文档视界 最新最全的文档下载
当前位置:文档视界 › 模拟直流电机电力电子负载的设计与研究

模拟直流电机电力电子负载的设计与研究

模拟直流电机电力电子负载的设计与研究
模拟直流电机电力电子负载的设计与研究

电力电子装置及系统设计课程设计

《电力电子装置及系统》 课程设计 题目:基于UC3842的单端反激 开关电源的设计 学院电力学院 专业电子科学与技术 姓名 学号 指导教师 完成时间2016.11.25

目录 摘要 (1) 第一章:开关电源的概述 1.1:开关电源的发展历史 (2) 1.2:开关稳压电源的优点 (2) 1.2.1:内部功率损耗小,转换效率高 (2) 1.2.2:体积小,重量轻 (3) 1.2.3:稳压范围宽 (3) 1.2.4:滤波效率大为提高,滤波电容的容量和体积大为减小 (3) 1.2.5:电路形式灵活多样,选择余地大 (3) 1.3:开关稳压电源的缺点 (3) 1.3.1:开关稳压电源存在着较为严重的开关噪声和干扰 (4) 1.3.2:电路结构复杂,不便于维修 (4) 1.3.3:成本高,可靠性低 (4) 第二章:UC3842的原理及技术参数 2.1:UC3842的工作原理 (5) 2.2:UC3842的引脚及技术参数 (6) 第三章:单端反激开关电源 3.1:单端反激开关电源的原理 (7) 3.2:反激式开关电源设计 (9) 3.2.1:输出直流电压隔离取样反馈外回路 (9) 3.2.2:初级线圈充磁峰值电流取样反馈内回路 (11) 总结 (13) 参考文献 (13)

基于UC3842的单端反激开关电源的设计 摘要 开关电源是一种利用现代电子技术,控制开关晶体管和关断的时间比率,维持稳定输出电压的一种电源,也是一种效率很高的电源变换电路,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。具有高频率,高功率密度,高可靠性等优点。 本文主要介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于UC3842为控制芯片,实现输出电压可调的开关稳压电源电路。 关键词:开关电源脉冲宽度调制 UC3842

基于Matlab的电力电子技术课程设计报告

《电力电子技术》 课程设计报告 题目:基于Matlab的电力电子技术 仿真分析 专业:电气工程及其自动化 班级:电气2班 学号:Z01114007 姓名:吴奇 指导教师:过希文 安徽大学电气工程与自动化学院 2015年 1 月7 日

中文题目 基于Matlab 的电力电子技术仿真分析 一、设计目的 (1)加深理解《电力电子技术》课程的基本理论; (2)掌握电力电子电路的一般设计方法,具备初步的独立设计能力; (3)学习Matlab 仿真软件及各模块参数的确定。 二、设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: (1)根据设计题目要求的指标,通过查阅有关资料分析其工作原理,设计电路原理图; (2)利用MATLAB 仿真软件绘制主电路结构模型图,设置相应的参数。 (3)用示波器模块观察和记录电源电压、控制信号、负载电压、电流的波形图。 三、设计内容 (1)设计一个降压变换器(Buck Chopper ),其输入电压为200V ,负载为阻感性带反电动势负载,电阻为2欧,电感为5mH ,反电动势为80V 。开关管采用IGBT ,驱动信号频率为1000Hz ,仿真时间设置为0.02s ,观察不同占空比下(25%、50%、75%)的驱动信号、负载电流、负载电压波形,并计算相应的电压、电流平均值。 然后,将负载反电动势改变为160V ,观察电流断续时的工作波形。(最大步长为5e-6,相对容忍率为1e-3,仿真解法器采用ode23tb ) (2)设计一个采用双极性调制的三相桥式逆变电路,主电路直流电源200V ,经由6只MOSFET 组成的桥式逆变电路与三相阻感性负载相连接,负载电阻为1欧,电感为5mH ,三角波频率为1000Hz ,调制度为0.7,试观察输入信号(载波、调制波)、与直流侧假想中点N ‘的三相电压Uun ’、Uvn ’、Uwn ’,输出线电压UV 以及负载侧相电压Uun 的波形。 四、设计方案 实验1:降压变换器 dc-dc 变流电路可以将直流电变成另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又称为斩波电路,功能是将直流电变为另一直流电。本次实验主要是在Matlab 中设计一个降压斩波电路并仿真在所给条件下的波形和数值与理论计算相对比。降压斩波电路原理图如下所示,该电路使用一个全控型器件V ,这里用IGBT ,也可采用其他器件,例如晶闸管,若采用晶闸管,还需设置使晶闸管关断的辅助电路。为在V 关断时给负载中电感电流提供通道,设置了续流二极管VD 。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,后两种情况下负载中均会出现反电动势,图中用m E 表示。若无反电动势,只需令0m E ,以下的分析和表达式中均适用。

电力电子课设(参考版)

一总体方案设计级总体框图 1、1总体方案设计 根据任务湖中的,本次设计的是dcdc降压变换器。DC-DC变换 器有两类:一类由两级电路组成DC-AC-DC变换,第一级为逆变,实现DC-AC变换,第二级为整流,实现AC-DC变换。另一类变 换器由晶体管和二极管开关组合成PWM开关,将输入直流电 压斩波后,再经滤波后输出。由于第一类比较复杂,方针起来 比较麻烦。第二类简单方便,比较贴合课本中的知识。第二类 dcdc降压电路有以下几种: BUCK PWM变换器在CCM下的工作原理(如图2-2):一个开 关周期内,开关晶体管的开,关过程将直流输入电压斩波,形 成脉宽为onT的方波脉冲(onT为开关管导通时间)。当开关晶 体管导通时,二极管关断,输入端直流电流电源Vi将功率传送 到负载,并使用电感储能(电感电流上升):当开关晶体管关断 时,二极管导通,续流,电感储能向负载释放(电感电流下降)。 一个开关周期内,电感电流的平均值等于负载电流OI(忽略滤 波电容C的ESR)。根据原理和电路拓扑可以推导出工作在CCM 下的DC-DC PWM变换器的输出-输入电压变换比: DVi Vo (2-1)

占空比D总是小于1的,所以BUCK变换器是一种降压变换器。 升降压型BUCK-BOOST技术 图2-4 升降压反极性(BUCK-BOOST)变换器电路拓扑 如图2-4所示,极性反转型(BUCK-BOOST)变换器主电路如用 元器件与BUCK,BOOST变换器相同,由开关管,储能电感,整 流二极管及滤波电容等元器件组成。这种电路具有BUCK变换 器降压和BOOST变换器升压的双重作用。升压还是降压取决与 PWM驱动脉冲的占空比D。虽然输入与输出共用一个连接端,但输出电压的极性与输入电压是相反的,故称为降压反极性变 换器。,根据我们的设计要求,是要求把12-18V的直流电压转 换到5V的直流电压,那么分析后可得降压型BUCK转换技术最 适合这次设计。 1、2总体框图设计

电力电子课程设计.doc

姓名: 李渺 学号: 1002160112 系(院): 邮电与信息工程学院专业: 电气自动化 班级: 01班 授课老师: 胡为兵 总成绩:

变频技术简介 设计说明,含设计题目,作用,设计依据(技术要求) 正文 小结 参考资料 一、变频技术简介 随着科学的发展,变频器的使用也越来越广泛,不管是工业设备上还是家用电器上都会使用到变频器,可以说,只要有三相异步电动机的地方,就有变频器的存在,要熟练地使用变频器,还必须掌握三相异步电动机的特性,因为变频器与三相异步电动机有着密切的联系。 1、变频调速基本原理 交流变频调速器(简称变频器)是建立在微处理器、电力电子学、电机学、现代控制理论基础之上的现代机电一体化高新技术产品。其工作原理是将三相工频交流电整流成直流电,再由直流电转换成交流电(交-直-交)。根据要求,可以从0~50Hz(或更高频率)之间输出任意频率。因此,通过对变频器输出频率的控制,实现交流电动机的调速,最终达到对传动负载的精确定量控制。:是应用当今国际最新变频技术产品——交流变频调速器,对交流电机进行无级调速控制的高新技术。变频调速控制系统主要由电控设备、变频器、交流电动机、传动机械及传感器等部分组成。变频控制系统可进行开环控制,也可进行闭环控制。开环系统的控制是通过设定值的改变,来实现对被控制对象输出值的直接控制。闭环控制系统是通过被控制对象反馈系统与设定值的动态比较,自动调节被控电机的转速,从而实现对被控制对象输出的控制。 2、变频调速的特点 变频调速的主要特点是通过变频器改变输出频率及输出电压,实现交流电机转速或被控对象输出的控制。此外,还具有以下优点: ①.由于变频器在启动过程中,输出频率由0Hz平滑地逐渐上升,电压从0V按比例上升到额定电压,电机无任何启动冲击,避免了由于电机启动产生的大电流对电机、电网、电气元件及所拖动机械设备的冲击和损坏。变频器在停止过程中,输出频率由运行频率平滑地逐渐下降到0Hz,电压从运行电压按比例逐渐到0V,实现了电动机软停止。 ②.变频启动可防止运输机械类载重物体受冲击和翻滚,提高传动设备的使用寿命。

电力电子课程设计单相交流调压电路

电力电子课程设计单相交流调压电路电力电子 课程设计说明书 题目: 单相交流调压电路课程设计 院系: 水能 专业班级: 学号: 学生姓名: 摘要 交流调压电路广泛用于灯光控制(如调光灯和舞台灯光控制)及异步电动机的软启动,也用于异步电动机调速。在电力系统中,这种电路还常用于对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。在这些电源中如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联。这都是十分不合理的。采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就可以了。这样的电路体积小、成本低、易于设计制造。单相交流调压电路是对单相交流电的电压进行调节的电路。用在电热制、交流电动机速度控制、灯光控制和交流稳压器等合。与自耦变压器调压方法相比,交流调压电路控制简便,调节速度快,装置的重量轻、体积小,有色金属耗也少。 目录

1、电路设计的目的及任 务 .................................................................... 1 1.1课程设计的目的与要 求 (1) 1.2课程设计的内 容 ..................................................................... (1) 1.3仿真软件的使 用 ..................................................................... (2) 1.4设计方案选 择 ..................................................................... ....... 2 2、单相交流调压主电路设计及分 析 (3) 2.1 电阻性负 载 ..................................................................... (3) 2.1.1 电阻性负载的交流调压器的原理分析 (3) 2.1.2 结果分 析 ..................................................................... (6)

电力电子技术课程设计报告

课程设计说明书 设计题目:单相交流调压技术 专业班级: 2009级电气工程及其自动化 姓名:王昊 学号: 0915140068 指导教师:褚晓锐 2011年12月23日 (提交报告时间)

一.课程设计题目:单项交流调压技术的工程应用 二.课程设计日期: 2011年12月19日 三.课程设计目的: “电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。因此,要求学生能综合应用所学知识,设计出具有电压可调功能的直流电源系统,能够较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。 四.课程设计要求: :按课程设计指导书提供的课题,根据第下表给出的基本要求及参数独立完成设计,课程设计说明书应包括以下内容: 1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的具体型号。 4、确定变压器变比及容量。 5、确定平波电抗器。 7、触发电路设计或选择。 8、课程设计总结。 9、完成4000字左右说明书,有系统电气原理图,内容完整、字迹工整、图表整齐规范、数据详实。 设计技术参数工作量工作计划 1、单相交流220V电源。 2、交流输出电压U d 在0~220V连续可调。 3、交输出电2000W。1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的 具体型号。 第一周: 周一:收集资料。 周二~三:方案论证。 周四:主电路设计。

4、触发电路设计。 5、绘制主电路图。 周五:理论计算。 第二周: 周一:选择器件的具体型号 周二~三:触发电路设计。。 周四~五:总结并撰写说明书。 五.课程设计内容: 设计方案图及论证 将一种交流电能转换为另一种交流电能的过程称为交流-交流变换过程,凡能实现这种变换的电路为交流变换电路。对单相交流电的电压进行调节的电路。用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。结构原理简单。该方案是由变压器、触发电路、整流器、以及一些电路构成的,为一台电阻炉提供电源。输入的电压为单相交流220V ,经电路变换后,为连续可调的交流电。 各部分电路作用 220V 交流输入部分作用:为电路提供电源,主要是市电输入。 调压环节的作用:将交流220V 电源经过变压器、整流器等电路转换为连续可调的交 220V 交流输入 调压环节 输出连续可调的交流电 触发电路

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级:14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1M a t l a b仿真图 (17) 3.2仿真结果 (18) 3.3仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要求是输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产生

电力电子课程设计

电力电子应用课程设计 课题:50W三绕组复位正激变换器设计 班级电气学号 姓名 专业电气工程及其自动化 系别电气工程系 指导教师 淮阴工学院 电气工程系 2015年5月

一、设计目的 通过本课题的分析设计,可以加深学生对间接的直流变流电路基本环节的认识和理解,并且对隔离的DC/DC电路的优缺点有一定的认识。要求学生掌握单端正激变换器的脉冲变压器工作特性,了解其复位方式,掌握三绕组复位的基本原理,并学会分析该电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,掌握脉冲变压器的设计和基本的绕制方法,熟悉变换器中直流滤波电感的计算和绕制,建立硬件电路并进行开关调试。 需要熟悉基于集成PWM芯片的DCDC变换器的控制方法,并学会计算PWM控制电路的关键参数。输入:36~75Vdc,输出:10Vdc/5A 二、设计任务 1、分析三绕组复位正激变换器工作原理,深入分析功率电路中各点的电压 波形和各支路的电流波形; 2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级, 并给出所选器件的型号,设计变换器的脉冲变压器、输出滤波电感及滤波电容。 3、给出控制电路的设计方案,能够输出频率和占空比可调的脉冲源。 4、应用protel软件作出线路图,建立硬件电路并调试。 三、总体设计 3.1 开关电源的发展 开关电源被誉为高效节能电源,代表着稳压电源的发展方向,现已成为稳压电源的主流产品。 开关电源分为DC/DC和AC/DC两大类。前者输出质量较高的直流电,后者输出质量较高的交流电。开关电源的核心是电力电子变换器。按转换电能的种类,可分为直流-直流变换器(DC/DC变换器),是将一种直流电能转换成另一种或多种直流电能的变换器;逆变器,是将直流电能转换成另一种或多种直流电能的变换器;整流器是将交流电转换成直流电的电能变换器和交交变频器四种。 开关电源的高频化是电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前的小型化,并使开关电源进入更广泛的领域,特别是在高新技术领

电力电子课设报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:电力电子技术 设计题目:可逆直流PWM驱动电源的设计 院系:电气工程系 班级:0706111 设计者:王勃 学号:1070610602 指导教师:李久胜 设计时间:2010年11月 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

H型单极性同频可逆直流PWM驱动电源的设计 技术指标:被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转 速2000rpm。驱动系统的调速范围:大于1:100。驱动系统应具有软启动功能,软启动时间约为2s。详细设计要求见附录2. 1.整体方案设计 本文设计的H型单极性同频可逆直流PWM驱动电源由四部分组成:主电路,H 型单极模式同频可逆PWM控制电路,IPM接口电路及稳压电源。同时具有软启动功能,软启动时间为2s左右。控制原理如图1所示: 功率转换电路 图1 直流PWM驱动电源的控制原理框图 脉宽调制电路以SG3525为核心,产生频率为5KHz的方波控制信号,占空比可调。经用门电路实现的脉冲分配电路,转换成两列对称互补的驱动信号,同时具有5us的死区时间,该信号驱动H型功率转换电路中的开关器件,控制直流永磁电动机。稳压电源采用LM2575-ADJ系列开关稳压集成电路,通过调整电位器,使其稳定输出15V直流电源。 2.主电路设计 2.1主电路设计要求 直流PWM驱动电源的主电路图如图2所示。此部分电路的设计包括整流电路和H桥可逆斩波电路。二极管整流桥把输入的交流电变为直流电。四只功率器件构成H 桥,根据脉冲占空比的不同,在直流电机上可得到不同的直流电压。 主电路部分的设计要求如下: 1)整流部分采用4 个二极管集成在一起的整流桥模块。 2)斩波部分H 桥不采用分立元件,而是选用IPM(智能功率模块)PS21564来实现。该模块的主电路为三相逆变桥,在本设计中只采用其中U、V 两相即可。

江苏大学电力电子课程设计

电力电子课程设计 学院:电气信息工程学院 专业: 学号: 姓名:

一. 设计要求 (1)根据给定的参数范围,设计BOOST 电路的参数; (2)根据给定的参数范围,设计CUK 电路的参数; (3)利用MATLAB 对上述电路图仿真实验得出波形; (4)在实验室平台上试验,观测数据与波形,并与仿真图形进行比对; (5)撰写实验报告; 二. 电路设计 1.电路工作原理 (1)Boost 电路 Boost 电路原理图 基本原理 假设L ,C 值很大。当可控开关V 处于通态的时候,电源E 向电感L 充电,充电的电流基本恒定不变I 1,同时电容C 向负载R 放电。因为C 很大,基本保持输出电压U 0不变。当可控开关处于断态的时候,E 和电感L 上积蓄的能量共同向电容C 充电并向负载R 提供能量。当电路工作处于稳态时,一个周期T 中电感L 积蓄的 能量与释放的能量相等,即: 化简得: ()off o on t I E U t EI 11-=E t T E t t t U off off off on o =+=

基本数值计算: 输出电压U 0与输入电压E 关系: 01 1 1U E E βα==- 输出电流I0与输入电流I1的关系: 01021U I I E E β== 输出电流I0与输出电压U0的关系: 001U E I R R β== (2)Cuk 电路 Cuk 电路原理图 基本原理 当可控开关V 处于通态的时候,E-L1-V 回路和R-L2-C-V 回路分别流过电流。当V 处于断态的时候,E-L1-C-VD 回路和R-L1-VD 回路分别流过电流。输出电压的极性与电源电压极性相反。

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

电力电子课程设计模板

电气工程学院 电力电子课程设计 设计题目:MOSFET降压斩波电路设计专业班级:电气0907 学号:09291210 姓名:李岳 同组人:刘遥(09291212 ) 指导教师: 设计时间:2012年6月25日-29日 设计地点:电气学院实验中心

电力电子课程设计成绩评定表 指导教师签字: 年月日

电力电子课程设计任务书 学生姓名:李岳,刘遥专业班级电气0907 指导教师: 一、课程设计题目: MOSFET降压斩波电路设计(纯电阻负载) 设计条件:1、输入直流电压:U d=100V 2、输出功率:300W 3、开关频率5KHz 4、占空比10%~90% 5、输出电压脉率:小于10% 二、课程设计要求 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真; 3. 完成预习报告,报告中要有设计方案,还要有仿真结果; 4. 进实验室进行电路调试,边调试边修正方案; 5. 撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明调试过程中遇到的问题和解决问题的方法。 三、进度安排

2.执行要求 电力电子课程设计共6个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告雷同,甚至完全一样。 四、课程设计参考资料 [1]王兆安,黄俊.电力电子技术(第四版).北京:机械工业出版社,2001 [2]王文郁.电力电子技术应用电路.北京:机械工业出版社,2001 [3]李宏.电力电子设备用器件与集成电路应用指南.北京:机械工业出版社,2001 [4] 石玉、栗书贤、王文郁.电力电子技术题例与电路设计指导. 北京:机械工业出版社,1999 [5] 赵同贺等.新型开关电源典型电路设计与应用.北京:机械工业出版社,2010 摘要 关键词:整流、无源逆变、晶闸管

电力电子技术课程设计题目

电气与自动化专业仿真指导丛书 电力电子技术仿真 第三至七章 课 题 湖南科技大学电气工程系 2015

一、题目 1、单相桥式全控整流电路仿真(输出电压48V,电流10A) 2、单相桥式半控整流电路仿真(输出电压24V,电流3A) 3、单相全波整流电路仿真(输出电压15V,电流1A) 4、三相半波可控整流电路仿真(输出电压64V,电流20A) 5、三相桥式全控整流电路仿真(输出电压110V,电流50A) 6、三相桥式半控整流电路仿真(输出电压110V,电流200A) 7、单相桥式全控有源逆变电路仿真(输出电压48V,电流5A) 8、单相全波有源逆变电路仿真(输出电压36V,电流6A) 9、三相半波有源逆变电路仿真(输出电压110V,电流10A) 10、三相桥式有源逆变电路仿真(输出电压110V,电流300A) 11、基于集成电路的降压斩波器仿真(电源:110V;输出:50V, 100A,IGBT) 12基于单片机的降压斩波器仿真(电源:110V;输出:60V, 200A,IGBT) 13、基于集成电路的电流可逆斩波电路仿真(电源:220V;电机:110V, 10A,IGBT) 14、基于单片机的电流可逆斩波电路仿真(电源:220V;电机:48V, 4A,IGBT) 15、基于单片机集成电路的桥式可逆斩波电路仿真(电源:220V;电机:48V, 4A,IGBT) 16、基于集成电路的桥式可逆斩波电路仿真(电源:220V;电机:48V, 4A,IGBT) 17、基于集成电路的降压斩波器仿真(电源:1200V;输出:400V, 1000A,GTO) 18、基于单片机的降压斩波器仿真(电源:1200V;输出:600V, 2000A,GTO) 19、基于集成电路的电流可逆斩波电路仿真(电源:1000V;电机:660V, 800A,GTO) 20、基于单片机的电流可逆斩波电路仿真(电源:2200V;电机:480V, 400A,GTO) 21、基于集成电路的桥式可逆斩波电路仿真(电源:1000V;电机:220V, 600A,GTO) 22、基于单片机的桥式可逆斩波电路仿真(电源:1400V;电机:240V, 300A,GTO) 23、基于集成电路的升降压斩波器仿真(电源:110V;输出:50V, 50A,IGBT) 24、基于单片机的升降压斩波器仿真(电源:110V;输出:60V, 200A,IGBT) 25、基于集成电路的升降压斩波器仿真(电源:50V;输出:20V, 2A,电力场效应管) 26、基于单片机的升降压斩波器仿真(电源:50V;输出:20V, 2A,电力场效应管) 27、基于集成电路的Cuk斩波器仿真(电源:110V;输出:50V, 100A,IGBT)

电力电子技术课程设计报告

电力电子技术课程设计 报告书 专业班级:16电气2班 姓名:王浩淞 学号:2016330301054 指导教师:雷美珍

目录 1、webench电路设计 1.1设计任务要求 输入电压为(8V-10V),输出电压为5V,负载电流为1A 1.2设计方案分析 图1.3.1主电路原理图 图1.3.2元器件参数 图1.3.3额定负载时工作值

图1.3.4输出电流和系统效率间的关系 如图1.3.4所示,在输出电流相同的情况下,输入电压越小,系统的稳态效率越高,因此提高效率的最直接方式就是降低系统的输入电压,其次在输入电压相同的情况下,我们可以调节输出电压的大小,使系统效率达到最大,例如当输入电压为9.0V时,根据图像输出电流为0.40A的时候效率最高。第二种方法是改变元器件的参数,通过使用DCR(直流电阻)小的电感元件来实现输出纹波电压降低。 1.3主芯片介绍 TPS561201和TPS561208采用SOT-23封装,是一款简单易用的1A同步降压转换器。这些器件经过优化,可以在最少的外部元件数量下工作,并且还经过优化以实现低待机电流。这些开关模式电源(SMPS)器件采用D-CAP2模式控制,可提供快速瞬态响应,并支持低等效串联电阻(ESR)输出电容,如特种聚合物和超低ESR陶瓷电容,无需外部补偿元件。TPS561201以脉冲跳跃模式工作,在轻负载操作期间保持高效率。TPS561201和TPS561208采用6引脚1.6×2.9(mm)SOT(DDC)封装,工作在-40°C至125°C的结温范围内。 1.4电气仿真结果分析

图1.4.1启动仿真图1.4.2稳态仿真 图1.4.3暂态仿真图1.4.4 负载暂态仿真 二、基于电力系统工具箱的电力电子电路仿真 2.1 设计要求和方案分析 本课程设计主要应用了MATLAB软件及其组件之一Simulink,进行系统的设计与仿真系统主要包括:Boost升压斩波主电路部分、PWM控制部分和负载。Boost升压斩波主电路部分拖动带反电动势的电阻,模拟显示中的一般负载,若实际负载中没有反电动势,只需令其为零即可。负载为主电路部分提供脉冲信号,控制全控器件IGBT的导通和关断,实现整个系统的运行。在Simulink中完成各个功能模块的绘制后,即可进行仿真和调试,用Simulink 提供的示波器观察波形,进行相应的电压和电流等的计算,最后进行总结,完成整个Boost 变换器的研究与设计。 2.2 simulink仿真模型分析 电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。占空比越大,Boost Chopper的输出电压值

电力电子技术课程设计完整

课程设计名称:.... 电力电子技术题目: 专业:自动化 班级:自动化12-2班 姓名:王军 学号:1205010219 精品文本

课程设计任务书

间:2014年12月30日

辽宁工程技术大学课程设计成绩评定表

第一章主要技术数据和可控整流电路的选择 1.1主要技术数据 输入交流电源:三相380V 10%、f=50Hz、直流输出电流连续的最小值为5A。 电动机额定参数:额定功率P N =10kw、磁极对数P=2、额定转速n N=1000r/min,额 定电压U MN=220V、额定电流I MN=54.8A、过载倍数15 1.2可控整流电路的选择 晶闸管可控整流电路型式较多,各种整流电路的技术性能和经济性能个不相同。单 相可控整流电路电压脉动大、脉动频率低、影响电网三相平衡运行。 三相半波可控整流电路虽然对影响电网三相平衡运行没有影响,但其脉动仍然较 大。此外,整流变压器有直流分量磁势,利用率低。当整流电压相同时,晶闸管元件的反峰压比三相桥式整流电路高,晶闸管价格高三相半波可控整流电路晶闸管数量比三相桥式可控整流电路少,投资比三相桥式可控整流电路少。 三相桥式可控整流电路它的脉动系数比三相半波可控整流电路少一半。整流变压器没有直流分量磁势,变压器利用率高,晶闸管反峰压低。这种可控整流电路晶闸管数量是三相半波可控整流电路的两倍。总投资比三相半波可控整流电路多。 从上面几种可控整流电路比较中可以看到:三相桥式可控整流电路从技术性能和经 济性能两项指标综合考虑比其它可控整流电路优越,故本设计确定选择三相桥式可控整 流电路。如 图(1-1)所示

电力电子技术课程设计题目选题表

《电力电子技术》课程设计题目 序号 1 班级 专业 题目 直流稳压电源的设计 考核要求 1.设计主电路及电气控制电路,建议主电路为三相桥式全控整流电路; 2.选择主电路所有图列元件,并给出清单; 3.选择触发电路及其同步信号; 4.绘制装置总体电路原理图,绘制电路所有点电压、电流及元器件(晶闸管等)两端电压波 形(汇总绘制,注意对应关系); 5.编制设计说明书。 设计要求 装置输入电源为三相U L=380V工频交流电源,输出直流电压0~200V,输出电流100A,当电流降为5A时电流开始断续,L B=1mH。 学号 (限12人选择) 姓名

《电力电子技术》课程设计题目 序号 2 班级 专业 题目 直流开关电源的设计 考核要求 1.设计主电路,建议主电路为:整流部分是桥式二极管整流,大电容滤波,DC/DC部分采 用半桥变换器,主功率管用MOSFET; 2.选择主电路所有图列元件,并给出清单; 3.设计MOSFET驱动电路及控制电路; 4.绘制装置总体电路原理图,绘制:①单相桥式整流电路各点电压波形;②MOSFET驱动电 压、全桥电路中各元件的电压、电流以及输出电压波形(将①②波形分别汇总绘制,注意对应关系); 5.编制设计说明书、设计小结。 控制要求 装置输入电源为单相工频交流电源(220V+20%),输出电压Vo=24V,输出电流Io=5A,最大输出纹波电压50mV,工作频率f=100kHz。 学号 (限12人选择) 姓名

序号 3 班级 专业 题目 直流变换器的设计-降压 考核要求 1.设计主电路,建议主电路为:采用BUCK变换器,主功率管用MOSFET; 2.选择主电路所有图列元件,并给出清单; 3.设计MOSFET驱动电路及控制电路; 4.绘制装置总体电路原理图,绘制: MOSFET驱动电压、BUCK电路中各元件的电压、电流 以及输出电压波形(波形汇总绘制,注意对应关系); 5.编制设计说明书、设计小结。 控制要求 输入直流电压Vin=42V,输出电压Vo=12V,输出电流Io=3A,最大输出纹波电压30mV,工作频率f=100kHz。 学号 (限6人选择) 姓名

电力电子技术课程设计报告

成都理工大学工程技术学院T h e E n g i n e e r i n g&T e c h n i c a l C o l l e g e o f C h e n g d u U n i v e r s i t y o f T e c h n o l o g y 电力电子技术课程设计报告 姓名 学号 年级 专业 系(院) 指导教师

三相半波整流电路的设计 1设计意义及要求 1.1设计意义 整流电路是出现最早的电力电子电路,将交流电变为直流电,电路形式多种多样。当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。其交流侧由三相电源供电。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。 1.2初始条件 设计一三相半波整流电路,直流电动机负载,电机技术数据如下:220nom U V =, I =308A nom ,=1000r/min nom n ,C =0.196V min/r e ,0.18a R =。 1.3要求完成的主要任务 1)方案设计 2)完成主电路的原理分析 3)触发电路、保护电路的设计 4)利用MATLAB 仿真软件建模并仿真,获取电压电流波形,对结果进行分析 5)撰写设计说明书

2方案设计分析 本文主要完成三相半波整流电路的设计,通过MATLAB软件的SIMULINK模块建模并仿真,进而得到仿真电压电流波形。 分析采用三相半波整流电路反电动势负载电路,如图1所示。为了得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。三个晶闸管分别接入b c a、、三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。 图1 三相半波整流电路共阴极接法反电动势负载原理图 直流电动机负载除本身有电阻、电感外,还有一个反电动势E。如果暂不考虑电动机的电枢电感时,则只有当晶闸管导通相的变压器二次电压瞬时值大于反电动势时才有电流输出。此时负载电流时断续的,这对整流电路和电动机负载的工作都是不利的,实际应用中要尽量避免出现负载电流断续的工作情况。 3主电路原理分析及主要元器件选择 3.1主电路原理分析 主电路理论图如图1所示。假设将电路中的晶闸管换作二极管,并用VD表示,该电路就成为三相半波不可控整流电路。此时,三个二极管对应的相电压中哪一个的值最大,则该相对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压。在相电压的交点处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。自然换相点是各相晶闸管能触发导通的最早时刻,将其作 α=。,要改变触发角只能是在此基础上增大它,即为计算各晶闸管触发角α的起点,即0 沿时间坐标轴向右移。

电力电子专业技术课程设计任务大全

电力电子技术课程设计任务大全

————————————————————————————————作者:————————————————————————————————日期:

《电力电子技术》课程设计任务书(一) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求; 4、电网供电电压:三相380V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 7.5 220 40.8 1500 4.42 二、设计内容及要求 1、方案论证及选择; 2、主电路设计(包括整流变压器电压及容量计算,晶闸管元件选择,电 抗器容量等计算); 3、控制电路设计(触发电路的选择与设计); 4、保护电路设计(包括过流和过压保护等); 5、总结及心得体会; 6、参考文献设计; 7、完成电路原理图1份。 《电力电子技术》课程设计任务书(二) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求。 4、电网供电电压:单相220V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 3 220 17.4 750 17.69

电力电子技术课程设计-240w半桥型开关稳压电源设计讲解

辽宁工业大学 电力电子技术课程设计(论文)题目:240W半桥型开关稳压电源设计 院(系):电气工程学院 专业班级:电气102 学号:100303044 学生姓名:邹伟龙 指导教师:(签字) 起止时间:2012-12-31至2012-1-11

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气教研室Array 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 开关电源在效率、体积和重量等方面都远远优于线性电源,因此已经基本取代了线性电源,成为电子热备供电的主要形式, 受到人们的青睐.随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用,人们对其需求量日益增长。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用反激式开关电源,以UC3842作为控制核心器件,运用脉宽调制的基本原理。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障。 关键词:整流电路;逆变电路;驱动电路

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (2) 第2章开关稳压电源电路设计 (3) 2.1半桥型开关稳压电源总体设计方案 (3) 2.2具体电路设计 (5) 2.2.1主电路设计 (5) 2.2.2整流电路设计 (6) 2.2.3逆变电路设计 (7) 2.2.4驱动电路设计 (8) 2.2.5 整体电路设计 (10) 2.3元器件型号选择 (12) 第3章课程设计总结 (15) 参考文献 (16)

电力电子课程设计总结

电力电子课程设计总结1 在这次电子电路课程设计实验中,我们选的课题都是与生活息息相关的,把生活中常见的一些现象模拟到实验室中,体现了学习与实际生活相结合的理念。霓虹灯是我们生活中十分常见的,五颜六色的彩灯遍及在我们的生活中,而我们设计的这个彩灯控制器,使我们觉得这个课程设计十分有意义。 接到题目后我们小组的人去图书馆借了一些书籍、参照网络上的一些资料,再加上老师的悉心指导,设计出了一个与生活中密切相关的彩灯,通过了本学期对数字电路和模拟电路的学习,我们感到现在设计这样的一个节拍速度渐变彩灯控制器是非常有必要的,因为这能够考察我们对书本上的知识是否已掌握好,并对所学知识进行巩固和加深。但是第一次做实物,所以觉得还有有不小的压力。做实物比在软件里面仿真难度大了不少,因为,稍不细心就可能会使哪个芯片烧坏或者哪条线路没有接牢固,这都会使得在实验中没法得到正确的结果,因而会有一些挑战与难度。这次设计用到了一些在实验中比较常用的电子器件,从设计总体上来说,与我们来说,只要认真的去做的话,我们能在规定的时间内做出来。但是还是需要我们组里几位成员互相合作,相互帮助,才能更好的完成任务的,这样极大的培养了我们的团队合作的精神。通过本次课程设计的锻炼,我学到了很多有关节拍速度渐变的彩灯控制器的设计方法与工作原理。期间也碰到不少问题,但只要仔细的揣摩也能找到解决的方法。慢工出细活,过程是很重要的,只有认真努力细心坚持的去做,才能取得满意的结果。 虽然实验之前的仿真我们做得很好,并且设计了好几种实验方案,也都具体地画出了电路图,但是在具体地实验过程中还是遇到了不小的困难。在仿真中,我们所有的的元件都是知道其参数的,在实验中,我们知道的只是元件的理论上的参数,实际上因为元件经过多次使用,其性能会有所变化,与理论值有点出入,但我们在仿真时又是要求十分精确的,这就导致了实验中的结果出现差错时,我们需要改动的地方就很多。以我们的实验情况为例,我们在发现彩灯的频率与理论不符合时,就检测了一下我们实验中用的电阻和电容,结果发现100Ω的电阻实际阻值只有80Ω左右,47μF的电容实际只有20μF左右,这么大的误差使得我们的结果与理论相差很多,于是我们只好修改线路,使得接入电路中的有效数值与理论相差不大。这个问题解决后,我对理论与实践相结合有了更深层次的理

相关文档
相关文档 最新文档