文档视界 最新最全的文档下载
当前位置:文档视界 › 复数乘除法教案

复数乘除法教案

复数乘除法教案
复数乘除法教案

陈仓高级中学高二数学备课组集体教案

复数教学设计(省优质课)

§5.1 数系的扩充与复数的引入 江西省永新县任弼时中学 文辉 【教学目标】 (1) 了解引进复数的必要性,理解复数的基本概念,了解复数的代数法表示, 理解虚数单位,理解复数相等的充要条件. (2) 了解复数的几何意义,理解复数模的概念,了解复数与复平面内的点的 对应关系. (3) 体会实际需求与数学内部的矛盾在数学扩充过程中的作用,感受人类理 性思维在数系的扩充过程的作用以及数与现实世界的联系。 (4) 通过复数与复平面内的点的对应关系,体会二维空间中数与形之间的内 在联系. 【教学重难点】 重点:引进虚数单位i 的必要性,对i 的规定,复数的有关概念. 难点:实数系扩充到复数系的过程的理解,复数的概念的理解. 教学方法:1.启发式教学法. 2.激励---探索---讨论---发现. 教具准备:多媒体,投影仪. 教学过程 Ⅰ.课题导入 ㈠引导学生回顾数的变化发展过程 数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N . 随着生产和科学的发展,数的概念也得到发展. 为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和零)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么﹛有理数﹜=﹛分数﹜=﹛循环小数﹜. 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R .因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以﹛实数﹜=﹛小数﹜. ㈡设置问题情境,探究实践 问题①:请类比引进2,就可以解决方程02x 2=-在有理数集中无解的问题,怎么解决方程01x 2=+在实数集中无解的问题?

高中数学-复数的基础知识

复数 基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2 121z z z z =???? ??;(5)||||||2121z z z z ?=?; (6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1= 。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n π θπ θ+++=, k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

复数乘除法、极坐标

学之导教育中心教案 学生: 梁庭苇授课时间: 课时: 2 年级: 高二教师:廖 课题复数乘除法、极坐标 教学构架 一、知识回顾 二、错题再现 三、知识新授 四、知识小结 教案内容 一、知识回顾 1、几何证明选讲 二、错题再现 1、如图ABC中,D是AB的三等分点,// DE BC,// EF BC,2 AF=,则AB=__________ F E D A B C 2、如图,在ABC中,AD是BC边上中线,AE是BC边上的高,DAB DBA ∠=∠ ,18 AB=,12 BE=,则CE=__________. 本次内容掌握情况总结 教师签字 学生签字 E B D C A

3、如图所示,圆O 的直径AB=6,C 圆周上一点,BC=3,过C 作圆的切线l ,过A 作l 的垂线AD AD 分别与直线l 、圆交于点D 、E ,则∠DAC = __,线段AE 的长为 __. 4、如图所示,从圆O 外一点A 引圆的切线AD 和割线ABC ,已知AD=23,AC=6,圆O 的半径为3, 则圆心O 到AC 的距离为________. . 5、如图所示,圆O 上一点C 在直径AB 上的射影为D ,CD=4,BD=8,则圆O 的半径等于 . 6、如图,四边形ABCD 内接于⊙O ,BC 是直径,MN 切⊙O 于A ,∠MAB=250,则∠D= ___ . 7.如图,AB 是圆O 的直径,直线CE 和圆O 相切于点C ,AD ⊥CE 于D ,若AD=1,∠ABC=300, 则圆O 的面积是______. 8.如图,⊙O 的割线PAB 交⊙O 于A 、B 两点,割线PCD 经过圆心O ,PE 是⊙O 的切线。已知PA=6, AB=3 1 7,PO=12,则PE=____ ⊙O 的半径是_______. A D B C E O A B C O D A B O D C O B A D C M N O B A D C E C O A B P D E

复数代数形式的乘除运算教案

复数代数形式的乘除运算教案 教学目标: 1 知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算 2 过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题 3 情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。 教学重点:复数代数形式的除法运算。 教学难点:对复数除法法则的运用。 课型:新知课 教具准备:多媒体 教学过程: 复习提问: 已知两复数z1=a+bi, z2=c+di(a,b,c,d是实数) 加法法则:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i. 减法法则:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i. 即:两个复数相加(减)就是 实部与实部,虚部与虚部分别相加(减) (a+bi )±(c+di) = (a±c) + (b±d)i

复数的加法运算满足交换律: z1+z2=z2+z1. 复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3) 讲解新课: 一.复数的乘法运算规则: 规定复数的乘法按照以下的法则进行: 设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 探究: 复数的乘法是否满足交换律、结合律? 乘法对加法满足分配律吗? 二.乘法运算律: (1)z1(z2z3)=(z1z2)z3 证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R). ∵z1z2=(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(b1a2+a1b2)i, z2z1=(a2+b2i)(a1+b1i)=(a2a1-b2b1)+(b2a1+a2b1)i. 又a1a2-b1b2=a2a1-b2b1,b1a2+a1b2=b2a1+a2b1. ∴z1z2=z2z1. (2)z1(z2+z3)=z1z2+z1z3

初中英语名词单复数教案

名词单复数教案 名词可分为可数名词和不可数名词 可数名词:可以用来计数的名词,有单数和复数形式,如:desk-desks, apple-apples等 不可数名词:不可以直接用来计数的名词,没有复数形式,只有单数形式,如:some bread, a little milk等 一、可数名词 1. 可数名词复数的规则变化 1)一般名词变复数在其后面加s,如map→maps (地图) 2)以s,x,sh,ch等结尾的词加es,如bus→buses(公共汽车),watch→watches(手 表),box→boxes,dish→dishes(盘子) 3)A.以辅音字母+y结尾的词,变y为i,再加es,如baby→babies(婴儿) B.以元音字母+y结尾的词,直接加s,如monkey→monkeys(猴),holiday→holidays(假期),storey→storeys(楼层); 注意:以y结尾的专有名词变复数时,直接加s,如:two Marys, the Henrys 4)以o 结尾的名词变复数时: A. 表示无生命的加s, 如photo→photos(照片),piano→pianos(钢琴), r adio→radios(收音机), zoo→zoos(动物园) B. 表示有生命的加es,如hero→heroes(英雄),potato→potatoes(土豆),tomato→tomatoes(西 红柿)巧记:英雄爱吃土豆炖西红柿。 特殊:zero→zeros / zeroes。 5)以f或fe结尾的名词变复数时: A. 变f,fe 为v,再加es,如half→halves(一半),knife→knives(刀子),wife→wives(妻 子),life→lives (生命)巧记:小偷(thief)的妻子(wife)用刀子(knife)和树叶(leaf)把狼(wolf)劈成两半(half)。 B. 加s的名词有:belief→beliefs(信念),roof→roofs (屋顶) 特殊:如handkerchief→handkerchiefs / handkerchieves。 Practice: 1. They come from different ______ A. country B. countries C. a country D. countrys 2. How many ______ do you see in the picture? A. tomatos B. tomatoes C. tomato D. the tomato 3. There are some ______ in these _______. A.knifes…pencil-boxes B.knives…pencils-box C.knives…pencil-box D.knives…pencils-boxes 4. _______ are good for our health.

知识讲解复数基础

高考总复习:复数 【考纲要求】 1.理解复数的基本概念,理解复数相等的充要条件; 2.了解复数的代数表示形式及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对的复数用代数形式表示。 3.会进行复数代数形式的四则运算,了解两个具体相加、相减的几何意义. 【知识网络】 【考点梳理】 考点一、复数的有关概念 1.虚数单位i : (1)它的平方等于1-,即2 1i =-; (2)i 与-1的关系: i 就是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -; (3)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立; (4)i 的周期性:41n i =,41n i i +=,421n i +=-,43n i i +=-(*n N ∈).

2. 概念 形如a bi +(,a b R ∈)的数叫复数,a 叫复数的实部,b 叫复数的虚部。 说明:这里,a b R ∈容易忽视但却是列方程求复数的重要依据。 3.复数集 全体复数所成的集合叫做复数集,用字母C 表示;复数集与其它数集之间的关系:N Z Q R C 4.复数与实数、虚数、纯虚、0的关系: 对于复数z a bi =+(,a b R ∈), 当且仅当0b =时,复数z a bi a =+=是实数; 当且仅当0b ≠时,复数z a bi =+叫做虚数; 当且仅当0a =且0b ≠时,复数z a bi bi =+=叫做纯虚数; 当且仅当0a b ==时,复数0z a bi =+=就是实数0. 所以复数的分类如下: z a bi =+(,a b R ∈)?(0)(0)00b b a b =?? ≠?=≠?实数;虚数当且时为纯虚数 5.复数相等的充要条件 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等。即:

最新数系的扩充和复数的概念教案

§3.1.1数系的扩充和复数的概念 教案 李 志 文 【教学目标】 知识与技能:1.了解数系的扩充过程;2.理解复数的基本概念 过程与方法:1.通过回顾数系扩充的历史,让学生体会数系扩充的一般性方法. 2.类比前几次数系的扩充,让学生了解数系扩充后,实数运算律均可应用于 新数系中,在此基础上,理解复数的基本概念. 情感态度与价值观: 1、虚数单位的引入,产生复数集,让学生体会在这个过程中蕴含的创 新精神和实践能力,感受人类理性思维的作用以及数与现实世界的联系; 2、初步学会运用矛盾转化,分与合,实与虚等辩证唯物主义观点看待和 处理问题。 【重点难点】 重点: 理解虚数单位i 的引进的必要性及复数的有关概念. 难点:复数的有关概念及应用. 【学法指导】 1、回顾以前学习数的范围扩充过程,体会数系扩充的必要性及现实意义; 2、思考数系扩充后需考虑的因素,譬如运算法则、运算律、符号表示等问题,为本节学习奠定方法基础. 【知识链接】 前两个学段学习的数系的扩充: 但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为在实数范围内,没有一个实数的平方等于负数.联系从自然数到实数系的扩充过程,你能设想一种方法,使这个方程有解吗? Q N Z R 人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数 的全体构成自然数集N 为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负整,将数系扩充至整数集Z. 为了解决测量、分配中遇到的将某些量进行等分的问题, 人们引进了分数,将数系扩充至有理数集Q. 用方形的边长去度量它的对角线所得的结果,无法用有 理数表示,为了解决这个矛盾,人们又引进了无理数.有 理数集与无理数集合并在一起,构成实数集R . N x 2=-1,x =?

高中数学复数专题知识点整理

专题二 复数 【1】复数的基本概念 (1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当0≠b 时的复数a + b i 为虚数; 纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义: 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且 (3)共轭复数:z a bi =+的共轭记作z a bi =-; (4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b ;(象限的复习) (5)复数的模:对于复数z a bi =+,把z =z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+ (1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-; (3) 乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。 (4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-?????? 【3】复数的化简 c di z a bi +=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+ 对于()0c di z a b a bi +=?≠+,当c d a b =时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi +==+进一步建立方程求解

复数乘除法教案

陈仓高级中学高二数学备课组集体教案 课题 §3.2.2复数代数形 式的乘除运算 撰写人 三维目标 1.知识与技能目标 理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算;并掌握复数的除法运算实质是分母实数化类问题; 2.过程与方法目标 通过学习使学生进一步理解算理,提高对运算法则合理性的认识。 3.情感态度价值观 培养学生严密的推理能力,周到细密的计算能力. 重难点 重点: 复数代数形式的除法运算 难点: 对复数除法法则的运用. 课件名称 复数代数形式的乘除运算 上课时间 教学过程 【知识链接】 1.复数1z 与2z 的和的定义:()()()()i d b c a di c bi a z z +++=+++=+21; 2.复数1z 与2z 的差的定义:()()()()i d b c a di c bi a z z -+-=+-+=-21; 3.复数的加法运算满足交换律:1221z z z z +=+; 4.复数的加法运算满足结合律: ()()321321z z z z z z ++=++; 5.复数()R b a bi a z ∈+=,的共轭复数为bi a z -=. 【问题探究】 探究一、复数的乘法运算 引导1:乘法运算规则 设bi a z +=1、di c z +=2()R d c b a ∈,,,是任意两个复数,规定复数的乘法按照以下的法则进行: =?21z z 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且 把实部与虚部分别合并.两个复数的积仍然是一个复数.

引导2:试验证复数乘法运算律 (1)1221z z z z ?=? (2)()()321321z z z z z z ??=?? (3)()3121321z z z z z z z ?+?=+? 点拨:两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 探究二、复数的除法运算 引导1:复数除法定义: 满足()()()bi a yi x di c +=++的复数()R y x yi x ∈+,叫复数bi a +除以复数di c + 的商,记为:()()di c bi a +÷+或者 di c bi a ++()0≠+di c . 引导2:除法运算规则: 利用()()22d c di c di c +=-+.于是将di c bi a ++的分母有理化得: 原式=22 ()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+?-+-==++-+ 222222 ()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++. ∴(a +bi )÷(c +di )=i d c a d bc d c bd ac 2222+-+++. 点拨:利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数di c +与复数di c -,相当于我们初中学习的23+的对偶式23-,它们之积为1是有理数,而()()2 2d c di c di c +=-+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法 【典例分析】 例1计算()()()i i i +-+-24321 引导:可先将前两个复数相乘,再与第三个复数相乘. 点拨:在复数的乘法运算过程中注意将2 i 换成-1. 例2计算:(1)()()i i 4343-+ ; (2)() 21i +. 引导:按照复数乘法运算展开即可. 点拨:注意体会互为共轭复数的两个复数的乘积是一个实数,记住一些特殊形式代数式的运算结果,便于后续学习的过程中的化简、代换等.

高中数学必备知识点 复数知识点的归纳

2013高中数学必备知识点复数知识点的归纳 复数在数学领域中起着举足轻重的地位,学好复数,自然而然也变得尤为重要。以下是关于复数的一些基本知识,让我们一起来了解下吧。 定义 数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围。形如z=a+bi的数称为复数(complex number),其中规定i为虚数单位,且i^2=i*i=-1(a,b是任意实数)我们将复数z=a+bi中的实数a 称为复数z的实部(real part)记作Rez=a 实数b称为复数z的虚部(imaginary part)记作 Imz=b. 已知:当b=0时,z=a,这时复数成为实数当a=0且b≠0时,z=bi,我们就将其称为纯虚数。 运算法则 加法法则 复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。 即 (a+bi)+(c+di)=(a+c)+(b+d)i. 乘法法则 复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2 = ?1,把实部与虚部分别合并。两个复数的积仍然是一个复数。 即(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 除法法则 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算, 即 (a+bi)/(c+di) =[(a+bi)(c-di)]/[(c+di)(c-di)] =[(ac+bd)+(bc-ad)i]/(c^2+d^2). 开方法则 若z^n=r(cosθ+isinθ),则 z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=0,1,2,3……n-1) 用心爱心专心- 1 -

3.2.2 复数代数形式的乘除运算教学设计

《复数代数形式的乘除运算》的教学设计

i 2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 例1 计算( )()12i i + ()()()2123i i -+ 例2 计算 (1-2i)(3+4i)(-2+i) 练习1 计算 )1)(23)(2()23)(1)(1(i i i i +--+ )]2)(1)[(21)(4() 2)](1)(21)[(3(i i i i i i ++-++- 2.复数乘法的运算律 对任意复数z 1、z 2、z 3∈C ,有 (1)z 1(z 2z 3)=(z 1z 2)z 3 (2)z 1(z 2+z 3)=z 1z 2+z 1z 3 (3)z 1(z 2+z 3)=z 1z 2+z 1z 3. 练习2 计算:(1)(3+4i) (3-4i) ; (2)(1+ i)2. 3.共轭复数 当两个复数的实部相等,虚部互为相反数时,这两个复数叫 做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数。 通常记复数z 的共轭复数为z 。 3.复数除法 满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y ∈R)叫复数a+bi 除以复数c+di 的 商,记为:(a+bi)÷(c+di)或者di c bi a ++. 除法法则 22 ()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+?-+-==++-+ 222222 ()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++. ∴(a +bi )÷(c +di )= i d c ad bc d c bd ac 2 222+-+++. 利用(c +di )(c -di )=c 2+d 2.于是将di c bi a ++的分母有理化得: 例3 计算(12)(34)i i +÷- 四、考点突破 由不同的小组完成相应的对照组,强化学生对复数的乘除运算法则的理解和掌握,同时与多项式乘法类比, 复数代数形式的乘法也满足相应的运算律及乘法公式。 [来源:学.科.网] 理解共轭复数的定义,了解共轭复数的一些性质,并会应用待定系数方法,方程思想解决复数问题。 类比已有的无理分式化简即分母有理化思想方法,(c +di )·(c -di )=c 2+d 2是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法 强化巩固

复数知识点与历年高考经典题型

数系的扩充与复数的引入知识点(一) 1.复数的概念: (1)虚数单位i ; (2)复数的代数形式z=a+bi ,(a, b ∈R); (3)复数的实部、虚部、虚数与纯虚数。 2.复数集 整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环 小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ??????=?????+∈????≠?≠??=?? 3.复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。 应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。 4.复数的四则运算 若两个复数z1=a1+b1i ,z2=a2+b2i , (1)加法:z1+z2=(a1+a2)+(b1+b2)i ; (2)减法:z1-z2=(a1-a2)+(b1-b2)i ;

(3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ; (4)除法:11212211222222()()z a a b b a b a b i z a b ++-=+; (5)四则运算的交换率、结合率;分配率都适合于复数的情况。 (6)特殊复数的运算: ① n i (n 为整数)的周期性运算; ②(1±i)2 =±2i ; ③ 若ω=-21+23i ,则ω3=1,1+ω+ω2=0. 5.共轭复数与复数的模 (1)若z=a+bi ,则z a bi =-,z z +为实数,z z -为纯虚数(b ≠0). (2)复数z=a+bi 的模 |Z|=且2||z z z ?==a 2+b 2. 6.根据两个复数相等的定义,设a, b, c, d ∈R ,两个复数a+bi 和c+di 相 等规定为a+bi=c+di a c b d =???=?. 由这个定义得到a+bi=0?00a b =??=?. 两个复数不能比较大小,只能由定义判断它们相等或不相等。 7.复数a+bi 的共轭复数是a -bi ,若两复数是共轭复数,则它们所表示的点关于实轴对称。若b=0,则实数a 与实数a 共轭,表示点落在实轴上。 8.复数的加法、减法、乘法运算与实数的运算基本上没有区别,最主要的是在运算中将i 2=-1结合到实际运算过程中去。 如(a+bi)(a -bi)= a 2+b 2

复数 教案(绝对经典)

复 数 复数的基本概念、复数相等的充要条件以及复数的代数运算是高考的热点,并且一般在前三题的位置,主要考查对复数概念的理解以及复数的加减乘除四则运算,难度较小. 【复习指导】 1.复习时要理解复数的相关概念如实部、虚部、纯虚数、共轭复数等,以及复数的几何意义. 2.要把复数的基本运算作为复习的重点,尤其是复数的四则运算与共轭复数的性质等.因考题较容易,所以重在练基础。 基础梳理 1.复数的有关概念 (1)复数的概念 形如a +b i (a ,b ∈R )的数叫作复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数,若b ≠0,则a +b i 为虚数,若a =0且b ≠0,则a +b i 为纯虚数. (2)复数相等:a +b i =c +d i ?a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭?a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复平面 建立直角坐标系来表示复数的平面,叫作复平面.x 轴叫作实轴,y 轴叫作虚轴.实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数. (5)复数的模 向量OZ →的模r 叫作复数z =a +b i 的模,记作__|z |__或|a +b i|,即|z |=|a +b i|=a 2+b 2. 2.复数的几何意义 (1)复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2,实际上就是指复平面上的点Z 到原点O 的距离;|z 1-z 2|的几何意义是复平面上的点Z 1、Z 2两点间的距离. (2)复数z 、复平面上的点Z 及向量OZ → 相互联系,即z =a +b i(a ,b ∈R )?Z (a ,b )?OZ → . 3.复数的四则运算 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 (1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; (2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2 =a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=(ac +bd )+(bc -ad )i c 2+d 2(c +d i ≠0).

复数教学设计

推理与证明、算法初步、复数 【教材分析】 算法初步是人教A版普通高中课程标准实验教科书数学(必修3)第一章的内容,推理与证明是人教A版普通高中课程标准实验教科书数学(选修2-2)第二章的内容,复数是人教A版普通高中课程标准实验教科书数学(必修2-2)第三章的内容。其中合情推理、演绎推理、程序框图、复数的相关概念及计算相对简单,故复习的时候将这三章放在一起。【学情分析】 在目前小班化形势下,学生已经分组并要求进行捆绑评价。知识方面学生已经学习完了高中所有课程,对推理、算法初步、复数掌握较好,在本阶段需重点复习数学归纳法。【教学环境分析】 根据本节内容程序框图比较多的特点,选择多媒体教室环境,程序框图用多媒体展示很大程度上提高课堂效率。 【教学目标】 知识目标:了解合情推理与演绎推理的含义,并能运用它们进行一些简单推理;能用数学归纳法证明一些简单的数学命题;.理解程序框图的三种基本逻辑结构:顺序、条件、循环.能力目标:培养类比推理和转化能力思想。 情感目标:体验数学中的美感,体验自主学习的成就感,提高学习探究的兴趣。 【教学重点】复数、程序框图、数学归纳法 【教学难点】数学归纳法 【教学过程】 1、教师布置并批改导学案(导学案附在后面)。 学生完成并上交导学案(完成1-4,8-28题),准备展示用的白板。 2、课堂教学过程。 一、导入新课: 教师活动: 1、评价导学案完成情况。为优秀小组、优秀个人进行加分和鼓励。 2、幻灯片展示合情推理与演绎推理的概念,复数的概念以及四则运算法则。 二、新课讲解 (一)合情推理与演绎推理

1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…则a 10+b 10等于 ( ) A .28 B .76 C .123 D .199 2.(2015·济南模拟)有一个奇数组成的数阵排列如下: 1 3 7 13 21 … 5 9 15 23 … … 11 17 25 … … … 19 27 … … … … 29 … … … … … … … … … … … 则第30行从左到右第3个数是________ 3.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+ 1 AC 2 ,那么在四面体ABCD 中,类比上述结论,你能得到怎样的猜想,并说明理由. 4.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明: (1)数列???? ?? S n n 是等比数列;(2)S n +1=4a n . 学生活动:四个小组成员用小白板展示并讲解1-4题。 教师活动:引导学生归纳鹤庆推理与演绎推理的区别。 【设计意图】区分合情推理与演绎推理:(1)合情推理的过程概括为 从具体问题出发―→观察、分析、比较、联想―→ 归纳、类比―→提出猜想 (2)演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行. (二)数学归纳法 (1)用数学归纳法证明等式

(完整版)复数知识点归纳

精心整理 页脚内容 复数 【知识梳理】 一、复数的基本概念 1、虚数单位的性质 i 叫做虚数单位,并规定:①i 可与实数进行四则运算;②12-=i ;这样方程12-=x 就有解了,解为i x = 2(1①a z =(2例题:注意:三、共轭复数 bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==? bi a z +=的共轭复数记作bi a z -=_,且22_ b a z z +=? 四、复数的几何意义 1、复平面的概念 建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

精心整理 页脚内容 2、复数的几何意义 复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量) 相等的向量表示同一个复数 例题:(1)当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点 ①位于第三象限;②位于直线x y =上 (2)复平面内)6,2(=→AB ,已知→→AB CD //,求→ CD 对应的复数 3、复数的模: 向量OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z = 若bi a z +=1,di c z +=2,则21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:已知i z +=2,求i z +-1的值 五、复数的运算 (1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ①i d b c a di c bi a z z )()(21+++=+++=± ②i ad bc bd ac di c bi a z z )()()()(21++-=+?+=? ③2221)()()()())(())(d c i a d bc bd ac di c di c di c bi a di c bi a z z +-++=-?+-+=++= (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出 的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-. 六、常用结论 (1)i ,12-=i ,i i -=3,14=i 求n i ,只需将n 除以4看余数是几就是i 的几次 例题:=675i (2)i i 2)1(2=+,i i 2)1(2-=- (3)1)2321(3=±-i ,1)2 321(3-=±i 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)方程x 2+x +1=0没有解.( )

复数的乘除法运算练习题(教师版)

复数的乘除法运算练习题(教师版) 1. i 为虚数单位,1i +1i 3+1i 5+1i 7等于( A ) A .0 B .2i C .-2i D .4i 2. 若a ,b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则( D ) A .a =1,b =1 B .a =-1,b =1 C .a =-1,b =-1 D .a =1,b =-1 3. 在复平面内,复数i 1+i +(1+3i)2对应的点位于( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4. 设复数z 的共轭复数是z ,若复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( A ) A.34 B.43 C .-43 D .-34 5. 若z =1+2i i ,则复数z 等于( D ) A .-2-i B .-2+I C .2-i D .2+i 6.复数11z i =-的共轭复数是( B ) A .i 2121+ B .i 2121- C .i -1 D .i +1 7. 若复数z 1=1+i ,z 2=3-i ,则z 1·z 2等于( A ) A .4+2i B .2+i C .2+2i D .3+i 8.设复数z 满足,2)1(i z i =-则z =( A ) (A )i +-1 (B )i --1 (C )i +1 (D )i -1 9.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( C ) A.(2,4) B.(2,-4) C.(4,-2) D.(4,2) 10.复数的11 Z i =-模为( B ) (A )12 (B )2 (C (D )2 11.()3=( A ) (A )8- (B )8 (C )8i - (D )8i 12. i 是虚数单位,3(1)(2)i i i -++等于 ( D ) A .1+i B .-1-i C .1+3i D .-1-3i 13.已知复数512i z i =+(i 是虚数单位),则_________z =14.若bi a i i +=++)2)(1(,其中,,a b R i ∈为虚数单位,则a b += 4

复数乘除法公开课优秀教案

§3.2.2复数代数形式的乘除运算 【学习目标】 1.理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算; 2.理解并掌握复数的除法运算实质是分母实数化类问题; 【重点难点】 重点:复数代数形式的除法运算. 难点:对复数除法法则的运用. 【学法指导】 复数乘法运算是按照多项式与多项式相乘展开得到,在学习时注意将2 i 换成1-;除法是乘法的逆运算,所以复数的除法运算可由乘法运算推导获得,但是也可由互为共轭复数的两个复数的乘积为实数,先将复数的分母实数化,再化简可得,学习时注意体会第二种方法的优势和本质. 【知识链接】 1.复数1z 与2z 的和的定义:()()()()i d b c a di c bi a z z +++=+++=+21; 2.复数1z 与2z 的差的定义:()()()()i d b c a di c bi a z z -+-=+-+=-21; 3.复数的加法运算满足交换律:1221z z z z +=+; 4.复数的加法运算满足结合律: ()()321321z z z z z z ++=++; 5.复数()R b a bi a z ∈+=,的共轭复数为bi a z -=. 【问题探究】 探究一、复数的乘法运算 引导1:乘法运算规则 设bi a z +=1、di c z +=2()R d c b a ∈,,,是任意两个复数,规定复数的乘法按照以下的法则进行: =?21z z 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2 i 换成-1,并且 把实部与虚部分别合并.两个复数的积仍然是一个复数. 引导2:试验证复数乘法运算律 (1)1221z z z z ?=?

复数的三角形式及乘除运算

复数的三角形式及乘除运算 一、主要内容: 复数的三角形式,模与辐角的概念及几何意义,用三角形式进行复数乘除运算及几何意义. 二、学习要求: 1.熟练进行复数的代数形式与三角形式的互化,会求复数的模、辐角及辐角主值. 2.深刻理解复数三角形式的结构特征,熟练运用有关三角公式化复数为三角形式. 3.能够利用复数模及辐角主值的几何意义求它们的范围(最值). 4.利用复数三角形式熟练进行复数乘除运算,并能根据乘除运算的几何意义解决相关问题. 5.注意多种解题方法的灵活运用,体会数形结合、分类讨论等数学思想方法. 三、重点: 复数的代数形式向三角形式的转换,复数模及复数乘除运算几何意义的综合运用. 四、学习建议: 1.复数的三角形式是彻底解决复数乘、除、乘方和开方问题的桥梁,相比之下,代数形式在这些方面显得有点力不从心,因此,做好代数形式向三角形式的转化是非常有必要的. 前面已经学习过了复数的另两种表示.一是代数表示,即Z=a+bi(a,b ∈R).二是几何表示,复数Z 既可以用复平面上的点Z(a,b)表示,也可以用复平面上的向量 来表示.现在需要学习复数的三角表示.既用复数Z 的 模和辐角来表示,设其模为r ,辐角为θ,则Z=r(cosθ+isinθ)(r≥0). 既然这三种方式都可以表示同一个复数,它们之间一定有内在的联系并能够进行互化. 代数形式r= 三角形式 Z=a+bi(a,b ∈R) Z=r(cosθ+isinθ)(r≥0) 复数三角形式的结构特征是:模非负,角相同,余弦前,加号连.否则不是三角形式.三角形式中θ应是复数Z 的一个辐角,不一定是辐角主值. 五、基础知识 1)复数的三角形式 ①定义:复数z=a+bi (a,b ∈R )表示成r (cos θ+ i sin θ)的形式叫复数z 的三角形式。即z=r (cos θ + i sin θ) 其中z r = θ为复数z 的辐角。 ②非零复数z 辐角θ的多值性。 始边,向量oz → 所在的射线为终边的角θ叫复数z=a+bi 的辐角 以ox 轴正半轴为因此复数z 的辐角是θ+2k π(k ∈z ) ③辐角主值 表示法;用arg z 表示复数z 的辐角主值。 2π)的角θ叫辐角主值 02≤

相关文档