文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料的结构与形貌控制

纳米材料的结构与形貌控制

纳米材料的结构与形貌控制
纳米材料的结构与形貌控制

纳米材料与技术思考题2016

纳米材料导论复习题(2016) 一、填空: 1.纳米尺度是指 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质的科学 3.纳米技术是在纳米尺度范围内对原子、分子等进行的技术 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称为 5.一维纳米材料中电子在个方向受到约束,仅能在个方向自由运动,即电子在 个方向的能量已量子化一维纳米材料是在纳米碳管发现后才得到广泛关注的,又称为 6.1997年以前关于Au、Cu、Pd纳米晶样品的弹性模量值明显偏低,其主要原因是 7.纳米材料热力学上的不稳定性表现在和两个方面 8.纳米材料具有高比例的内界面,包括、等 9.根据原料的不同,溶胶-凝胶法可分为: 10.隧穿过程发生的条件为. 11.磁性液体由三部分组成:、和 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向方向移动,即 13.光致发光指在照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程仅在激发过程中发射的光为在激发停止后还继续发射一定时间的光为 14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:、和 15.STM成像的两种模式是和. 二、简答题:(每题5分,总共45分) 1、简述纳米材料科技的研究方法有哪些? 2、纳米材料的分类? 3、纳米颗粒与微细颗粒及原子团簇的区别? 4、简述PVD制粉原理 5、纳米材料的电导(电阻)有什么不同于粗晶材料电导的特点? 6、请分别从能带变化和晶体结构来说明蓝移现象

7、在化妆品中加入纳米微粒能起到防晒作用的基本原理是什么? 8、解释纳米材料熔点降低现象 9、AFM针尖状况对图像有何影响?画简图说明 1. 纳米科学技术 (Nano-ST):20世纪80年代末期刚刚诞生并正在崛起的新科技,是研究在千万分之一米10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术 2、什么是纳米材料、纳米结构? 答:纳米材料:把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料,即三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料,大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类;纳米材料有两层含义: 其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系 3、什么是纳米科技? 答:纳米科技是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望 5、纳米材料有哪4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、请叙述什么是小尺寸效应、表面效应、量子效应和宏观量子隧道效应、库仑堵塞效应 答:小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应 量子尺寸效应:当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料

最新纳米结构与纳米材料25个题目+完整答案资料

1.什么是纳米材料?其内涵是什么?(从零、一、二、三维考虑) 2.纳米材料的四大效应是什么?对每一效应举例说明。 3.纳米材料的常用的表征方法有哪些? 4.用来直接观察材料形态的SEM、TEM、AFM对所测定的样品有哪些特定要求?从它们的图像中能够得到哪些基本信息? 5.纳米颗粒的高表面活性有何优缺点?如何利用? 6.在纳米颗粒的气相合成中涉及到哪些基本环节?气相合成大致可分为哪四种?气相成核理论的机制有哪两种? 7.溶胶-凝胶法制备纳米颗粒的基本过程是怎样的? 8.用溶胶-凝胶技术结合碳纳米管的生长机理,可获得密度不同的碳纳米管阵列(也叫纳米森林),简要阐述其主要步骤及如何控制碳纳米管的分布密度? 9.改变条件可制备不同晶粒大小的二氧化钛,下图分别为两种晶粒尺寸不同的二氧化钛的XRD图与比表面积数据。请用Scherrer 方程、BET比表面积分别估算这两种二氧化钛的晶粒尺寸(XRD测试时所用的 = 1.5406?,锐钛矿相二氧化钛的密度是3.84 g/cm3)(默写出公式并根据图中的数据来计算)。 10.氧化物或者氮化物纳米材料具有许多特殊的功能,请以一种氧化物或者氮化物为例,举出其三种主要的制备方法(用到的原料、反应介质、主要的表征手段)、主要用途(与纳米效应有关的用途)、并介绍这种物质的至少两种晶相。 11.举出五种碳的纳米材料,阐述其一维材料与二维材料的结构特点、用途。 12.简述纳米材料的力学性能、热学性能与光学性能有怎样的变化? 13.什么叫化学气相沉积法,它与外场结合又可衍生出哪些方法?简述VLS机制。 14.纳米半导体颗粒具有光催化性能的主要原因是什么?光催化有哪些具体应用 15.利用机械球磨法制备纳米颗粒的主要机制是什么?有何优、缺点? 16 何为“自催化VLS生长”?怎样利用自催化VLS生长实现纳米线的掺杂? 17.液相合成金属纳米线,加入包络剂(capping reagent)的作用是什么? 18.何为纳米材料的模板法合成?它由哪些优点?合成一维纳米材料的模板有哪些? 19.试结合工艺流程图分别说明氧化铝模板的制备过程以及氧化铝模板合成纳米线阵列的过程 20.从力学特性、电学特性和化学特性来阐述碳纳米管的性质,它有哪些主要的应用前景? 21.如何提高传统光刻技术中曝光系统的分辩率? 22.试比较电子束刻蚀和离子束刻蚀技术的异同点和优缺点。 23.比较极紫外光刻技术和X射线光刻技术的异同。 24.何为纳米材料的自组装?用于制备纳米结构的微乳液体系一般有几个组成部分? 25 何谓“取向搭接Oriented attachment”“奥斯德瓦尔德熟化Ostwald ripening”?

纳米材料-碳酸钙的形貌控制研究

纳米材料-碳酸钙的形貌控制研究 谷丽1*,魏凯娜1,闫皙1 1河北科技大学化学与制药工程学院,河北省石家庄市裕华东路70号,050018 *Email:gabb120@https://www.docsj.com/doc/012399356.html, 摘要:碳酸钙广泛应用于建材、橡胶、塑料、造纸、涂料、油墨、医药等行业。不同行业对碳酸钙的晶形有不同的需求:生产油墨需立方形或球形;橡胶行业需针形或链状;电子、陶瓷行业需要高纯、微细、球形;造纸行业需要片状、纺锤状的碳酸钙。因而不同形态的碳酸钙制备技术的研究已成为许多国家竞相开发的热点。我课题组通过利用间歇鼓泡碳化法,通过改变工艺条件、添加晶形控制剂等方法成功制备了分散性好的纳米球形、立方、纺锤形的碳酸钙,并通过中试放大试验的改进,在工业生产中取得了良好的生产成果,所得产品由日本日立公司S-4800型扫描电镜表征,如下图所示: 关键词:碳酸钙;形貌;控制 参考文献 [1] 曾蕾,贺全国,吴朝辉.表面改性及应用进展, 2009,39(4):1-6 [2] S. JAIN, H. GOOSSENS, F. PICCHIONI, et al. Polymer, 2005, 46(17): 6 666–6 681 Nanometer material-the research of calcium carbonate morphology Gu Li 1*, Wei 1, Yan 1, 1Department of Chemical and phamarcutical engineering, Hebei University of science and technology, Yuhua East Road 70 , Shijiazhuang, 050018 Abstract:The preparation technology of different crystal morphology of calcium carbonate has become the hot field of many countries. Our research group through the use of intermittent bubbling carbonation method, changing the processing conditions, such as adding crystal-growing controlling agent , a good dispersion of nanometer spherical, cubic, spindle calcium carbonate have been prepared.Through the improvement of pilot test, the industrial production has achieved an ideal result. Fig.1 SEM image of spherical morphology Fig. 3SEM image of spindle morphology Fig. 2 SEM image of cubic morphology

举例说明纳米材料的结构与其性质的关系

代鹏程无机化学2009级硕博连读学号:200911461 题目:举例说明纳米材料的结构与其性质的关系 答: 目录 1、纳米材料定义 2、纳米材料的结构 3、纳米材料的性能 4、以量子点为例说明纳米材料结构与其性质的关系 5、以纳米线为例说明纳米材料结构与其性质的关系 1、纳米材料定义 纳米材料是纳米级结构材料的简称。狭指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸最多不超过100纳米,在通常情况下不超过10纳米;从广义上说,纳米材料,是指微观结构至少在一维方向上受纳米尺度(1~100nm)限制的各种固体超细材料,它包括零维的原子团簇(几十个原子的聚集体)和纳米微粒;一维纳米纤维;二维纳米微粒膜(涂层)及三维纳米材料。 2、纳米材料的结构 材料学研究认为:材料的结构决定材料的性能,同时材料的性能反映材料的结构。纳米材料也同样如此。对于纳米材料,其特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显的差异。 纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用。在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。 纳米材料由于非常小,使纳米材料的几何特点之一是比表面积(单位质量材料的表面积)很大,一般在102~104m2/g。它的另一个特点是组成纳米材料的单元表面上的原子个数与单元中所有原子个数相差不大。例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数53=125个,而表面上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。这些特点完全不同于普通的材料。例如,普通材料的比表面积在10m2/g以下,其表面原子的个数与组成单元的整体原子个数相比较完全可以忽略不计。 由于以上纳米材料的两上显著不同于普通材料的几何特点,从物理学的观点来看,就使得纳米材料有两个不同于普通材料的物理效应表现出来,这是一个由量变到质变的过程。一个效应我们称之为量子尺寸效应,另一个被称之为表面效应。量子尺寸效应是由于材料的维度不断缩小时,描述它的物理规律完全不同

NaGdF4_Yb3+,H03+与GdF3_Yb3+,H03+纳米材料的合成、形貌控制与发光性质 - 副本

万方数据

万方数据

万方数据

万方数据

万方数据

NaGdF4:Yb3+,H03+与GdF3:Yb3+,H03+纳米材料的合成、形貌控制与发 光性质 作者:曹健, 张霞, 郝振东, 张家骅, CAO Jian, ZHANGXia, HAO Zhen-dong, ZHANG Jia-hua 作者单位:曹健,CAO Jian(中国科学院激发态重点实验室长春光学精密机械与物理研究所,吉林长春130033;中国科学院研究生院,北京100039), 张霞,郝振东,张家骅,ZHANGXia,HAO Zhen-dong,ZHANG Jia-hua(中国科学院 激发态重点实验室长春光学精密机械与物理研究所,吉林长春,130033) 刊名: 发光学报 英文刊名:Chinese Journal of Luminescence 年,卷(期):2011,32(12) 被引用次数:2次 参考文献(9条) 1.Joubert M F Photon avalanche upconversion in rare earth laser materials[外文期刊] 1999(02) 2.Bleembergen N Solid state infrared quantum counters 1959(03) 3.Chivian J S;Case W E;Eden D D The photon avalanche:A new phenomenon in Pr3+-based infrared quantum counters 1979(02) 4.Downing E;Hesselink L;Ralston J A three-color,solid-state,three-dimensional display[外文期刊] 1996(5279) 5.Wang L;Yan R;Huo Z Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles[外文期刊] 2005(37) 6.Chen Z;Chen H;Hu H Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels[外文期刊] 2008(10) 7.Buissette V;Huignard A;Gacoin T Luminescence properties of YVO4:Ln (Ln =Nd,Yb,and Yb-Er) nanoparticles 2003(10) 8.Du Y P;ZhangY W;Sun L D Luminescent monodisperse nanocrystals of lanthanide oxyfluorides synthesized from trifluoroacetate precursors in high-boiling solvents[外文期刊] 2008(02) 9.Kr(a)mer K W;Biner D;Frei G Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors[外文期刊] 2004(07) 引证文献(2条) 1.辛艳辉.袁合才.李佼佼稀土掺杂NaGdF4纳米颗粒的制备与强近红外上转换特性[期刊论文]-材料热处理学报 2013(3) 2.韩松.宋博.刘磊.贺超.杨魁胜CdWO4∶Yb3+,Ho3+纳米晶的制备及发光性能研究[期刊论文]-发光学报 2013(9) 本文链接:https://www.docsj.com/doc/012399356.html,/Periodical_fgxb201112006.aspx

关于纳米材料和纳米结构的研究

关于纳米材料和纳米结构的研究 发表时间:2019-07-18T12:27:02.667Z 来源:《科技尚品》2018年第11期作者:于涵 [导读] 纳米材料问世后,各国科学家都开始对这种物质进行研究,国家关于纳米材料和纳米结构的研究也始终没有停止,现如今,中国在纳米材料和纳米结构方面的研究水平已经进入了国际先进行列。本文基于纳米材料和纳米结构,针对纳米材料在催化科学、分析分离科学、光电材料科学的应用展开了全面的分析。 宣化一中 引言:近年来,国际上关于纳米材料和纳米结构的研究不断发展,出现了很多新的研究热点,包括:半导体芯片、癌症诊断、光学材料等。随着研究的深入,未来将会有更多的纳米产品问世。将纳米材料和纳米结构和其他技术相结合,开拓新的思路,可以让纳米材料和纳米结构的适用性得到进一步提高。 一、纳米材料和纳米结构 纳米中主要包括两个部分,分别为:纳米晶粒和晶粒界面,晶界原子的比例极大是纳米最为突出的结构特征,此外,纳米晶界原子结构较为复杂,所以纳米中的晶界结构一直都是研究的重点,很多学者都提出了不同的模型学说,但纳米材料中的境界微观结构一直都没有形成一个统一的模型。不仅是因为晶界结构较为复杂,也是因为晶界结构会受到多种因素的影响,导致同一块材料中也会有不同的差异性。由于纳米结构上的特殊性和不稳定性,让纳米材料形成了很多的特殊性能。不仅如此,纳米材料的物理化学性能和绝大部分物体的物理化学特性都不同,其中最为典型的就是催化性能和光学性能这两个性能。比如,纳米材料在作为光催化剂使用时,因为纳米本身的粒径较小,所以可以到达表面的纳米粒子数量较多,光催化效率也就相对提高。随着时间的发展,科学技术的不断提升,对纳米的研究也就进一步深入,现如今,纳米材料中的线性光学性质以及晶体材料的光伏特性、发光效应也是纳米光学性质的研究热点问题。 二、纳米材料在不同科学行业中的应用 (一)纳米材料在催化科学中的应用 由上文可知,纳米材料的催化性能较优,因此在催化科学中得到了广泛的应用。近年来,含银催化剂在电催化水裂解、海水电解产氯气等方面都有着良好的应用,而采用海水电解产氯气的方式可以更好的减低能耗,这其中最为关键的环节就是制作合成出高效的含银催化剂[1]。采用自上而下的纳米颗粒制备方法,可以制作出一种稳定的银纳米颗粒,经过研究发现,这种纳米材料具有着较高的银卤素比例,应用在海水电解产氯气的过程中,可以有效催化氯气产生,而且这种纳米材料的催化活性较高。在调控催化纳米管时,也可以采用这种纳米材料,这种材料因其本身的性能较优,现如今已经在材料科学、传感器科学的研究中得到了广泛应用。(二)纳米材料在分析分离科学中应用 金纳米粒子作为纳米材料在分析分离科学中的应用效果一直较好,经常被用于检测物质,通过金纳米粒子的聚集和分散,观察体系溶液颜色的变化,就可以进行分析检测,这其中就利用了金纳米粒子的比色传感理论。此外,在传感领域也具有着一定的应用前景,将金纳米粒子和其他常见的应用物质进行结合,可以在分析分离科学中得到进一步的应用,从根本上提高检测结果的准确性。小分子凝胶是一种新型的功能材料,这种软材料可以利用分子间的相互作用,形成一个微纳米网络结构,根据分子在空间构型上的微小差别,会形成不同尺寸的微纳米网络结构。比如:检测二价汞离子的过程中,可以利用这种小分子凝胶体系进行灵敏检测,不仅如此,这种凝胶体系还可以检测水中汞离子。 (三)纳米材料在光电材料科学中应用 除了上述两个方面以外,纳米V型刚棒-线团分子以及双稳态功能轮烷分子梭在光电材料科学中都有着一定的应用。近几年,纳米材料在光电器材方面的应用得到了科研工作者的广泛关注,纳米材料在水中的自组装行为,在光电材料中科学、纳米材料科学、超分子化学以及主客体化学中都有着广泛的应用,利用这一性能形成的纳米V型刚棒-线团分子在水中就可以完成自组装行为。而稳态功能轮烷分子梭的设计和制备,在发展有机光电功能超分子体系中发挥着重要的作用。因此,在催化材料、光子晶体、药物控制输送等领域中都可以看见单分散核/壳纳米复合材料的身影,通过对具有单分散核/壳纳米复合材料性能的卟啉纳米金纳米粒子形成过程的研究,可以发现这种复合性的纳米粒子在构筑光电器件山发挥着重要的作用,且比其他复合材料具有着更大的光电流,光电性能也较为稳定。此外,这种复合材料的制备方法较为简单,生产便捷,因此大范围应用[2]。 总结:综上所述,纳米结构和纳米材料在科学行业中植根深远,在很多方面中都会发挥着重要的作用,作为一种市场前景广阔的新材料,国家应该进一步投入人力和资金展开研究,并且作为重点研究开发项目。二十一世纪,纳米技术会成为一种决定性技术,加强其在不同领域中的发展,可以推动国家科学领域的进步。 参考文献: [1]赵然. 博士论文-铀钍氧化物纳米材料和铀酰-异金属配位聚合物的合成、结构和性质研究[J]. 2016. [2]马佳文. 碳纳米材料与金属复合结构中空位缺陷产生和作用机制的理论研究[D]. 2016.

纳米材料的形貌控制.(DOC)

纳米材料的形貌控制 1 概述 纳米材料是指材料的三维尺寸中至少有一维处于纳米尺度(1-100 nm),或由纳米尺度结构单元构成的材料。随着纳米材料尺寸的降低,其表面的晶体结构和电子结构发生了变化,产生了如小尺寸效应、表面效应、量子尺寸效应等宏观物质所不具有的特殊效应,从而具有传统材料所不具备的物理化学性质。纳米材料的尺度处于原子簇和宏观物质交界的过渡域,是介于微观原子或分子和宏观物质间的过渡亚稳态物质,它有着与传统固体材料显著不同的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应[1],表现出奇异的光学、磁学、电学、力学和化学特性。 1.1 纳米材料的特性 1.1.1 量子尺寸效应 当粒子的尺寸下降到某一临界值时,其费米能级附近的电子能级由准连续变为离散能级,并且纳米半导体微粒存在不连续的最高被占据的分子轨道和最低未被占据的分子轨道能级,使得能隙变宽的现象,称为纳米材料的量子尺寸效应。当能级间距大于磁能、热能、静电能或超导态的凝聚能时,量子尺寸效应会导致纳米颗粒光、电、磁、热及超导电性能与宏观性能显著不同。量子尺寸效应是未来光电子、微电子器件的基础。 1.1.2 小尺寸效应 当纳米材料的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等外部物理量的特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米颗粒表面层附近的原子密度减小,从而导致其光、电、磁、声、热、力学等物质特性呈现出显著的变化:如熔点降低;磁有序向磁无序态,超导相向正常相的转变;光吸收显著增加,并产生吸收峰的等离子共振频移;声子谱发生

改变等,这种现象称为小尺寸效应。纳米材料的这些小尺寸效应为实用技术开拓了新领域。 1.1.3 表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变化而急剧增大后引起的材料性质上的变化。随着材料尺寸的减小,比表面积和表面原子所占的原子比例将会显著增加。例如,当颗粒的粒径为10 nm时,表面原子数为晶粒原子总数的20%,而当粒径为l nm时,表面原子百分数增大到99%。由于表面原子数增多,原子配位不足及高的表面能,使这些原子易与其他原子相结合以降低表面能,故具有很高的化学活性。这种表面原子的活性不但能引起纳米粒子表面输运和构型的变化,也会引起电子能级和电子自旋构象的变化,从而对纳米材料的电学、光学、光化学及非线性光学性质等产生重要影响。通过利用有机材料对纳米材料表面的修饰和改性,可以得到超亲水和超疏水等性能可调的纳米材料,可以广泛的应用于民用工业。 1.1.4 宏观量子隧道效应 量子物理中把微观粒子具有的贯穿势垒的能力称为隧道效应。近年来的研究发现一些宏观量,如超微颗粒的磁化强度,量子相干器件中的磁通以及电荷等也具有隧道效应,它们可以穿越宏观系统的势垒而发生变化。故称为宏观量子隧道效应。对宏观量子隧道效应的研究对基础及应用研究都有着重要意义。宏观量子隧道效应与量子尺寸效应一起都将会是未来微电子、光电子器件的基础。此外,纳米粒子还具有其它的一些特殊性质,如库伦阻塞与量子隧穿及介电限域效应等。 1.2 纳米材料特性对材料性能的影响 1.2.1 电学性能 电学性能发生奇异的变化,是由于电子在纳米材料中的传输过程受到空间维度的约束而呈现出量子限域效应。纳米材料晶界上原子体积分数增大,晶界部分

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

金属氧化物纳米材料的电化学合成与形貌调控研究进展

[Review] https://www.docsj.com/doc/012399356.html, doi:10.3866/PKU.WHXB 201209145 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.-Chim.Sin.2012,28(10),2436-2446 October Received:August 30,2012;Revised:September 10,2012;Published on Web:September 14,2012.? Corresponding author.Email:dsxu@https://www.docsj.com/doc/012399356.html,;Tel:+86-10-62760360. The project was supported by the National Natural Science Foundation of China (51121091,21133001,61176004),National Key Basic Research Program of China (973)(2007CB936201,2011CB808702),and Science and Technology on Electro-optical Information Security Control Laboratory,China (9140C150304110C1502). 国家自然科学基金(51121091,21133001,61176004),国家重点基础研究发展规划项目(973)(2007CB936201,2011CB808702)和国家光电信息控制和安全技术重点实验室基金(9140C150304110C1502)资助 ?Editorial office of Acta Physico-Chimica Sinica 金属氧化物纳米材料的电化学合成与形貌调控研究进展 焦淑红1 徐东升1,2,*许荔芬1张晓光2 (1北京大学化学与分子工程学院,分子动态与稳态结构国家重点实验室,北京分子科学国家实验室,北京100871; 2 光电信息控制和安全技术重点实验室,河北三河065201) 摘要:金属氧化物纳米材料因其丰富的形貌、独特的性能、广泛的应用成为材料合成领域研究的热点.调控金 属氧化物纳米材料的形貌对于调变其性能、拓展其应用空间具有重要意义.电化学方法由于操作简单易控、方法灵活多变,因此成为调控金属氧化物形貌的常用方法.本文综述了近年来我们在金属氧化物纳米材料的电化学合成与形貌调控方面已取得的研究结果;总结了不同金属氧化物在电化学过程中晶体生长机制和形貌调控的规律,为实现功能材料的定向合成奠定了基础.关键词: ZnO;金属氧化物;形貌调控;电沉积;纳米管;多级结构 中图分类号: O646 Recent Progress in Electrochemical Synthesis and Morphological Control of Metal Oxide Nanostructures JIAO Shu-Hong 1 XU Dong-Sheng 1,2,* XU Li-Fen 1 ZHANG Xiao-Guang 2 (1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China ;2Science and Technology on Electro-optical Information Security Control Laboratory,Sanhe 065201,Hebei Province,P .R.China ) Abstract:There has been considerable focus on the synthesis of metal oxide nanostructures because of their extensive structures,unique properties,and wide applications.The morphological control of metal oxide nanostructures is of interest for tuning their performance and expanding their range of applications.Electrochemical methods have become a common way of controlling the morphologies of metal oxides,owing to their simple operation,ease of control,and flexible modes.This paper presents a brief overview of our research in the electrochemical synthesis and morphological control of metal oxide nanostructures.We will also discuss the crystal growth mechanism and the morphology control of different metal oxides during the electrochemical deposition process,which lays the foundation for orientation design and fabrication of functional materials. Key Words:ZnO;Metal oxide;Morphological control; Electrodeposition; Nanotube; Hierarchical structure 2436

纳米材料和纳米结构

纳米材料和纳米结构 1.纳米微粒尺寸的评估 在进行纳米微粒尺寸的评估之前,首先说明如下几个基本概念: (1)关于颗粒及颗粒度的概念 (i)晶粒:是指单晶颗粒,即颗粒内为单相,无晶界。 (ii)一次颗粒:是指含有低气孔率的一种独立的粒子,颗粒内部可以有界面,例如相界、晶界等。 (iii)团聚体:是由一次颗粒通过表面力或固体桥键作用形成的更大的颗粒。团聚体内含有相互连接的气孔网络。团聚体可分为硬团聚体 和软团聚体两种。团聚体的形成过程使体系能量下降。 (iv)二次颗粒:是指人为制造的粉料团聚粒子。例如制备陶瓷的工艺过程中所指的“造粒”就是制造二次颗粒。 纳米粒子一般指一次颗粒,它的结构可以是晶态、非晶态和准晶,可以是单相、多相结构。只有一次颗粒为单晶时,微粒的粒径才与晶粒尺寸(晶粒度)相同。 (2)颗粒尺寸的定义对球形颗粒来说,颗粒尺寸(粒径)是指其直径。对不规则颗粒,尺寸的定义常为等当直径,如体积等当直径、投影面积直径等。 粒径评估的方法很多,这里仅介绍几种常用的方法。 A 透射电镜观察法 用透射电镜可观察纳米粒子平均直径或粒径的分布。 该方法是一种颗粒度观察测定的绝对方法,因而具有可靠性和直观性。首先将那米粉制成的悬浮液滴在带有碳膜的电镜用Cu网上,待悬浮液中的载液(例如乙醇)挥发后,放入电镜样品台,尽量多拍摄有代表性的电镜像,然后由这些照片来测量粒径。测量方法有以下几种:(i)交叉法:用尺或金相显微镜中的标尺任意的测量约600颗粒的交叉长度,然后将交叉长度的算术平均值乘上一统一因子(1.56)来获得平均粒径;(ii)测量约100个颗粒中每个颗粒的最大交叉长度,颗粒粒径为这些交叉长度的算术平均值。(iii)求出颗粒的粒径或等当半径,画出粒径与不同粒径下的微粒数的分布图,将分布曲线中峰值对应的颗粒尺寸作为平均粒径。用这种方法往往测得的颗粒粒径是团聚体的粒径,这是因为在制备超微粒子的电镜观察样品时,首先需用超声波分散法,使超微粉分散在载液中,有时候很难使它们全部分散成一次颗粒,特别是纳米粒子很难分散,结果在样品Cu网上往往存在一些团聚体,在观察时容易把团聚体误认为是一次颗粒。电镜观察法还存在一个缺点就是测量结果缺乏统计性,这是因为电镜观察用的粉体是极少的,导致观察到的粉体的粒子分布范围并不代表整个粉体的粒径范围。 B X射线衍射线线宽法(谢乐公式) 电镜观察法测量得到的是颗粒度而不是晶粒度。X射线衍射线宽法是测定颗粒晶粒度的最好方法。当颗粒为单晶时,该法测得的是颗粒度。颗粒为多晶时,测得的是组成单个颗粒的单个晶粒的平均晶粒度。这种测量方法只适用晶态的纳

金属铂纳米颗粒的形貌控制合成

金属铂纳米颗粒的形貌控制合成 Shape-controlled Synthesis of Metal Platinum Nanoparticles 【摘要】金属纳米颗粒的形貌控制合成是金属纳米材料研究领域倍受关注的难题。铂黑是化工领域重要的催化剂。铂纳米颗粒的催化性能优于铂黑,其性质与形貌、粒径和结构密切相关。近年来,铂纳米颗粒的形貌控制合成虽然取得了一定进展,但所得到的多数铂纳米颗粒形貌不单一,大小不均匀。 为此,本论文采用多醇还原法制备形貌、粒径及二级结构可控的铂纳米颗粒,探索了不同反应条件对铂纳米颗粒形貌粒径的影响,并对纳米颗粒形成机理进行了初步探讨,采用多种分析手段对产物进行了表征。采用晶种两步生长法制得具有链状二级结构的铂纳米颗粒。 以六水合氯铂酸为前驱体,以乙二醇和三缩四乙二醇为混合溶剂及还原剂,以聚乙烯吡咯烷酮(PVP)为稳定剂,微波加热制备铂纳米晶种,然后在油浴中进一步生长成链状二级结构的铂纳米颗粒,并用紫外-可见光谱(UV-vis)、透射电子显微镜(TEM)、粉末X-射线衍射(XRD)以及X-射线光电子能谱(XPS)对产物进行了表征。对链状结构形成机理进行了初步探讨,认为颗粒呈链状分布是由于PVP的支架剂功能。 采用微波辐照加热法,以六水合氯铂酸为前驱体,以乙二醇和三缩四乙二醇混合溶液为溶剂及还原剂,利用聚乙烯吡咯烷酮(PVP)和十六烷基三甲基溴化铵(CTAB)作为协同稳定剂,在适量KOH存在下微波加热100秒,制备出“爆米花”状的铂纳米颗粒; 考察了反应参数对“爆米花”状的铂纳米颗粒控制合成的影响;以γ-Al2O3为载体,初步探讨了γ-Al2O3负载的“爆米花”状的铂纳米颗粒的催化活性。以氯铂酸钾(K2PtCl6)作为前驱体,利用PVP和CTAB作为形貌控制剂,以乙二醇作为溶剂及还原剂,在一定量NaNO3存在下制备出分布较均匀的自组装铂纳米颗粒。探讨了铂纳米颗粒自组装体的形成机理,认为PVP长链包围在CTAB的一端,形成链-球状软模板,将氯铂酸钾包围其中,当Pt(IV)被还原后因PVP链的桥联作用使得分散的铂纳米颗粒相互靠近,有序聚集成自组装体。 【Abstract】Much attention has been paid to the shape-controlled synthesis of metal nanoparticles in the field of metallic nanomaterials. Platinum black is an important catalyst for chemical industry. The catalytic property of platinum nanoparticles is much higher than the platinum black, but its intrinsic properties are strongly dependent on its size, morphology and structure. In recent yeas, though the shape-controlled synthesis of platinum nanoparticles has made a much progress, few of uniform platinum 。。。。 【关键词】铂;纳米颗粒;形貌;微波;自组装体;乙二醇;三缩四乙二醇;聚乙烯吡咯烷酮;十六烷基三甲基溴化铵;透射电子显微镜; 【Key words】Platinum;Nanoparticles;Morphology;Microwave;Self-assembly;Ethylene glycol;Teraethylene glycol;Cetyltrimethylammonium bromide;Polyvinylpyrrolidone;Transmission electron microscopy; 【网络出版投稿人】中南民族大学【网络出版年期】2011年S2期 【DOI】CNKI:CDMD:2.2009.226793

举例说明纳米材料的结构与其性质的关系.

代鹏程无机化学2009级硕博连读学号:200911461 题目:举例说明纳米材料的结构与其性质的关系 答: 目录 1、纳米材料定义 2、纳米材料的结构 3、纳米材料的性能 4、以量子点为例说明纳米材料结构与其性质的关系 5、以纳米线为例说明纳米材料结构与其性质的关系 1、纳米材料定义 纳米材料是纳米级结构材料的简称。狭指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸最多不超过100纳米,在通常情况下不超过10纳米;从广义上说,纳米材料,是指微观结构至少在一维方向上受纳米尺度(1~100nm限制的各种固体超细材料,它包括零维的原子团簇(几十个原子的聚集体和纳米微粒;一维纳米纤维;二维纳米微粒膜(涂层及三维纳米材料。 2、纳米材料的结构 材料学研究认为:材料的结构决定材料的性能,同时材料的性能反映材料的结构。纳米材料也同样如此。对于纳米材料,其特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显的差异。

纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用。在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。 纳米材料由于非常小,使纳米材料的几何特点之一是比表面积(单位质量材料的表面积很大,一般在102~104m2/g。它的另一个特点是组成纳米材料的单元表面上的原子个数与单元中所有原子个数相差不大。例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数53=125个,而表面上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。这些特点完全不同于普通的材料。例如,普通材料的比表面积在10m2/g以下,其表面原子的个数与组成单元的整体原子个数相比较完全可以忽略不计。 由于以上纳米材料的两上显著不同于普通材料的几何特点,从物理学的观点来看,就使得纳米材料有两个不同于普通材料的物理效应表现出来,这是一个由量变到质变的过程。一个效应我们称之为量子尺寸效应,另一个被称之为表面效应。量子尺寸效应是由于材料的维度不断缩小时,描述它的物理规律完全不同 于宏观(普通材料的规律,不但要用描述微观领域的量子力学来描述,同时要考虑到有限边界的实际问题。关于量子尺寸效应处理物理问题,到目前为止,还没有一个较为成熟的适用方法。表面效应是由于纳米材料表面的原子个数不可忽略,而表面上的原子又反受到来自体内一侧原子的作用,因此它很容易与外界的物质发生反应,也就是说它们十分活泼。 纳米材料由于这两上特殊效应的存在,使得它们的物理、化学性质完全不同于普通材料。目前许多实验和应用结果已经证实,纳米材料的熔点、磁性、电容性、发光特性、水溶特性等都完全不同于普通材料。例如,将金属铜或铅做成几个纳米的颗粒,一遇到空气就会燃烧,发生爆炸;用碳纳米管做成的超级电容器,其体积比电

相关文档
相关文档 最新文档