文档视界 最新最全的文档下载
当前位置:文档视界 › 一元函数微积分学在物理学上的应用1

一元函数微积分学在物理学上的应用1

一元函数微积分学在物理学上的应用1
一元函数微积分学在物理学上的应用1

一元函数微积分学在物理学上的应用速度、加速度、功、引力、压力、形心、质心

用导数描述某些物理量1.速度是路程对时间的导数.加速度是速度对时间的导数。????(t),内转过的角度则物体在时刻?2.设物体绕定轴旋转,在时间间隔t0,t的???(t).(t)?角速度3.当物体的温度高于周围介质的温度时,物体就不断冷却,若物体的温度T与时间?(t).Tt 的冷却速度为t的函数关系为T=T(t),则物体在时刻??段干的质量为m?m(x),0点算起,则杆在点0,x x处的3.一根杆从一端??(x).(x)=m线密度是??这段

时间内通过导线横截面的电量为Q?Q(t4.一根导线在),0,t则导线?(t).t的电流强度

I(t)=Q在时刻5.某单位质量的物体从某确定的温度升高到温度T时所需的热量为

q(T),?(T).时的比热C(T)=q则物体在温度T???(t).t时刻的功率为w?w(t),6. 某力在0,t 则时间内作的功w例1 .

设有长为12cm的非均匀杆AB,AM部分的质量与动点M到端点A的距离x的平

方52成正比,杆的全部质量为360g,则杆的质量的表达式m(x)?x,杆在任一点2 ?(x)=5x

M处的线密度

5522??(x)m?x)?x5,x(x)=(m(x)=kx解:?,令x?12,m360得k?,所以m22

?dx)F(?wx)(xF a

b所作的功到b变力沿直线运动从a变力作功:

例2(1)(功1.)一圆柱形的注水桶高为5m,底圆半径为3m,桶内盛满了水,试问要把桶内的水全部吸出需作多少功?解:作x轴如图所示取深度x为积分变量,它的变化区间为[0,5]相应于[0,上任一小区间5][x,x?dx]的一薄层水的高度为dx,因此如x的单位为m,2??dxkN,这薄层水的重力为9.8把这层水吸出桶外需作的功近似为

?3?dx?x88dw??2525????3462(kJ?8dx?w?所求的功为?882x?82?)20.

例2(2)(功2)设有一半径为.R,长度为l的圆柱体平放在深度为2R的水池中,???1))(圆柱体的侧面与水面相切,设圆柱体的比重为(,现将圆柱体从水中移出水面,问需作多少功?解:分析:依题意就是把圆柱体的中心轴移至x?2R处,计算位于[x,x?1]上的体积微元移至[2R?x,2R?x?dx]时所作的微元功。由于在水面上方与下方所受力不同,所以应分开计算,注意到介于x与x?dx之间的体积微元为2222dx(长?宽lR??x2R高?x)dx?l?2它在水面下方需移动R?x,上方需移动R?x RR

2222????dxx?R?x2)R?xdx?l)R(w?2l(?1)?(Rx?R?RR

223??????(2?1)RlR?x1)lR?4(2dx0例2(3)(功3)、设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要作多少功??4解法一:[分析:把球的质量集中到球心,球从水中取出作功问题可以看成质3?4量为的质点向上移动距离为1时变力所作的功,问题归结为求出变力,3即求球在提起过程中受到的重力与浮力的合力,因球的比重为1?球受的重力?球的体积,球受的浮力?沉在水中部分的体积它的合力?球露出水面部分的体积。当球心向上移动距离h时,(0?h?1),球露出水面部分的体积为h2h222?????)?(h(1?z)dz???3330162?132h112??????(?)?)]hw因此,球从水中取出要作的功为?[?(?dh?123332120.

]分析:微元法解法二、[的微元球心,任取下半球取中x轴垂直水平面并通过球心,方向向上,原点为取2?,dx)(1?x,]上的小区间[xx?dx]相应的球体中的薄片,其重量为薄片即[?1,0处需)?x在水中浮力与重力相等,当球从水中取出时,此薄片移至离水面高为(12?为于是,对下半球作的功dx?x,(S?1?x))(1作功dw?F?02??dx)(1?w?x(1?x)11?其重量为]相应的球体中的薄片,,x?dx[0,1]上小区间[x任取上半球中的微元薄片即22??dx)1?,需作功dw?1?x((1?x1)dx,当球从水中取出时,它移动的距离为12??dx?x于是对上半球作的功为w?)(120101322??????)?x1?x)(?x)dx?dx(??对整个球做的功为w?w?w1(1211201?3浮于水面的木球提高水面,/m0.2m,密度为500kg例2(4)(功4)要将一半径为.问需要作功多少?分析:根据浮力定律知道球的上半部浮于水面下半(由浮力定律[1比重?水的比重),所以只要提高0.2m即可将此球提离水面,部没于水中,

由于在整个2过程中浮力与提力都在作功,所以应有提力所作的功?克服重力所作的功?浮力所作的功]解:建立坐标如图,取[y,y?dy]?[?R,0]?dV)?yg(??ydFyg(dm)则对应于此小区间,浮力作功的功元素为dw浮22??)dyy[(R]?yg?01422?????)12.315(gRRkJ?y)dy???W?gy(浮

4R?43?)kJ12.315??500[??从而有WWW?20.525((0.2)]9.8?0.2浮重提3W??W??W?与前例类似:WWW浮重浮下重上重提.

例2(5)(功5)在底面积为.S的圆柱形容器中盛有一定量的气体,在等温条件下,由于气体的膨胀,把容器中的一个活塞(面积S)从点a处推移到点b处,计算在移动过程中,气体压力所作的功?解:取坐标系为图,活塞的位置可以用坐标x来表示,由物理学知道,一定量的气体在等温条件下,k压强P与体积V的乘积是常数k,即PV?k,或P?VkV?xS,?P?xS

kkS???S??作用在活塞上的力:F?p xSx在气体膨胀过程中,体积V是变的,因而x也是变的,所以作用在活塞上的力也是变的取x为积分变量,它的变化区间为[a,b],设[x,x?dx]为[a,b]上的任一小区间,当活塞kk从x移动到x?dx时,变力F所作的功近似于dx,即dw?dx xx b kb?dx?kln?w?xa a3的某种液体,m液面距离,盛有比重为m8kN/例2(6)(功6).一球形贮液灌,半径为10灌顶部出口4m,(如图所

示)已将灌中全部液体从顶部出口抽出,需作多少功?解:作x轴通过球心且正向铅直向下,原点在灌顶部出口处,长度单位取为m,取x为积分变量,x?[4.20]

222x??20?(x?10)dx[考察x,x?dx]上液体,高度为,底圆半径为10x

2223??)dx(比重?8体积(20x??x路程)

8dw?20x(x?x)?dx202031129632?????325990(dx???dwkJ8(20xx?))w?344*本题也可选择x轴的原点在球心,这时变量x的范围和功元素的表达式都要随之改变

水压力

??是水密度,g,处的压强为hP?是重力加速度,gh从物理学知道,在水深为如

果有一面积为A的平板水平地放放置在水深为h处,那么,平板一侧所受的水压力为P?p?A,(压强?面积),如果平板铅直放置在水中,那么,由于水深不同的点处压强为p不相等,平板一侧所受的水压力就不能用上述方法计算,此时一般

用微元法

例3(1)(水压力1)、一个横放着的圆柱形水桶,桶内盛有半桶水,设桶的底半径?,计算桶内的一个端面上所受的压力.R,水的密度为为解:取坐标系如图桶的一个端面为圆片,所以现在要计算的是当水平面通过圆心时,铅直放置的一个半圆片的一侧所受的水压力,22?dx??2R压强,dP??面积?xgx考察[x,x?dx]上所受的压力dP R?g2322??R2?gxRdx??P?x30例3(2)(水压力2)灌溉涵洞的断面为抛物线拱形,在水面高出涵洞顶点为.1m时,3?)/m?1m,高为1m)所受的水压力(水的比重t求涵洞闸门(底面宽为2解:建立坐标系如图22y?x?1,?k?1x?1?ky?,由条件,闸门高为1m,宽为2m该抛物线的方程为

?xydx?2xx?1dxdx?]上的压力,dP?压强?面积?2考察在[x,x232?(t?)x?1?P?2dxx

1513??水深x/m,最后压力单位吨与前例有区别吨x?比重?水深?1这里压强?比重?密度?g 例3(3)(水压力3)有一形状为等腰梯形的闸门,二水平面的长分别为.20米和12米高为10米,若较长边位于水的自由表面,计算水对闸门的压力解:建立坐标系如图x?10y?62AB所在的直线方程:?,即y?10?x0?1010?65在[x,x?dx]上,压强?水的比重?水深?1?x2压力dP?xdS?x?ydx?2x(10?x)dx

51021?2x(10?x)dxP???733吨530

??斜沉于水中,?R?0.4m的圆形薄板,与液面成夹角为例3(4)(水压力4).半径为6.H?1m,求薄板一侧所受的压力上缘距水平为解:取圆心为原点,平行液面的半径为x轴,建立相应的y轴,?[y,y?dy]?[?R,R]22???dy??2R?(R?y)sin 对应水平小条的压力为dF?pdA?ygh?2xdy?]g[H R

222??????RRsin)dy??)sin(R?yg]?2R(?y?F?H2g[H?R??3??,g?9.8代入得F?,

5911.22(?N,)?1000kg/mmR以?0.4m,H?16例3(5)(水压力5)、(02.II.7%)某闸门的形状与大小如图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成。当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h 应为多少米?2?...........1'?解法一:建立坐标系如图,x为水的密度,则抛物线方程为y h?12???gh...........................3')dy??g(h1?闸门矩形部分承受的水压力P2?y11121 ???)h??4g(1g(h??y)??闸门下部水承受的水压力为P2ydy215302P155h1(舍去)?h?2解得:?,h?,?,2121443P)?4(h21532?故h

引力

?m,m的两质点间的引力的大小为相距为由物理学知道,质点分别为,21

mm21G?F,其中G为引力常数,引力的方向沿着两质点的连线方向?2如需计算一根细棒对一个质点的引力,那么,由于细棒上各点与该质点的距离是变化的,

且各点对该点的引力的方向也是变化的,因此就不能用上述公式来计算

?的均匀的细直棒,在其中垂线上距棒,线密度为1)、设有一长度为l例4(1)(引力a单位处有一质量为m的质点M,试计算该棒对质点的引力解:建立坐标系如图?dym?G?dy,?F]上引力微元,[y,y?dy]上的质量为考察[y,y?dy 22y?a?dyamG??在水平方向分力F的近似值,dF??F xx3

22)(a?y2aa??F?F?cos??F?)dF(?x r22a?y

l

?dyG?F????x3a22l?4a22l)(a?y2?2 2??dyGmaml12

由对称性知,引力在铅直方向的分力为F?0y?Gm2(,l很大时,可视l趋于无穷,此时,引力的大小为???)*当细直棒的长度l a指向细棒M方向与细棒垂直且由例4(2)(引力2).设有顶角为90,高为1的正圆锥体,密度为1,求正圆锥体与位于.的质点之间的引力圆锥体顶点质量为12221)???z,解:建立坐标系如图正圆锥方程为xz?y(00F?y轴上的分力F?x 根据对称性可知,所求引力在轴,yx的质点间的引力为,则此微元与原点处质量为1)的体积微元dV,取包含点(x,yzzkdV222?y?z,并且它在zx?轴的方向的分力dF?kdV,其中?Z23???

??????????)(1?[rdr?dr]?2k?2kkdVk??F?d

1121zdz1r2z

z133?22222))z?(rr(1?0r?0022其中?表示所讨论的锥体

?,长度为l的细杆,在轴上有一线密度为常数x轴上还有例4(3)(引力3)在x 一质量为m的指点道干右端的距离为a,一直引力常数为k,则质点和细杆?lkm 之间引力的大小为a(a?l)?dx,则的一小段,其质量为dM?解:用微元法,在细杆上x处去长为dx质点与这一小段细杆之间的引力大小为?kmmdM??,0?l?x?k??dx,dF22(a?x)(a?x)求积分,即得质点和细杆之间引力的大小为??lkmkm00???dF?F=dx

2)l(a?x)?a(a l??l

质心?kg/m)x?b,具有均匀线密度(L:y?f(x),a?设光滑曲线该曲线的质量中心为(x,y),则有bb22??????dxx?f(x)dx)(1x1?fyMM y

axa??y?x?,

??????dxfxx)dx)(1?1?f(aabb22??????(x)dx表示L bb MM22

对xM)dx,?轴与yx1?f?其中Mff(x)1?轴的静力矩,(x yxaab2????l为该曲线的质量,lx)dx1?M?f?为弧长。(ab2????(x)dx?xl?2Sfx1?同时可得到2yab2????Sdx?(x)1?f2xyl?2)f(xa其中S,S分别表示曲线L绕x轴与绕y轴旋转而成的旋转体侧面积,yx这一结论称为古尔金第一定理。均匀密度条件下的质量中心坐标实质上与密度无关,所以又称为几何中心或形心。bb

22????(xfdx(x))dxx1?y1?f aa,??形心的计算公式:x,yl是弧长。ll际应用中可依据曲线方程的形式,取弧长的相应计算公式实直角坐标方程、参数方程或极坐标方程。??(x), =?b,密度函数为则a若曲线为x轴上直线段?x b??dxx)x(a?0,y?x

b??dx(x)a2的形心?y=a x例(质心1.1)求平面圆弧?al?x?0,解:显然

?dx1?a?x2a22a22xa?a????y???aa

2x a22

2???,4aa本题若用古尔金第一定理得到2?y?

例2(质心2)设长度为h的细杆AB上任一点处的密度与该点到细杆A端的距离的平方成正比,比例系数为k>0,求该细杆的质心坐标.解: 沿细杆AB的方向并以细杆A端为坐标建立坐标系Ox,如图,于是细杆AB上各点的坐标满足0?x?h,且A端对于x?0,B端对应于x?h2?,把细杆AB上从点x到点x?上点x处的密度为dx(x)?kx的一小段看成,细杆AB2?dx,故细杆?kxAB则该质点的质量为一个质点,的质心坐标(x)dx hh3???dxdx(x)xkx3h00??x?

???dxkx(x)dx00h3h即细杆AB的质心坐标在杆上距离

hh42

端处A端,距离B44

对均匀密度薄板的质量中心有如下公式??上的连续非负函数,考虑形如区域a,b x)为设y?f(??2?)m()kg,其面密度为/()a?x?b,0?y?fx?D(x,y质量中心1bb2??dx)f(x??dx)xf(x b2a ??a.dx?M?,其中x?为该均匀薄板的质量xf()y,

bba????dx(xf(x)dx)f aa由此还可以推得古尔金第二定理:??yA?,V22VxA?xy其中V,V分别表示区域D绕x轴与绕y轴旋转一周生成旋转体的体积.yx

2?围成,求此薄板的质量中心。?x?y?(质心例33)一面密度为4的均匀薄板由

0解:由对称性,质心x的坐标为0,只需求y2561222???dxx)(4?881522? y???,质心(0,)322552??dxx)?(4??23

一元函数微分学典型例题

一元函数微分学典型例题 1. 有关左右极限题 求极限??? ?????+++→x x sin e e lim x x x 41 012 ● 根据左右极限求极限, ● 极限x x e lim 1 →, x x sin lim x 0 →,x tan lim x 2 π→,x cot lim x 0→,x cot arc lim x 0→,x arctan lim x 1 0→都不存在, ● A )x (f lim A )x (f lim )x (f lim x x x =?==∞ →-∞ →+∞ → ● 【 1 】 2. 利用两个重要极限公式求1∞ 型极限 x sin x ) x (lim 20 31+→ ● 0→)x (?,e )) x (lim() x (=+??1 1 ● A )x (f lim =0→)x (?,A )x (f ) x (e ])) x (lim[(=+??11 ● 【 6e 】 3. 等价无穷小量及利用等价代换求极限 当0x + → (A) 1- (B) ln (C) 1. (D) 1-. ● 等价无穷小定义:如果1=α β lim ,则称β与α失等价无穷小,记为α∽β, ● 0→x 时,(1)n x x a x a x x x x x x x x x e x x x x x n x x ≈ -+≈-≈-+≈-≈---+≈-≈+≈≈≈≈111112 1 16111112 3 ln )(cos sin )ln(arctan tan sin αα

● 当0→)x (?时,)x (sin ?∽)x (?,11-+n )x (?∽ n ) x (?∽∽ ● 【 B 】 4. 利用单调有界准则求极限 设数列{}n x 满足n n x sin x ,x =<<+110π。证明:极限n n x lim ∞→存在,计算1 1n x n n n x x lim ??? ? ??+∞→ ● 利用单调有界准则球数列或者函数极限的步骤:1。证明数列或函数单调;2。证明 数列或函数是有界;3。等式取极限求出极限。 ● 定理单调有界数列必有极限还可以叙述为单调递减有下界数列必有极限,或单调递 增有上界数列必有极限。 ● 61 1 2 -→=?? ? ??e x x sin lim x x ● 【 0;6 1- e 】 5. 判断函数连续与否以及利用函数的连续性解题 设函数f (x )在x =0处连续,下列命题错误的是: (A) 若0()lim x f x x →存在,则f (0)=0. (B) 若0()() lim x f x f x x →+-存在,则f (0)=0. (C) 若0()lim x f x x →存在,则(0)f '存在. (D) 若0()() lim x f x f x x →-- 存在,则(0)f '存 在 【 】 ● 若()()00 x f x f lim x x =→,则称函数()x f 在点0x 处连续。 ● 左连续右连续则连续。 ● 分段函数的分段点不一定是函数的间断点。 ● 判断函数在某点是否连续的步骤:求函数在该点的极限;求函数在该点的函数值;判断 二者是否相等,相等则连续,否则间断。 6.导数的定义式相关题目 设函数 ()x f 在 x=0某领域内有一阶连续导数,且 ()()0 000≠'≠f ,f 。若 ()()()02f h bf h af -+在0→h 时是比h 高阶的无穷小,试确定a, b. ● 函数在某一点导数的定义: ()()()x x f x x f lim x y lim x f x x ??????000 00-+=='→→ ()()()()()0 0000 00 x x x f x f lim h x f h x f lim x f x x h --=-+='→→

一元函数微分学教案

第二章 一元函数微分学 一、 导数 (一)、导数概念 1、导数的定义: 设函数)(x f y =在点0x 的某个邻域内有定义,当自变量在点0x 处取得改变量x ?时,函数)(x f 取得相应的改变量,)()(00x f x x f y -?+=?,如果当0→?x 时,x y ??的极限存在,即x y x ??→?0lim x x f x x f x ?-?+=→?)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0 )(x x dx x df = 2、根据定义求导数的步骤(即三步曲) ①求改变量)()(x f x x f y -?+=? ②算比值 x y ??x x f x x f ?-?+=)()( ③取极限x y x f y x ??='='→?0lim )(x x f x x f x ?-?+=→?)()(lim 0 例1:根据定义求2 x y =在点3=x 处的导数。 解:223)3(-?+=?x y 2)(6x x ?+?= x x y ?+=??6 6)6(lim lim 0 0=?+=??→?→?x x y x x 3、导数定义的几种不同表达形式 ①x x x x x f x x f x f x ?+=??-?+='→?00000) ()(lim )(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时 =当0)()(lim )(0000x x x f x f x f x ??-='→? ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的定义: 如果当)0(0-+→?→?x x 时,x y ??的极限存在,则称此极限为)(x f 在点0x 为右导数(左

微积分在物理 中的简单应用

求解在立体斜面上滑动的物体的速度 一物体放在斜面上,物体与斜面间的摩擦因数μ恰好满足αμtg =,α为斜面的倾角。今使物体获得一水平速度 0V 而滑动,如图一,求: 物体在轨道上任意一点的速度V 与φ的关系,设φ为速度与水平线的夹角。 解:物体在某一位置所受的力有:重力G , 弹力N 以及摩擦力f 。摩擦力f 总是与运动速度V 的方向相反,其数值 ααααμμsin cos cos mg mg tg mg N f ==== 重力在斜面上的分力为1G ,如图二,将1 G 分解为两个分力:1G ''是1G 沿轨迹切线方向的分 力,φαφsin sin sin 11 mg G G =='' ;1G '是沿轨 迹 法 向 的 分 力 , φαφcos sin cos 11 mg G G ==',如图三。 根据牛顿运动定律,得运动方程为 τma f G =-''1 (1) n ma G ='1 (2) 由(1), )1(sin sin )sin sin sin (1 -=-= φααφατg mg mg m a 而 ,dt dV a = τ得到 ,)1(sin sin dt g dV -=φα (3)

式中φ是t 的函数,但是这个函数是个未知函数,因此还不能对上式积分,要设法在φ与t 中消去一个变量,才能积分,注意到 φφ d d ds V V dS dt 1== (4) 而φ d ds 表示曲线在该点的曲率半径ρ,根据(2)式, ρ φα2 cos sin V m mg = (5) 由式(3)(4)(5),可得到 ,)sec (φφφd tg V dV -= φφφφ d tg V dV V V ??-=00)sec (, 积分,得到 )sin 1ln()ln(sec cos ln ln φφφφ+-=+--=tg V V , .sin 10 φ += V V 运用积分法求解链条的速度及其时间 一条匀质的金属链条,质量为m ,挂在一个光滑的钉子上,一边长度为1L ,另一边长度为,2L 而且120L L <<,如图一。试求: 链条从静止开始滑离钉子时的速度和所需要的时间。 解:设金属链条的线密度为.2 1L L m += λ当一边长度为 x L +1,另一边长度为x L -2时受力如图二所示,则根据牛 顿运动定律,得出运动方程 ,)()(11a x L T g x L λλ+=-+

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

数学考研:一元函数微分学的知识点和常考题型

数学考研:一元函数微分学的知识点和常考题型 【大纲内容】 导数和微分的概念 导数的几何意义和物理意义(数三经济意义) 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数(数三不要求)的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分、曲率的概念、曲率圆与曲率半径(数三不要求) 【大纲要求】 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义(数三经济意义),会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3.了解高阶导数的概念,会求简单函数的高阶导数。 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数(数三不要求)以及反函数的导数。

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理(数三了解),了解并会用柯西(Cauchy)中值定理。 6.掌握用洛必达法则求未定式极限的方法。 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。(数三不要求) 【常考题型】 1.导数概念; 2.求给定函数的导数或微分(包括高阶导数)隐函数和由参数方程确定的函数求导; 3.函数的单调性和极值; 4.曲线的凹凸性与拐点; 5.利用微分中值定理证明有关命题和不等式或讨论方程在给定区间内的根的个数; 6.利用洛必达法则求极限; 7.几何、物理、经济等方面的最大值、最小值应用题。解这类问题,主要是确定目标函数和约束条件,判定所讨论区间。

一元函数积分学的应用

一元函数积分学的应用 一元函数积分学研究的是研究函数的整体性态,一元函数积分的本质是计算函数中分划的参数趋于零时的极限。 一元积分主要分为不定积分 ?dx x f )(和定积分? b a dx x f )(。化为函数 图像具体来说,不定积分是已知导数求原函数,也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C 的导数也是f(x)(C 是任意常数)。所以f(x)积分的结果有无数个,是不确定的。而定积分就是求函数f(X)在区间[a,b]中图线下包围的面积,可以说是不定积分在给定区间的具体数值化。因为积分在其它方面应用时一般都有明确的区间,所以本文主要研究定积分的各种应用。 积分的应用十分巧妙便捷,能解决许多不直观、不规则的或是变化类型的问题。故其主要应用在数学上的几何问题和物理上的各种变量问题和公式的证明以及解决一些实际生活问题。 微元法建立积分表达式 在应用微积分于实际问题时,首先要建立积分表达式,一般情况下,只要具备都是给定区间上的非均匀连续分布的量和都具有对区间的可加性这两个条件就都可以用定积分来描述(以下的讨论都是建立在这两个条件下,因此不再提示此条件)。 而建立积分表达式的方法我们一般用微元法。其分为两个步骤:(1)任意分割区间[]b a ,为若干子区间,任取一个子区间[]dx x x +,,求Q

在该区间上局部量的Q ?的近似值dx x f dQ )(=;(2)以dx x f )(为被积式,在],[b a 上作积分即得总量Q 的精确值 ??==b a b a dx x f dQ Q )(。(分割,近似,求和,取极限) 在实际应用中,通过在子区间],[dx x x +上以“匀”代“非匀”或者把子区间],[dx x x +近似看成一点,用乘法所求得的近似值就可以作为Q ?所需要的近似值,即为所寻求的积分微元dx x f dQ )(= 。 定积分在几何中的应用 在几何中,定积分主要应用于平面图形的面积、平面曲线的弧长、已知平行截面面积函数的立体体积、旋转体的侧面积。下面我们来分类讨论: 一、 平面图形的面积 求图形面积是定积分最基本的应用,因为定积分的几何意义就是在给定区间内函数曲线与x 轴所围成图形的面积。而求面积时会出现两种情况:直角坐标情形和极坐标情形。 1、直角坐标情形 在求简单曲边图形(能让函数图像与之重合)的面时只要建立合适的直角坐标系,再使用微元法建立积分表达式,运用微积分基本公式计算定积分,便可求出平面图形的面积。如设曲 y O

一元函数微分学综合练习题

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

定积分在物理学中的应用

数学与计算科学学院 学年论文 题目定积分在物理学中的应用 姓名邓花蝶 学号 1209403047 专业年级 2012级数学与应用数学 指导教师耿平 2015年 9 月 1 日

定积分在物理学中的应用 ——求刚体的转动惯量 摘要 众所周知,物理学是一门综合性极高的学科,我们在学习的过程常都 会将课堂理论知识和实践活动有机的结合在一起,然而,在物理学中,我 们通常都会遇到很多难题,比如解积分困难等。因此当前我们在对物理学 的学习中,就要将定积分应用到其中。定积分是高等数学的重要组成部分, 在物理学中也有广泛的应用。微元法是将物理问题抽象成定积分非常实用 的方法。本文主要利用"微元法"的思想求物理学中几种常见均匀刚体的 转动惯量。 关键词 定积分;物理应用;微元法; 转动惯量;均匀刚体 The application of definite integral in physics ——For the moment of inertia of rigid body Abstract As we all know, physics is a comprehensive high discipline, in the learning process We will usually make the classroom theoretical knowledge and practical activity of organic unifies in together, however, in physics, we often encounter some problems, such as the difficulty of solving integral. So in physics learning, we should apply definite integral to it. The integral is an important part of higher mathematics, they are widely used in physics. The differential method is a practical method that physical problems are abstracted integral.In this paper, using the ideas of "micro element method" to solve inertia of several common uniform rigid body in physics.

微积分在物理学上的应用复习过程

微积分在物理学上的 应用

微积分在物理学上的应用 1 引言 微积分是数学的一个基本学科,内容包括微分学,积分学,极限及其应用,其中微分学包括导数的运算,因此使速度,加速度等物理元素可以使用一套通用的符号来进行讨论。而在大学物理中,使用微积分去解决问题是及其普遍的。对于大学物理问题,可是使其化整为零,将其分成许多在较小的时间或空间里的局部问题来进行分析。只要这些局部问题分的足够小,足以使用简单,可研究的方法来解决,再把这些局部问题的结果整合起来啊,就可以得到问题的结果。而这种将问题无限的分割下去,局部问题无限的小下去的方法,即称为微分,而把这些无限个微分元中的结果进行求和的方法,即是积分。这种解决物理问题的思想和方法即是微积分的思想和方法。 2 微积分的基本概念及微分的物理含义 微积分是一种数学思想,其建立在函数,实数和极限的基础上,其主要探讨的就是连续变量。在运用微积分去解决物理问题时,可以将我们所需要得出的结果看成是一个整体,再将这个整体先微分,即将其分成足够小的个体,我们可以将这个个体的变量看成衡量,得出个体结果后,再将其积分,即把个体的结果累积起来进行求和。例如,在我们研究匀变速直线运动时,我们就可以在其运动过程中选取一个微小的时间dt,而这一时间内的位移为dt,在每一段时间内速度的变化量非常小,可以近似忽略,那么我们就可以将这段时间内的运动近似看成匀速直线运动,再把每段时间内的位移相加,无限求和,就可以得出总的位移。

在物理学中,每个物理公式都是某些物理现象和规律的数学表示,因此,我们在使用这些公式时,面对物理量和公式的微分形式我们不能仅仅从数学方面去考虑,更要从物理含义上去考虑。在我们使用微分符号时,不能只从数学角度去理解其为无限小,更要结合具体 的物理量和角度去判断他的正确含义。 例:如图所示,一通有交流电流i=的长直导线旁有一共面的单匝矩形线圈ABCD,试求线圈中的感应电动势大小。 解:设在某个时刻,长直导线电流产生的磁场为 B= 在图中做一个微元面dS,dS=ldx,则该面元上的磁场可以近似于均匀磁场,微元面dS上的磁通量为 d 线圈围成的面上通过的磁通量为 线圈中的感应电动势为

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞∞或00型,) ()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

一元函数积分学在经济中的应用(1)

一元函数积分学在经济中的应用 一、导数在经济分析中的应用 (一)边际成本 总成本函数的导数称为边际成本。 边际成本是指在一定产量水平下,增加或减少一个单位产量所引起成本总额的变动数,用以判断增减产量在经济上是否合算。它是在管理会计和经营决策中常用的名词。当产量未达到一定限度时,边际成本随产量的扩大而递减,但当产量超越一定限度时,就转而递增。因此,当增加一个单位产量所增加的收入高于边际成本时,是合算的;反之,是不合算的。因此计算边际成本等于边际收入时,为企业获得其最大利润的产量。通过确定边际成本来提供经营决策所需资料的成本决策,称为边际成本计算。在实际工作中,边际成本计算常只按变动成本计算。 (二)边际收益 总收益函数的导数称为边际收益。 它表示销售一个单位产品后,再销售一个单位的产品所增加的收益。它可以是正值或负值。边际收益是厂商分析中的重要概念。利润最大化的一个必要条件是边际收益等于边际成本。在完全竞争条件下,任何厂商的产量变化都不会影响价格水平,需求弹性对个别厂商来说是无限的,总收益随销售量增加同比例增加,边际收益等于平均收益,等于价格。在非完全竞争)条件下,厂商的销售量同价格成反比。如果需求弹性大于1,即售量的增加的百分比,快于价格降低的百分比,总收益随销售量增加而增加,尽管不是同比例增加,平均收益下降,边际收益为零;如果需求弹性小于1,这时总收益随销售量增加而减少,平均收益更快下降,边际收益为负数。 (三)边际利润 总利润函数的导数称为边际利润。它表示:若已经生产了x个单位的产品,再生产多一个单位的产品总利润的增加量。 边际利润是反映增加产品的销售量能为企业增加的收益。销售单价扣除边际成本即为边际利润,边际利润是指增加单位产量所增加的利润。企业的经营收益减去会计成本,所得到的就是会计利润。按照我国的财会制度,有销售利润、利润总额及税后利润等概念。销售利润是销售收入扣除成本、费用和各种流转税及附加费后的余额;利润总额是企业在一定时期内实现盈亏的总额;税后利润是企业利润总额扣除应缴所得税后的利润。 一般情况下,总利润函数等于总收益函数与总成本函数之差,则边际利润是边际收益与边际成本之差。 二、函数在经济学中的应用。 需求函数。在经济管理中,需求函数是用来表示一种商品的需求数量和影响该需求数量的各种因素之间的相互关系的。也就是说,影响需求数量的各种因素是自变量,需求数量是因变量。需求函数是单调减少函数。 供给函数。供给函数表示一种商品的供给量和该商品的价格之间存在着一一对应的关系。 均衡价格。均衡价格是指一种商品的需求价格和供给价格相一致时的价格,也就是这种商品的市场需求曲线与市场供给曲线相交时的价格。

微积分在物理学上的应用

微积分在物理学上得应用 1 引言 微积分就是数学得一个基本学科,内容包括微分学,积分学,极限及其应用,其中微分学 包括导数得运算,因此使速度,加速度等物理元素可以使用一套通用得符号来进行讨论。而在大学物理中,使用微积分去解决问题就是及其普遍得。对于大学物理问题,可就是使其化整为零,将其分成许多在较小得时间或空间里得局部问题来进行分析。只要这些局部问题分得足够小,足以使用简单,可研究得方法来解决,再把这些局部问题得结果整合起来啊,就可以得到问题得结果。而这种将问题无限得分割下去,局部问题无限得小下去得方法,即称为微分,而把这些无限个微分元中得结果进行求与得方法,即就是积分。这种解决物理问题得思想与方法即就是微积分得思想与方法。 2 微积分得基本概念及微分得物理含义 微积分就是一种数学思想,其建立在函数,实数与极限得基础上,其主要探讨得就就是 连续变量。在运用微积分去解决物理问题时,可以将我们所需要得出得结果瞧成就是一个整体,再将这个整体先微分,即将其分成足够小得个体,我们可以将这个个体得变量瞧成衡量,得出个体结果后,再将其积分,即把个体得结果累积起来进行求与。例如,在我们研究匀变速直线运动时,我们就可以在其运动过程中选取一个微小得时间dt,而这一时间内得位移为dt,在每一段时间内速度得变化量非常小,可以近似忽略,那么我们就可以将这段时间内得运动近似瞧成匀速直线运动,再把每段时间内得位移相加,无限求与,就可以得出总得位移。 在物理学中,每个物理公式都就是某些物理现象与规律得数学表示,因此,我们在使用 这些公式时,面对物理量与公式得微分形式我们不能仅仅从数学方面去考虑,更要从物理含义上去考虑。在我们使用微分符号时,不能只从数学角度去理解其为无限小,更要结合具体得物理量与角度去判断她得正确含义。 例:如图所示,一通有交流电流i=得长直导线旁有一共面得单匝矩形线圈ABCD,试求线圈中得感应电动势大小。 解:设在某个时刻,长直导线电流产生得磁场为 B= 在图中做一个微元面dS,dS=ldx,则该面元上得磁场可以近似于均匀磁场,微元面dS上得磁通量为 d 线圈围成得面上通过得磁通量为

微积分在物理学上的应用

1 引言 微积分是数学的一个基本学科,内容包括微分学,积分学,极限及其应用,其中微分学包括导数的运算,因此使速度,加速度等物理元素可以使用一套通用的符号来进行讨论。而在大学物理中,使用微积分去解决问题是及其普遍的。对于大学物理问题,可是使其化整为零,将其分成许多在较小的时间或空间里的局部问题来进行分析。只要这些局部问题分的足够小,足以使用简单,可研究的方法来解决,再把这些局部问题的结果整合起来啊,就可以得到问题的结果。而这种将问题无限的分割下去,局部问题无限的小下去的方法,即称为微分,而把这些无限个微分元中的结果进行求和的方法,即是积分。这种解决物理问题的思想和方法即是微积分的思想和方法。 2 微积分的基本概念及微分的物理含义 微积分是一种数学思想,其建立在函数,实数和极限的基础上,其主要探讨的就是连续变量。在运用微积分去解决物理问题时,可以将我们所需要得出的结果看成是一个整体,再将这个整体先微分,即将其分成足够小的个体,我们可以将这个个体的变量看成衡量,得出个体结果后,再将其积分,即把个体的结果累积起来进行求和。例如,在我们研究匀变速直线运动时,我们就可以在其运动过程中选取一个微小的时间dt,而这一时间内的位移为dt,在每一段时间内速度的变化量非常小,可以近似忽略,那么我们就可以将这段时间内的运动近似看成匀速直线运动,再把每段时间内的位移相加,无限求和,就可以得出总的位移。 在物理学中,每个物理公式都是某些物理现象和规律的数学表示,因此,我们在使用这些公式时,面对物理量和公式的微分形式我们不能仅仅从数学方面去考虑,更要从物理含义上去考虑。在我们使用微分符号时,不能只从数学角度去理解其为无限小,更要结合具体的物理量和角度去判断他的正确含义。 例:如图所示,一通有交流电流i=的长直导线旁有一共面的单匝矩形线圈ABCD,试求线圈中的感应电动势大小。 解:设在某个时刻,长直导线电流产生的磁场为 B= 在图中做一个微元面dS,dS=ldx,则该面元上的磁场可以近似于均匀磁场,微元面dS上的磁通量为 d 线圈围成的面上通过的磁通量为 线圈中的感应电动势为 在这个例题中,微元面dS的磁通量与线圈的感应电动势都有,但他们的物理含义却是不一样的,前者的表示微元面 dS上的磁通量,是一个微小量,而后者的表示

定积分在物理上的应用(学习资料)

授课题目定积分在物理上的应用 课时数1课时 教学目标用定积分解决物理学上的变力做功以及液体压力问题。 重点与难点教学重点:定积分方法分析变力做功和液体压力。教学难点:定积分的元素法以及物理量的计算公式。 学情分析我所教授的学生从知识结构上来说属于好坏差别很大,有的接受新知识很快,有的很慢,有的根本听不懂,基 于这些特点,结合教学内容,我以板书教学为主,多媒 体教学为辅,把概念较强的课本知识直观化、形象化, 引导学生探索性学习。 教材分析本次课是学生学习完定积分的概念和计算方法以及定积分在几何上的应用后的学习,定积分的元素法在几何和 物理上的应用为学生尝试解决各种实际问题做了很好的 铺垫。将来把元素法的思想推广到多元函数后,其应用 范围将会更宽更广。所以无论从内容还是数学思想方面, 本次课在教材中都处于重要的地位。 教学方法根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲 解为主,同时充分调动学生学习的主动性和思考问题的 积极性。 教学手段传统教学与多媒体资源相结合。

课程资源 同济大学《高等数学》(第七版)上册 教学内容与过程 一、 变力沿直线所作的功 dx x F dW )(= ?=b a dx x F W )( ,求电场力所做的功。 处处移动到从距离点电荷直线下,一个单位正电荷沿电荷所产生的电场作用、在一个带例)(1b a b a q <+为时,由库仑定律电场力原点解:当单位正电荷距离r 2r q k F = dr r kq dW 2=则功的元素为: 所求功为 )11(]1[2b a kq r kq dr r kq W b a b a -=-==? 例2、在底面积为S 的圆柱形容器中盛有一定量的气体,由于气体的膨胀,把容器中的一个面积为S 的活塞a 移动到b 处(如图),求移动过程中气体压力所做的功。 解:建立坐标系如图. 由波义耳---马略特定律知压强p 与体积V 成反比,即xS k V k p == ,故作用在活塞上的力为 x k S p F =?= x a b x x x d +q +o r a b r r d r +1+S o x a b x x d x +

微积分在普通物理学中的应用

微积分在普通物理学中的应用 1引言 从牛顿那个时代到今天,每个时代都在为一种事物惊叹不已,它不仅推动了物理学和数学的发展,也更新了人类的观念,是人类史上的里程碑,它就是微积分. 微积分可以称为是人类智慧最伟大的成就之一,在各个领域内都有重要应用.如果将整个人类科学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分.微积分在物理学、天文学等自然科学及应用科学等多个分支中,有越来越广泛的应用.可以说,微积分推动了现代人类社会的发展,所以我们很有必要对它进行了解和掌握. 微积分是微分和积分的总称,它是一种数学思想,其中‘无限细分’就是微分,‘无限求和’就是积分.极限的思想是微积分的基础,它是用变化的思想来看待问题的. 微积分在物理学中的应用相当普遍,本篇论文从导数、微分、积分三方面研究了微积分在其中的应用. 2导数在力学中的应用 导数在力学中有很重要的作用,通常可求得最小的力,最省的距离等极值问题,在实际生活中应用性很强.下面简单举出两个例子说明其应用(画图略). 例1 设有质量为5kg 的物体,置于水平面上,受力F 的作用开始移动,设摩擦系数 0.25,μ=问力F 与水平线的交角α为多少时,才可以使力F 的大小为最小? 解 由题意得 cos (sin )F P F ααμ=-,其中α0,2π?? ∈???? ,P 表示重力 cos sin P F μαμα = + 由于P μ为常数,欲求F 最小,只须 求分母U cos sin αμα=+的最大值. 记 U αcos sin αμα=+ 令U α '=sin cos 0αμα-+=

《高等数学》(上)一元函数微分学复习题

《高等数学》(上)“一元函数微分学”复习题 1.设x x f +=1)(ln ,求)(x f '. 2.设函数)(x f 二阶可导,且0)0(=f ,1)0(='f ,2)0(=''f ,求20)(lim x x x f x -→. 3.设)(x f 在2=x 处连续,且22)(lim 2=-→x x f x ,求)2(f '. 4.若)(sin x f y =,求dy . 5.若函数)(x f 可导,)(sin 2x f y =则 dx dy 为多少? 6.设函数)1ln()(2x x f -=,求)(x f ''. 7.求等边曲线x y 1=在点2) ,2 1(的切线方程. 8.设函数???≥+<=0 ),1ln(0,sin )(x x x x x f ,求)0(-'f 、)0(+'f ,并判断)0(f '是否存在. 9.确定常数a ,b 使函数? ??>-≤+=0,0,13sin )(x b ae x x x f x 在0=x 处可导. 10.求曲线???==t y t x sin 2cos 在3π=t 处的切线方程和法线方程. 11.求由方程0=-+e xy e y 所确定的隐函数的微分dy . 12.设函数x x x y ?? ? ??+=1,求其导数y '. 13.设曲线的参数方程为?????==-t t e y e x 23,求22dx y d . 14.求由方程12 2=-y x 所确立的隐函数)(x y y =的二阶导数22dx y d . 15.设函数)(x f y =由方程4ln 2y x xy =+确定,求() 1,1dx dy . 16.求椭圆442 2=+y x 在点()2,0处的二阶导数22dx y d . 17.设()3,1是曲线2 3bx ax y +=的拐点,求b a ,.

[考研类试卷]考研数学二(一元函数积分概念、计算及应用)模拟试卷6.doc

[考研类试卷]考研数学二(一元函数积分概念、计算及应用)模拟试卷 6 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 函数F(x)=∫x x+2πf(t)dt,其中f(t)=(1+sin2t)cos2t,则F(x) (A)为正数. (B)为负数. (C)恒为零. (D)不是常数. 2 设常数α>0,,则 (A)I1>I2. (B)I1<I2. (C)I1=I2. (D)I1与I2的大小与α的取值有关. 二、填空题 3 若f(x)的导函数是sinx,则f(x)的原函数是________. 4 =________. 5 =________.

6 设y=f(x)满足△y=△x+o(△x),且f(0)=0,则∫01f(x)dx=________. 7 =________. 三、解答题 解答应写出文字说明、证明过程或演算步骤。 8 n为自然数,证明: 9 求下列不定积分: 10 求I n=sin n xdx和J n=cos n xdx,n=0,1,2,3,…. 11 求下列定积分:(Ⅰ) I=(Ⅱ) J=sin2xarctane x dx. 12 已知抛物线y=ax2+bx+c经过点P(1,2),且在该点与圆 相切,有相同的曲率半径和凹凸性,求常数a,b,c. 13 在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为a 处有一质量为m的质点P,求证:质点与杆间的引力为F=(M为杆的质量).

14 计算下列不定积分: 15 假定所涉及的反常积分(广义积分)收敛,证明:∫-∞+∞f(x-)dx=∫-∞+∞f(x)dx. (*) 16 设f(x)=∫0x dt,求f'(x). 17 求曲线r=的全长. 18 求由曲线F:x=a(t-sint),y=a(1-cost)(0≤t≤2π)及y=0所围图形绕Ox轴旋转所成立体的体积. 19 求由曲线x2=ay与y2=ax(a>0)所围平面图形的质心(形心)(如图 3.34). 20 设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0x f(t)dt,求证:(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),凡为自然 数,则当nT≤x<(n+1)T时,有n∫0T f(x)dx≤∫0x f(t)dt<(n+1)∫0T f(x)dx. 21 求

定积分在物理中的应用 说课稿 教案 教学设计

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 2 x y =y x A B C D O

相关文档
相关文档 最新文档