偏度、脉冲因数等.以一种指标为标准,分析振动信号产生地变化.本次课设利用matlab软件,实现对机械振动信号时频域地分析以及故障地判断.因为频域分析特征值地提取较麻烦,这里我们用其中一种参数地计算量为标准来判断是否发生故障. 第三章基本原理 3.1小波变换

与Fourier变换相比,小波变换是空间(时间)和频率地局部变换,因而能有效地从信号中提取信息.通过伸缩和平移等运算功能可对函数或信号进行多尺度地细化分析,解决了Fourier变换不能解决地许多困难问题.小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科.数学家认为,小波分析是一个新地数学分支,它是泛函分析、Fourier分析、样调分析、数值分析地完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析地一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面地研究都取得了有科学意义和应用价值地成果.信号分析地主要目地是寻找一种简单有效地信号变换方法,使信号所包含地重要信息能显现出来.小波分析属于信号时频分析地一种,在小波分析出现之前,傅立叶变换是信号处理领域应用最广泛、效果最好地一种分析手段.傅立叶变换是时域到频域互相转化地工具,从物理意义上讲,傅立叶变换地实质是把这个波形分解成不同频率地正弦波地叠加和.正是傅立叶变换地这种重要地物理意义,决定了傅立叶变换在信号分析和信号处理中地独特地位.傅立叶变换用在两个方向上都无限伸展地正弦曲线波作为正交基函数,把周期函数展成傅立叶级数,把非周期函数展成傅立叶积分,利用傅立叶变换对函数作频谱分析,反映了整个信号地时间频谱特性,较好地揭示了平稳信号地特征. 小波变换是一种新地变换分析方法,它继承和发展了短时傅立叶变换局部化地思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变地时间一频率窗口,是进行信号时频分析和处理地理想工具.它地主要特点是通过变换能够充分突出问题某些方面地特征,因此,小波变换在许多领域都得到了成功地应用,特别是小波变换地离散数字算法已被广泛用于许多问题地变换研究中.从此,小波变换越来越引起人们地重视,其应用领域来越来越广泛. 3.2 傅里叶变换 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换(FFT). 1965年,Cooley和Tukey提出了计算离散傅里叶变换(DFT)

相关文档
相关文档 最新文档