文档视界 最新最全的文档下载
当前位置:文档视界 › 12 二维随机变量的数字特征 切比雪夫不等式与大数定律

12 二维随机变量的数字特征 切比雪夫不等式与大数定律

12  二维随机变量的数字特征  切比雪夫不等式与大数定律
12  二维随机变量的数字特征  切比雪夫不等式与大数定律

12 二维随机变量的数字特征·切比雪夫不等式与大数定律

一、设二维随机变量),(Y X 的联合概率密度为

()()

. 1

,2

2

2++=

y x

A

y x f

求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .

解: (1) 由

??

+∞∞-+∞

-=1),(dxdy y x f . 有

()

()

????

∞+∞-∞

+∞

-∞

+==+=++11

1

20

2

2

2

2

2

A dr r

r

d A dxdy y x

A

πθπ

解得, π

1

=

A .

(2) ()

01

1

),()(2

2

??

??

+∞

-∞

+∞

-∞+∞-∞

+∞

-=++=

=

dx y x

x

dy dxdy y x xf X E π.

由对称性, 知 0)(=Y E .

?

?

+∞∞-+∞

-==-=dxdy y x f x EX EX X E X D ),(])[()(2

2

2()

?

?

+∞

-∞

+∞

-++=

dx y x

x dy 2

2

2

2

1

1

π

()

()

+∞=++

+=+-+=+=

+∞

+∞

+?

?

?

220

2

2220

2

2

3

]11)1ln([1

)1(211

r

r dr r r

r r dr r

r d π

θπ

同理, 有 +∞=)(Y D .

)()])([(),cov(XY E EY Y Ex X E Y X =--=

??

+∞∞-+∞

-=

dxdy y x xyf ),(

()

01

1

),(2

2

??

?

?

+∞

-∞

+∞

-∞+∞-∞

+∞

-=++=

=dx y x

x

ydy dxdy y x xyf π.

二、设二维随机变量),(Y X 的联合概率密度为

??

?<<<=其它.

,0;

10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ?????

=

===

-∞+∞-∞

+∞

-1

210

3

22),(dx x dy xdx dxdy y x xf EX x x

0),(10

===???

?-+∞∞-+∞

-x

x ydy dx dxdy y x yf EY

0),()(1

===????

-+∞∞-+∞

-x

x

ydy xdx dxdy y x xyf XY E

所以有

])3

2

[()])([(),cov(Y X E EY Y EX X E Y X -=--=??+∞∞-+∞∞-=dxdy y x xyf ),(

010

==??-x

x

ydy xdx .

(2) 当)1,0(∈x 时,有 ?

?+∞

--===x dy dy y x f x f x

x

X 2),()(; 当)1,0(?x 时, 有0)(=x f X .

??

??∈=)

1,0(0)

1,0(2)(X x x x x f 同理有 ????+∈-=??

????∈=??-)1,0(1)1,0(1)1,0()

1,0()(1

1Y x y x y x dx x dx y f y

y 因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与

Y 是不相关的.

三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差

)(X σ的概率.

解:91

)

3()3(2

=≤

>-ξξξξξD D D E P .

四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A

在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有

50005.010000=?==np E ξ 2500

)5.01(5.010000=-??==n p q D ξ 于是有

n

pq

p npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(

-

=-≥<-=<- 75.025.011=-=-=pq

五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少

个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.n

n ξE 1.0= n ξD 09.0=

要使得9.0)10(=>ξP ,即9.0)10(=≤

n n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-

)3.01.010()3()33.01.03.01.010(1,01,0n

n n n n n ξn n P --≈≤-<-=ΦΦ

1)3.010

1.0()3(1,01,0--+n

n n ΦΦ (德莫威尔—Laplace 定理)

因为10>n ,所以53>n ,从而有1)3(1

,0≈n Φ,故9.0)3.0101.0(1,0≈-n

n Φ. 查表有8997.0)28.1(1

,0=Φ,故有28.13.010

1.0≈-n

n ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.

随机变量的数字特征试题答案

随机变量的数字特征试题 答案 It was last revised on January 2, 2021

第四章 随机变量的数字特征试题答案 一、 选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=,D (X )= B. E (X )=,D (X )= C. E (X )=2,D (X )=4 D. E (X )=2,D (X )=2 2、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D (Z )= (C ) A. 1 B. 3 C. 5 D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004 B. C. D. 4 4、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(D ) A . D (X+Y )=D (X )+D (Y ) B . D (X+C )=D (X )+C C . D (X -Y )=D (X )-D (Y ) D . D (X -C )=D (X ) 5、设随机变量X 的分布函数为???? ???≥<≤-<=4, 14 2,12 2, 0)(x x x x x F ,则E(X)=(D ) A . 31 B . 21 C .2 3 D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)3 1 ,12(~B Y ,则)1(+-Y X D = (C ) A . 34 B . 37 C . 323 D . 3 26

7、设随机变量X 服从参数为3的泊松分布,)31 ,8(~B Y ,X 与Y 相互独立,则 )43(--Y X D =(C ) A . -13 B . 15 C . 19 D . 23 8、已知1)(=X D ,25)(=Y D ,XY ρ=,则)(Y X D -=(B ) A . 6 B . 22 C . 30 D . 46 9、设)3 1 ,10(~B X ,则)(X E =(C ) A . 31 B . 1 C . 3 10 D . 10 10、设)3,1(~2N X ,则下列选项中,不成立的是(B ) A. E (X )=1? B. D (X )=3? C. P (X=1)=0 D. P (X<1)= 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C ) A . )(X D +)(Y D B . )(X D -)(Y D C .)(X D +)(Y D -2),cov(Y X D .)(X D +)(Y D +2),cov(Y X 12、设随机变量)2 1 ,10(~B X ,)10,2(~N Y ,又14)(=XY E ,则X 与Y 的相关系数 XY ρ=(D ) A . B . -0.16 C . D . 13、已知随机变量X 的分布律为 25 .025.012p P x X i -,且E (X )=1?,则常数x =( B) A . 2 B . 4 C . 6 D . 8 14、设随机变量X 服从参数为2的指数分布,则随机变量X 的数学期望是(C ) A. B. 0 C. D. 2 15、已知随机变量X 的分布函数为F(x)=?? ?>--other x e x 00 12,则X 的均值和方差分别为(D )

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

四、随机变量的数字特征(答案)

概率论与数理统计练习题 、选择题: 二、填空题: 1 4.设随机变量 X 的密度函数为f(x) e |x| ( x ),则E(X) 0 三、计算题: 1.袋中有5个乒乓球,编号为1 , 2, 3, 4, 5,从中任取3个,以X 表示取出的3个球中最大编 号,求E(X) 解:X 的可能取值为3, 4, 5 E(X) 3 丄 4 色 5 3 4.5 10 10 5 1/5 1/6 1/5 1/15 11/30 系 _____ 第四章 专业 ______ 班 _________ 随机变量的数字特征(一) 学号 1 ?设随机变量 X 的可能取值为0, 1, 相应的概率分布为 0.6,0.3 , .01,则 E(X) 0.5 2 .设X 为正态分布的随机变量,概率密度为 f(x) 2?2 e (x 1)2 2 8 ,贝U E(2X 1) ,则 E(X 3X 2) 116/15 1 ?设随机变量X ,且 E(X)存在,则 E(X)是 (A )X 的函数 (B )确定常数 随机变量 (D )x 的函数 2 .设X 的概率密度为 f(x) 1 x e 9 9 0 ,则 E( 9X) 3 ?设 x x e 9 dx 1 (B) 9 x x e 9dx (C ) (D ) 1 是随机变量, E( )存在,若 ¥,则 E() E() (B)罟 (C ) E() P(X 3) 1 10 , P(X 4) C 5 3 10 P(X 5) § 10

2 ?设随机变量X 的密度函数为f(X ) 2 (1 %)0甘它1,求E(X) 0 其它 2 3?设随机变量X~N(,),求E(|X I) (1) Y 1 e 2X ( 2)Y 2 max{ X, 2} 解:(1) E(Y) 2x x 1 e e dx 0 3 (2) EM) 2 x 2e dx xe 0 2 x dx 2 2e 2 3e 2 2 2 e (3) E(Y 3) 2 e x dx 2e x 0 2 dx 1 c 2 c 2 」 2 3e 2e 1 e 概率论与数理统计练习题 ________ 系 _______ 专业 ______ 班 ___________________学号 _________ 第四章 随机变量的数字特征(二) 、选择题: 解:E(X) X 2(1 x)dx 解: |x (x )2 1 — dx 令y 2 y I y |e 2dy 4 .设随机变量 X 的密度函数为f (x) x 0 ,试求下列随机变量的数学期望。 x 0 (3) Y min{ X,2} 2 2~ 2 o ye dy

切比雪夫不等式例题

关于切比雪夫不等式的题目现有一大批种子,其中良种占1/6,现从中任取6000颗种子,请用切比雪夫不等式计算这6000粒种子中良种所占的比例与1/6之差的绝对值不超过0.01的概率。利用切比雪bai夫不等式回答下面du两个问题均值为zhi3,方差为dao4的随机变量X,利用切比雪夫专不等式确定P(-2 < X < 8)的下界属限.2 .均值为3,方差为4的随机变量X,且X的概率分布以均值3为中心对称,利用切比雪夫不等式确定P(X <= 0)的上界限|EX=9 DX=9,EY=9 DY=4E(X-Y)=9-9=0D(X-Y)=DX+DY- 2ρxy(DX*DY)^bai0.5=9+4-2*0.5*(9*4)^0.5=7P(|X?Y|≤du4)=1-P(|X?Y-E(X-Y)|≥4)而由切比zhi雪夫不等dao式P(|X?Y-E(X-Y)|≥4)≤D(X-Y)/4^2=7/16所以P(|X?Y|≤4)≥1-7/16=9/16切切比雪夫不等式:对于任一随机变量X ,若EX与DX均存在,则对任意ε>0, 恒有 P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2 在你这题中,X~N(2,4) 所以EX=2 ε=3 DX=4 所以P{|X-2|>=3}<=4/(3^2)=4/9方法点拨: 设随机变量X的数学期望和方差都存在,有或 .切比雪夫不等式给出了在随机变量X的分布未知,而只知道和的情况下估计概率 的界限。例1已知随机变量的密度函数为偶函数,$D(X)=1$,且用切比雪夫不等式估计得$P\left\{ \left| X

\right|<\varepsilon \right\}\ge 0.96$,则常数$\varepsilon =\_\_\_\_\_.$ 【答案】5 例2设随机变量和的数学期望分别-2和2,方差分别1和4,而相关系数为-0.5,则根据切比雪夫不等式有____ 【答案】^$的均bai值=10000*3/4=7500方差=10000*3/4*(1-3/4)=1625根据切比du雪夫不zhi等式P{0.74< $/10000 <0.76}=( P{|$/10000-0.75 |<0.01}>=1-(1625/10000^dao2)/0.01^2 =0.837519世纪俄国数学家bai切比雪夫研究统计规律中,du论证并用标准差表达zhi了一个不等式,这个不等式具有普遍的dao意义,被称作切比雪夫定理chebyshev's theorem 其大意是:任意一个数据集中,位于其平均数m个标准差范围内的比例(或部分)总是至少为1-1/㎡,其中m 为大于1的任意正数。对于m=2,m=3和m=5有如下结果:所有数据中,至少有3/4(或75%)的数据位于平均数2个标准差范围内。所有数据中,至少有8/9(或88.9%)的数据位于平均数3个标准差范围内。所有数据中,至少有24/25(或96%)的数据位于平均数5个标准差范围内。其计算公式通常表示为:μ为X的均值,sigma为X的标准差。若和则有它是由排序不等式而来。切比雪夫不等式的积分形式如下:若f 和g 是区间[0,1]上的可积的实函数,并且两者都是递增(或递减)的,则有上式可推广到任意区间。

随机变量的数字特征

第四章 随机变量的数字特征 一、填空题 1. 设随机变量X 服从参数为1的指数分布,则数学期望____________)(2=+-X e X E 。 2. 若随机变量X 服从均值为2,方差为2 σ的正态分布,且3.0)42(=<=--其他,05,)()5(y e y y ?,则 _______________)(=XY E 。 二、选择题

利用切比雪夫不等式证明_切比雪夫不等式证明

利用切比雪夫不等式证明_切比雪夫不等式证明一、 试利用切比雪夫不等式证明:能以大小0.97的概率断言,将一枚均匀硬币连续抛1000次,其出现正面的次数在400到600之间。 分析:将一枚均匀硬币连续抛1000次可看成是1000重贝努利试验,因此 1000次试验中出现正面H的次数服从二项分布. 解:设X表示1000次试验中出现正面H的次数,则X是一个随机变量,且 ~XB1000,1/2.因此 500 2 1 1000=×==npEX, 250 2 答题完毕,祝你开心! 1 1 2 1 10001= ××= =pnpDX, 而所求的概率为 }500600500400{}600400{ << =< }100100{< < =EXXP }100{< =EXXP 975.0 100

1 2 = ≥ DX . 二、 切比雪夫Chebyshev不等式 对于任一随机变量X ,若EX与DX均存在,则对任意ε>0, 恒有P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2 切比雪夫不等式说明,DX越小,则 P{|X-EX|>=ε} 越小,P{|X-EX|<ε}越大,也就是说,随机变量X取值基本上集中在EX附近,这进 一步说明了方差的意义。 同时当EX和DX已知时,切比雪夫不等式给出了概率P{|X-EX|>=ε}的一个上界,该 上界并不涉及随机变量X的具体概率分布,而只与其方差DX和ε有关,因此,切比雪夫 不等式在理论和实际中都有相当广泛的应用。需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。 切比雪夫不等式是指在任何数据集中,与平均数超过K倍标准差的数据占的比例至多 是1/K^2。 在概率论中,切比雪夫不等式显示了随机变数的「几乎所有」值都会「接近」平均。 这个不等式以数量化这方式来描述,究竟「几乎所有」是多少,「接近」又有多接近: 与平均相差2个标准差的值,数目不多于1/4 与平均相差3个标准差的值,数目不多于1/9 与平均相差4个标准差的值,数目不多于1/16 …… 与平均相差k个标准差的值,数目不多于1/K^2 举例说,若一班有36个学生,而在一次考试中,平均分是80分,标准差是10分, 我们便可得出结论:少于50分与平均相差3个标准差以上的人,数目不多于4个=36*1/9。

四、随机变量的数字特征(答案)

概率论与数理统计练习题 系 专业 班 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

随机变量的数字特征试题答案

第四章 随机变量的数字特征试题答案 一、选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=,D (X )=? B. E (X )=,D (X )= C. E (X )=2,D (X )=4? D. E (X )=2,D (X )=2 2、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D (Z )=? (??C?) A. 1 ? B. 3 C. 5? D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004? B. ? C. ? D. 4 4、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(?D ) A . D (X+Y )=D (X )+D (Y ) ?B . D (X+C )=D (X )+C C . D (X-Y )=D (X )-D (Y ) ?D . D (X-C )=D (X ) 5、设随机变量X 的分布函数为???? ???≥<≤-<=4, 14 2,12 2, 0)(x x x x x F ,则E(X)=(D ) A . 31 ?B . 21 C .2 3 ?D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)3 1 ,12(~B Y ,则)1(+-Y X D =(C ) A . 34 ? B . 37 C . 323 ? D . 3 26 7、设随机变量X 服从参数为3的泊松分布,)3 1 ,8(~B Y , X 与Y 相互独立,则)43(--Y X D =(C ) A . -13 ? B . 15 C . 19 ? D . 23 8、已知1)(=X D ,25)(=Y D ,XY ρ=,则)(Y X D -=(B ) A . 6 ?B . 22 C . 30 ?D . 46 9、设)3 1,10(~B X ,则)(X E =(C ) A . 31 ?B . 1 C . 3 10 ?D . 10 10、设)3,1(~2 N X ,则下列选项中,不成立的是(B ) A. E (X )=1? B. D (X )=3? C. P (X=1)=0? D. P (X<1)= 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C ) A . )(X D +)(Y D ?B . )(X D -)(Y D

第三章 随机变量的数字特征答案

第三章 随机变量的数字特征答案 一、1、35;2、 6175;;259,59,259, 563、σ σμ1 , =±=b a ; 4、()(),2 1212 1211 )(2 2 2 212111 2??? ? ??-- ---+-? = ? = = x x x x e e e x πππ ? ),(~所以2 1 1N ξ ,2 1 ,12 = ===σ ξμξD E 5、2 1-;6.a=2,b=0,或a=-2,b=2;32)(=ξE 或31 ; 7、()()125,01022===+=+=+=+a D a b a D b a b aE b a E ξξξξ 所以2,5 1 2,51=-=-== b a b a 或 8、()()6.2022,2=++=++=+ηξρηξηξηξηξξηD D D D Cov D D D ()()4.232,2=-+=-+=-ηξρηξηξηξηξξηD D D D Cov D D D 9、148,57; 10、()()()()n D a E D a E i i 2 2 ,,,σξ ξσξξ= ===所以 二、1、C 2、B 3、C 4、B 5、C 三、1、,2.03.023.004.02-=?+?+?-=ξE ()8.23.023.004.02222 2=?+?+?-=ξE ()() ()() ( )04.114,412,4.1353532 222=-==-=+=+ξξξξξξE E D D E E 2、ξ~[]10,0U ,()32512010,5210 02 =-==+=ξξD E , 3 35=ξD 3、4)(,1)2 (==ξξ D D ,则 1)(,4)1(==-ξξ E D 所以0)1(=-ξE 所以 ()()()() 2 2 2111404E D E ξξξ-=-+-=+= 4、()()()()()()32323223,2D D D D Cov ξηξηξηξη-=+-=+-+- ()( )941225.6D D ξηρ=+-=

随机变量的数字特征

随机变量的数字特征 讨论随机变量数字特征的原因 (1) 在实际问题中,有的随机变量的概率分布 难确定,有的不可能知道,而它的一些数字特征较易确定。 (2)实际应用中,人们更关心概率分布的数字特征。 (3)一些常用的重要分布,如二项分布、泊松 分布、指数分布、正态分布等,只要知道了它们的某些数字特征,就能完全确定其具体的分布。 §4.1 数学期望 一、数学期望的概念 1.离散性随机变量的数学期望 例4.1:大学一年级某班有32名同学,年龄情况如下: 解: 平均年龄=1 4810721 224218201019718217+++++?+?+?+?+?+? 25.19= 把上式改写为: 32 12232421328203210193271832217?+?+?+?+?+?

设X 为从该班任选一名同学的年龄,其概率分布为 定义4.1:设离散型随机变量X 的分布列为: 若 ∑k k k p x 绝对收敛(即 +∞ <=∑∑k k k k k k p x p x ),则称它为X 的 数学期望或均值(此时,也称X 的数学期望存在),记为E(X),即 若 ∑k k k p x 发散,则称X 的数学期望不存在。 说明: (1)随机变量的数学期望是一个实数,它体现了随机变量取值的平均; (2) 要注意数学期望存在的条件: ∑k k k p x 绝对 收敛; (3) 当X 服从某一分布时,也称某分布的数学 期望为EX 。 ∑=k k k p x EX

例4.2:设X服从参数为p的两点分布,求EX EX=p 例4.3:设X~B(n,p),求EX EX=np 例4.4:设X服从参数为λ的泊松分布,求EX EX=λ 2.连续型随机变量的数学期望 定义4.2: 设连续型随机变量X 的概率密度为f(x).若积分 ?+∞∞-dx x xf) ( 绝对收敛,(即?∞∞ - +∞ < dx x f x) ( ),则称它 为X的数学期望或均值(此时,也称X的数学期望存在),记为E(X),即 ) ( ) (?∞∞- =dx x xf X E 若?∞∞ - +∞ = dx x f x) ( , 则称X的数学期望不存在。 例4.5:设X服从U[a,b],求E(X)。 EX= 2b a+ 例4.6:设X服从参数为λ的指数分布,求EX EX=λ 例4.7: ) , ( ~2σ μ N X,求EX

第四章 随机变量的数字特征试题答案

第四章随机变量的数字特征试题答案 一、 选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A.E (X )=0.5,D (X )=0.5?B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4?D.E (X )=2,D (X )=2 2 Y X -=,则34) A C 5A 6、)1= (C ) A .3 4?B .3 7C . 323?D .3 26 7、设随机变量X 服从参数为3的泊松分布,)3 1 ,8(~B Y ,X 与Y 相互独立,则 )43(--Y X D =(C ) A .-13? B .15 C .19? D .23 8、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B )

A .6? B .22 C .30? D .46 9、设)3 1 ,10(~B X ,则)(X E =(C ) A .31? B .1 C .3 10?D .10 10、设)3,1(~2N X ,则下列选项中,不成立的是(B ) A.E (X )=1? B.D (X )=3? C.P (X=1)=0? D.P (X<1)=0.5 11 A .C .12、XY ρ= (D 13x =(B) A . 14、(C ) A.-15、为(A .C .21)(,41)(== X D X E ?D .4 1 )(,21)(==X D X E 16、设二维随机变量(X ,Y )的分布律为

则)(XY E =(B ) A .9 1-?B .0 C .9 1?D .3 1 17、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A 18,0.5),则A 19,则X A 20, 则21(B A C 22、设n X X X ,,,21 是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B ) A .{}2 2 εσεμn n X P ≥ <-?B .{} 22 1ε σεμn X P -≥<- C .{}2 2 1ε σεμn X P - ≤≥-?D .{}2 2 εσεμn n X P ≤ ≥-

随机变量的数字特征(答案)

概率论与数理统计练习题 系 专业 班 姓名 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

随机变量的数字特征归纳

第四章 随机变量的数字特征 ㈠ 数学期望 表征随机变量取值的平均水平、“中心”位置或“集中”位置. 1、数学期望的定义 (1) 定义 离散型和连续型随机变量X 的数学期望定义为 {}?????==?∑∞ ∞ - d )( )()( , , 连续型离散型x x xf x X x X k k k P E 其中Σ表示对X 的一切可能值求和.对于离散型变量,若可能值个数无限,则要求级数绝对收敛;对于连续型变量,要求定义中的积分绝对收敛;否则认为数学期望不存在. ①常见的离散型随机变量的数学期望 1、离散型随机变量的数学期望 设离散型随机变量的概率分布为 ,若,则称级数为随 机变量 的数学期望(或称为均值),记为 , 即 2、两点分布的数学期望 设 服从0—1分布,则有 ,根据定义, 的数学期望为 . 3、二项分布的数学期望 设 服从以 为参数的二项分布, ,则 。 4、泊松分布的数学期望 设随机变量 服从参数为的泊松分布,即,从而有 。 ①常见的连续型随机变量的数学期望 1)均匀分布

设随机变量ξ服从均匀分布,ξ~U [a,b] (a0,- <μ<+ ) 则令得 ∴ E(ξ)=μ . 3)指数分布 设随机变量服从参数为的指数分布,的密度函数为 ,则. (2) 随机变量的函数的数学期望设)(x g y=为连续函数或分段连续函数,而X是任一随机变量,则随机变量) (X g Y=的数学期望可以通过随机变量X的概率分布直接来求,而不必先求出Y的概率分布再求其数学期望;对于二元函数) , (Y X g Z=,有类似的公式: (){} ? ? ? ? ?= = = ? ∑ ∞ ∞ . ; (连续型) 离散型 - d) ( ) ( ) ( ) ( x x f x g x X x g X g Y k k k P E E

经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式

几个经典不等式的关系 一 几个经典不等式 (1)均值不等式 设12,,0n a a a >L 是实数 其中0,1,2,i a i n >=L .当且仅当12n a a a ===L 时,等号成立. (2)柯西不等式 设1212,,,,,n n a a a b b b L L 是实数,则 当且仅当0(1,2,,)i b i n ==L 或存在实数k ,使得(1,2,,)i i a kb i n ==L 时,等号成立. (3)排序不等式 设12n a a a ≥≥≥L ,12n b b b ≥≥≥L 为两个数组,12n c c c L ,, ,是12n b b b L ,,,的任一排列,则 当且仅当12n a a a ===L 或12n b b b ===L 时,等号成立. (4)切比晓夫不等式 对于两个数组:12n a a a ≥≥≥L ,12n b b b ≥≥≥L ,有 当且仅当12n a a a ===L 或12n b b b ===L 时,等号成立. 二 相关证明 (1)用排序不等式证明切比晓夫不等式 证明:由 而 根据“顺序和≥乱序和”(在1n -个部分同时使用),可得 即得 同理,根据“乱序和≥反序和”,可得 综合即证 (2)用排序不等式证明“几何—算数平均不等式”12n a a a n +++≤ L 证明:构造两个数列: 其中 c =因为两个数列中相应项互为倒数,故无论大小如何,乘积的..........................和:.. 总是两数组的反序和......... .于是由“乱序和≥反序和”,总有 于是 即 即证 (3)用切比晓夫不等式证明“算数—开方平均不等式”: 12n a a a n +++≤ L 证明:不妨设12n a a a ≥≥≥L ,

随机变量分布及数字特征

第十章 随机变量分布及数字特征 10.1 随机变量 10.2 离散型随机变量分布 1、学时:2学时 2、过程与方法: 结合实例介绍随机变量概念,离散型随机变量的概率分布、分布列、分布函数、概率及性质. 3、教学要求: (1)掌握随机变量及离散型随机变量的概率分布、分布列、分布函数、概率及性质 (2)几种常见概率分布 教学重点:离散型随机变量的概率分布、分布列、分布函数、概率及性质 教学难点:离散型随机变量的分布函数 教学形式:多媒体讲授 教学过程: 一、新课教学内容 10.1 随机变量 概率论与数理统计是从数量上来研究随机现象的统计规律,因此我们必须把随机事件数量化. 在随机试验中,结果有多种可能性,试验结果样本点很多可以与数值直接发生关系,如产品检验,我们关心的是抽样中出现的废品件数.商店销售我们重视每天销售额,利润值.在投骰子中是每次出现的点数等. 但是也有不少试验结果初看与数字无直接关系,但我们可通过如下示性函数使之数值化,比如,产品合格与不合格令???=01ξ 不合格 合格 事件10A A X ?=??发生与否用 不发生发生 这些事件数值化后,数量是会

变化的称为变量.变量取值机会有大有小所以叫随机变量 . 定义1:在某一随机试验中,对于试验的每一个样本点ω都唯一对应一个数,这样依不同样本点ω而取不同值的点叫随机变量.通常用希腊字母或大写英文字母X 、Y 、Z 等表示.用小写英文字母i i y x 、表示随机变量相应于某个试验结果所取的值. 举例: 1°投骰子出现的点数用随机变量X 表示,X 可取值为{ },,,,,,654321 2°电信局话务台每小时收到呼叫次数用Y 表示,Y 可取值为{}Λ210,, 3°总站每五分钟发某一路车,乘客在车站候车时间{} 50≤≤=t t ξ 4°某一电子零件的寿命用{} 30000≤≤=t t T 按其取值情况可以把随机变量分成两类: (1)离散型随机变量:取有限个或无限可列个值.如例1°、2°. (2)非离散型随机变量:可在整个数轴上取值或取实数某部分区间的全部值.非离散型随机变量范围较广,本书只研究其中常遇见的一种称为连续型随机变量如例3°、4°. 例1 设有2个一级品,3个二级品的产品,从中随机取出3个产品,如果用X 表示取出产品中一级品的个数,求X 取不同值时相应概率. 解 X 可取值为{}210,, 101)0(3533===C C X P 53)1(352312===C C C X P 103 )2(35 1 322==C C C X P 例2 抛一枚匀称的硬币,引进一变量Y 令???=0 1Y 出现反面 出现正面求出现正面与反面概率: 解 21)0(= =Y P 2 1)1(==Y P 10.2 离散型随机变量分布 10.2.1 离散型随机变量的概率分布 例1 某汽车公司销售汽车数据表示在过去100天营业时间是有24天每天销售汽车是为0辆,38天

不等式的若干证明方法

2016届本科毕业论文(设计) 题目:不等式的若干证明方法 学院:数学科学学院 专业班级:数学与应用数学12-1班 学生姓名:高春 指导教师:马昌秀 答辩日期:2016年5 月3日 新疆师范大学教务处

目录 1.引言 (1) 2.证明不等式的常用方法 (2) 2.1比较法 (2) 2.1.1 作差法 (2) 2.1.2作商法 (2) 2.2 分析法 (3) 2.3 综合法 (3) 2.4 反证法 (4) 2.5 放缩法 (5) 2.6 数学归纳法 (5) 2.7换元法 (6) 2.7.1增量换元法.. (6) 2.7.2三角换元法 (6) 2.7.3 比值换元法 (7) 2.8 标准化法 (7) 2.9 公式法 (8) 2.10 分解法 (8) 2.11 构造法 (9) 2.11.1 构造对偶式模型 (9) 2.11.2 构造函数模型 (9) 2.12 借助几何法 (10) 3.利用函数证明不等式 (10) 3.1 极值法 (10) 4.利用著名不等式 (11) 4.1 均值不等式 (11) 4.2 柯西-施瓦茨不等式 (12) 4.3 拉格朗日中值定理 (12) 4.4 赫尔德不等式 (13) 4.5 詹森不等式 (13) 4.6 闵可夫斯基不等式 (14) 4.7 伯努利不等式 (15)

4.8 切比雪夫不等式 (15) 4.9 琴生不等式 (16) 4.10 艾尔多斯—莫迪尔不等式 (16) 4.11 排序不等式定理 (16) 5.小结 ..................................................... 错误!未定义书签。参考文献 . (18) 谢辞 ..................................................... 错误!未定义书签。

第四章 随机变量的数字特征课后习题参考答案

第四章 随机变量的数字特征 1. 解:令A 表示一次检验就去调整设备的事件,设其概率为p ,T 表示每次检验发现的次品个数,易知(10,0.1)T B ~,且(4,)X B p ~。 得, 0010119 1010(){1}1{1}1(0.1)(0.9)(0.1)(0.9)0.2639p P A P T P T C C ==>=-≤=--=。 因为(4,)X B p ~,得()4 1.0556E X p =?=。 2. 解:1500 3000 2220 1500 ()()(3000)5001000150015001500x x E X xf x dx dx x dx +∞ -∞ -= =+-=+=?? ?。 3. 解:1 ()(2)0.400.320.30.2k k i E X x p ∞ == =-?+?+?=-∑; 2 21 (35)(35)170.450.3170.313.4k k i E X x p ∞ =+=+=?+?+?=∑ 22(35)3()513.4E X E X +=+=。 4.解:(1)0 ()(2)2()2 ()22(| )2x x x E Y E X E X xf x dx x e dx xe e dx +∞ +∞ +∞ --+∞ --∞ ==== =-+=???. (2)223300 1 1 33 ()()()|X x x x E Y E e e f x dx e dx e +∞ +∞ ----+∞ -∞ == = =-=??. 5.解:(1)3 33 1 1 1 ()10.420.230.42i i i ij i i j E X x p x p ? ==== ==?+?+?=∑∑∑. 3 3 3 1 1 1 ()10.300.410.30j j j ij j j i E Y y p y p ?======-?+?+?=∑∑∑. (2) 7 1 11 ()10.2(0.50.1)...0.50.10.1315i i i E Z z p ===-?+-?++?+?=-∑。 2 2 1 ()40.400.340.3 2.8 k k i E X x p ∞ ===?+?+?=∑

均值不等式的证明

平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多 竞赛的书籍中,都有专门的章节和讨论,如数学归纳法、变量替换、恒等变形和分析 综合方法等,这些也是证明不等式的常用方法和技巧。 1.1平均值不等式 一般地,假设,,,为n个非负实数,他们的算术平均值记为 几何平均值记为 算术平均值和几何平均值之间有如下的关系。 即, 当且仅当时,等号成立。 上述不等式成为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和使用非常灵活、广泛,有多 重不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。 供大家参考学习。 1.2平均值不等式的证明 证法一(归纳法) (1)当n=2时,已知结论成立。 (2)假设对n=k(正整数k)时命题成立,即对 ,,,,有 。 那么,当n=k+1时,由于

, 关于,,,是对称的,任意对调和,和的值不改变,因此不妨设,,,,,,,显然,以及()()可得 () 所以 () () 即()两边乘以,得 从而,有 证法二(归纳法) (1)当n=2时,已知结论成立。 (2)假设对n=k(正整数k)时命题成立,即对,,,,有 。 那么,当n=k+1时,由于 从而,有 证法三(利用排序不等式)

设两个实数组,,,和,,,满足 ;, 则(同序乘积之和) (乱序乘积之和) (反序乘积之和) 其中,,,是,,的一个排列,并且等号同时成立的充分必要条件是或成立。 证明: 切比雪夫不等式(利用排序不等式证明) 杨森不等式(Young)设,,,则对 ,有等号成立的充分必要条件是。 琴生不等式(Jensen) 设,(,)为上凸(或下凸)函数,则对任意,(,,),我们都有 或 其中,, 习题一 1.设,求证:对一切正整数n,有 () 2.设,,,求证 ()()()( 3.设,,为正实数,证明:

第四章随机变量的数字特征单元测试题

随机变量的数字特征章节测试题 一、选择题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知随机变量X 满足D (X )=2,则D (3X +2)=( ) A .2 B .8 C .18 D .20 2.设服从二项分布X ~B (n ,p )的随机变量X 的均值与方差分别是15和45 4,则n 、p 的 值分别是( ) A .50,1 4 B .60,14 C .50,3 4 D .60,3 4 . 3.某次语文考试中考生的分数X ~N (90,100),则分数在70~110分的考生占总考生数的百分比是( ) A .68.26% B .95.44% C .99.74% D .31.74% 4.某市期末教学质量检测,甲、乙、丙三科考试成绩近似服从正态分布,则由如图曲线可得下列说法中正确的是( ) A.甲学科总体的方差最小 B.丙学科总体的均值最小 C.乙学科总体的方差及均值都居中 D.甲、乙、丙的总体的均值不相同 5.设随机变量X 和Y 独立同分布,若记随机变量,=-=+U X Y V X Y ,则随机变量U 与V 必然( ) A.不独立 B.独立 C.相关系数不为零 D.相关系数为零 6.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2.又已知E (X )=4 3,D (X ) =2 9 ,则x 1+x 2的值为( ) A.53 B.73 C.11 3 D .3 7.已知X 为随机变量,且E (X ), D (X )均存在,则下列式子不成立的是( ) .[()]() .[()]2() .[()]0.[()]() =+=-==A E E X E X B E X E X E X C E X E X D D E X E X 8.设随机变量X 服从[,]a b 上的均匀分布,若1 ()2,()3==E X D X ,则均匀分布中的常 数,a b 的值分别为( ) .1,3.1,2.2,3.2,2========A a b B a b C a b D a b

相关文档
相关文档 最新文档