文档视界 最新最全的文档下载
当前位置:文档视界 › 高中数学:第一章 1.3.2 函数奇偶性 (23)

高中数学:第一章 1.3.2 函数奇偶性 (23)

高中数学:第一章 1.3.2 函数奇偶性 (23)
高中数学:第一章 1.3.2 函数奇偶性 (23)

第二课时函数奇偶性的应用(习题课)

【选题明细表】

知识点、方法题号

利用奇偶性求函数值2,3,6,7

利用奇偶性求解析式5,8

奇偶性与单调性的综合应用1,4,9,10,11,12,13

1.(2018·山东省菏泽市十三校高一期中)下列函数中,是偶函数,且在区间(0,1)上为增函数的是( A )

(A)y=|x| (B)y=1-x

(C)y= (D)y=-x2+4

解析:选项B中,函数不具备奇偶性;选项C中,函数是奇函数;选项A,D 中的函数是偶函数,但函数y=-x2+4在区间(0,1)上单调递减.故选A.

2.奇函数f(x)在(-∞,0)上的解析式为f(x)=x(1+x),则f(x)在(0, +∞)上有( B )

(A)最大值- (B)最大值

(C)最小值- (D)最小值

解析:法一当x<0时,f(x)=x2+x=(x+)2-,

所以f(x)有最小值-,

因为f(x)是奇函数,

所以当x>0时,f(x)有最大值.

法二当x>0时,-x<0,所以f(-x)=-x(1-x).

又f(-x)=-f(x),

所以f(x)=x(1-x)=-x2+x=-(x-)2+,

所以f(x)有最大值.故选B.

3.已知f(x)=ax7-bx5+cx3+2,且f(-5)=m,则f(5)+f(-5)的值为( A )

(A)4 (B)0 (C)2m (D)-m+4

解析:由f(-5)=a(-5)7-b(-5)5+c(-5)3+2

=-a·57+b·55-c·53+2

=m,

得a·57-b·55+c·53=2-m,

则f(5)=a·57-b·55+c·53+2=2-m+2=4-m.

所以f(5)+f(-5)=4-m+m=4.故选A.

4.定义在R上的偶函数f(x)满足:对任意x1,x2∈(-∞,0](x1≠x2),都有(x2-x1)·[f(x2)-f(x1)]>0,则( C )

(A)f(-2)

(C)f(3)

解析:因为对任意的x1,x2∈(-∞,0](x1≠x2),都有(x2-x1)·[f(x2)-

f(x1)]>0,

故f(x)在x1,x2∈(-∞,0](x1≠x2)上单调递增.

又因为f(x)是偶函数,

所以f(x)在[0,+∞)上单调递减,且满足n∈N*时,

f(-2)=f(2),

由3>2>1>0,得f(3)

故选C.

5.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2-2x,则当x<0时,f(x)的解析式是( A )

(A)f(x)=-x(x+2) (B)f(x)=x(x-2)

(C)f(x)=-x(x-2) (D)f(x)=x(x+2)

解析:设x<0,则-x>0,则f(-x)=x2+2x=-f(x),

所以f(x)=-x(x+2),故选A.

6.若奇函数f(x)当1≤x≤4时的解析式是f(x)=x2-4x+5,则当-4≤x ≤-1时,f(x)的最大值是( D )

(A)5 (B)-5 (C)-2 (D)-1

解析:当-4≤x≤-1时,1≤-x≤4,

因为1≤x≤4时,f(x)=x2-4x+5.

所以f(-x)=x2+4x+5,

又f(x)为奇函数,所以f(-x)=-f(x).

所以f(x)=-x2-4x-5=-(x+2)2-1(-4≤x≤-1).

当x=-2时,取最大值-1.

7.(2018·洛阳高一月考)若函数f(x)=为奇函数,则f(g(-1))= .

解析:根据题意,当x<0时,f(x)=g(x),f(x)为奇函数,

g(-1)=f(-1)=-f(1)=-(12+2×1)=-3,

则f(g(-1))=f(-3)=-f(3)=-(32+2×3)=-15.

答案:-15

8.已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+|x|-1,那么x<0时,f(x)= .

解析:由题意,当x>0时,f(x)=x2+|x|-1=x2+x-1,

当x<0时,-x>0,

所以f(-x)=(-x)2+(-x)-1=x2-x-1,

又因为f(-x)=-f(x),所以-f(x)=x2-x-1,

即f(x)=-x2+x+1.

答案:-x2+x+1

9.f(x)是定义在[-2,2]上的偶函数,且f(x)在[0,2]上单调递减,若f(1-m)

解:因为f(x)在[0,2]上单调递减,且f(x)是定义在[-2,2]上的偶函数,

故f(x)在[-2,0]上单调递增,

故不等式f(1-m)

解得-1≤m<,

即实数m的取值范围为[-1,).

10.设偶函数f(x)的定义域为R,当x∈[0,+∞)时函数 f(x) 是减函数,则f(-3),f(π),f(-3.14)的大小关系为( B )

(A)f(π)=f(-3.14)>f(-3)

(B)f(π)

(C)f(π)>f(-3.14)>f(-3)

(D)f(π)

解析:由题意函数f(x)为偶函数,

所以f(x)=f(|x|).

因为|-3|<|-3.14|<π,

当x∈[0,+∞)时,f(x)是减函数,

所以f(|-3|)>f(|-3.14|)>f(π),

所以f(π)

故选B.

11.设奇函数f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式

< 0的解集为.

解析:因为f(x)为奇函数,<0,

所以<0,即<0,

因为f(x)在(0,+∞)上为减函数且f(1)=0,

所以当x>1时,f(x)<0.

因为奇函数图象关于原点对称,

所以在(-∞,0)上f(x)为减函数且f(-1)=0,

即x<-1时,f(x)>0.

综上使<0的解集为(-∞,-1)∪(1,+∞).

答案:(-∞,-1)∪(1,+∞)

12.已知y=f(x)是定义在(-∞,+∞)上的奇函数,且在 [0,+∞) 上为增函数,

(1)求证:函数在(-∞,0]上也是增函数;

(2)如果f()=1,解不等式-1

(1)证明:设x1,x2是(-∞,0]上任意两个不相等的实数,且x1

则-x1,-x2∈[0,+∞),且-x1>-x2,Δx=x2-x1>0,Δy=f(x2)-f(x1).

因为f(x)是奇函数,且在[0,+∞)上是增函数,-x1>-x2,

所以f(-x1)>f(-x2).

又因为f(x)为奇函数,所以f(-x1)=-f(x1),

f(-x2)=-f(x2).

所以-f(x1)>-f(x2),即f(x1)

即Δy=f(x2)-f(x1)>0.

所以函数f(x)在(-∞,0]上也是增函数.

(2)解:因为f(x)是R上的奇函数,

所以f(0)=0,f(-)=-f()=-1.

由-1

又因为f(x)在(-∞,0]上是增函数,所以-<2x+1≤0,

得-

所以不等式的解集为{x-

13.设f(x)是定义在R上的奇函数,且对任意x,y∈R,当x+y≠0时,都有>0.

(1)若a>b,试比较f(a)与f(b)的大小关系;

(2)若f(1+m)+f(3-2m)≥0,求实数m的取值范围.

解:(1)因为a>b,所以a-b>0,

由题意得>0,

所以f(a)+f(-b)>0.

又f(x)是定义在R上的奇函数,

所以f(-b)=-f(b),

所以f(a)-f(b)>0,即f(a)>f(b).

(2)由(1)知f(x)为R上的单调递增函数,

因为f(1+m)+f(3-2m)≥0,

所以f(1+m)≥-f(3-2m),

即f(1+m)≥f(2m-3),

所以1+m≥2m-3,

所以m≤4.

所以实数m的取值范围为(-∞,4].

高中数学函数最值问题的常见求解方法

一、配方法 例1:当01≤≤-x 时,求函数x x y 4322 ?-=+的最大值和最小值. 解析:34)3 22(32 + --=x y ,当01≤≤-x 时,122 1≤≤x .显然由二次函数的性质可得1min =y ,3 4max = y . 二、判别式法 对于所求的最值问题,如果能将已知函数式经适当的代数变形转化为一元二次方程有无实根的问题,则常可利用判别式求得函数的最值. 例2:已知012442 2 =-++-x x xy y ,求y 的最值. 解析:由已知,变形得0)1()12(242 2 =-+--y x y x ,R x ∈,则0≥?,即有 0)1(16)12(422≥---y y 故 4 5≤ y . 因此 4 5 max = y ,无最小值. 例3:若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则m ax x = min y = 解析:由已知,变形得:0)()12(2 2 =++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(22≥+--x x x ,于是018≥+-x ,即 81≤ x .即 8 1max =x . 同理,0)()12(2 2 =-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(22≥--+y y y ,于是018≥+y ,即 81-≥y .即 8 1 min -=y . 注意:关于x 、y 的有交叉项的二元二次方程,通常用此法 例4:已知函数1 1 3452 2+++=x x x y ,求y 的最值. 解析:函数式变形为:0)1(34)5(2 =-+--y y x y ,R x ∈,由已知得05≠-y , 0)1)(5(4)34(2≥----=?∴y y ,即:0762≤--y y ,即:71≤≤-y . 因此 7max =y ,1min -=y . 例5:已知函数)(1 2R x x b ax y ∈++=的值域为]4,1[-,求常数b a , 解析: 01 2 22 =-+-?+=+?++= b y ax yx b ax y yx x b ax y

高一数学必修一函数的奇偶性

函数的单调性和奇偶性 教材复习 基本知识方法 1.奇偶函数的性质: ()1函数具有奇偶性的必要条件是其定义域关于原点对称; ()2()f x 是偶函数?()f x 的图象关于y 轴对称;()f x 是奇函数?()f x 的图象关于原点对称; ()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的 单调性. 2.()f x 为偶函数()()(||)f x f x f x ?=-=. 3.若奇函数()f x 的定义域包含0,则(0)0f =. 4.判断函数的奇偶性的方法: ()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; ()2图象法; ()3性质法:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇?奇=偶,偶?偶=偶,奇?偶=奇; 5. 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1() f x f x =±-. 6.判断函数的单调性的方法: (1)定义法;(2)图象法;(3)性质法:在公共定义域内,利用函数的运算性质:若()f x 、)(x g 同为增函数,则①()()f x g x +为增函数;②()()f x g x 为增函数;③()1()0() f x f x >为减函数; ()()0f x ≥为增函数;⑤()f x -为减函数.

1.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数。 2.函数)11()(+--=x x x x f 是( ) A .是奇函数又是减函数 B .是奇函数但不是减函数 C .是减函数但不是奇函数 D .不是奇函数也不是减函数 3.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)2 52()23 (2++-a a f f 与的大小关系是( ) A .)23(-f >)252(2++a a f B .)23(-f <)2 52(2 ++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)2 52(2++a a f 4.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是( ) A .{}|303x x x -<<>或B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或 5.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 6.设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x =_____________________。 7.若函数2()1 x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________. 8.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x =. 9.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 和()g x 的解析式. 10.利用函数的单调性求函数x x y 21++=的值域;

人教A版数学必修一函数的奇偶性

数学·必修1(人教A版) 1.3.3 函数的奇偶性 ?基础达标 1.已知f(x)是定义在R上的奇函数,则f(0)的值为( ) A.-1 B.0 C.1 D.无法确定

解析:∵f(x)为R上的奇函数, ∴f(-x)=-f(x),∴f(0)=-f(0),∴f(0)=0. 答案:B 2.(2013·山东卷)已知函数f(x)为奇函数,且当x>0时,f(x) =x2+1 x ,则f(-1)=( ) A.-2B.0C.1D.2 答案:A 3.如果偶函数在区间[a,b]上有最大值,那么该函数在区间[-b,-a]上( ) A.有最大值B.有最小值 C.没有最大值D.没有最小值 解析:∵偶函数图象关于y轴对称,由偶函数在区间[a,b]上具有最大值,∴在区间[-b,-a]上有最大值. 答案:A 4.已知f(x)=ax3+bx+5,其中a,b为常数,若f(-7)=-7,则f(7)=( ) A.7B.-7C.12D.17 解析:∵f(-7)=-7, ∴a(-7)3+b(-7)+5=-7, ∴73a+7b=12. ∴f(7)=73a+7b+5=12+5=17. 答案:D 5.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的递减区间是________. 解析:∵f(x)是偶函数,∴f(-x)=f(x), ∴k-1=0,∴k=1,

∴f(x)=-x2+3的递减区间为[0,+∞). 答案:[0,+∞) ?巩固提高 6.设f(x)是R上的任意函数,则下列叙述正确的是( ) A.f(x)f(-x)是奇函数 B.f(x)|f(-x)|是奇函数 C.f(x)-f(-x)是偶函数 D.f(x)+f(-x)是偶函数 解析:取f(x)=x,则f(x)f(-x)=-x2是偶函数,A错,f(x)|f(-x)|=x2是偶函数,B错;f(x)-f(-x)=2x是奇函数,C 错.故选D. 答案:D 7.已知定义在R上的偶函数f(x)的单调递减区间为[0,+∞),则使f(x)<f(2)成立的自变量取值范围是( ) A.(-∞,2) B.(2,+∞) C.(-2,2)D.(-∞,-2)∪(2,+∞) 解析:∵f(x)是偶函数且在[0,+∞)为减区间,示意图如下:由图示可知:f(x)<f(2)成立的自变量的取值范围是(-∞,- 2)∪(2,+∞). 答案:D

(新)高中数学奇偶性练习题及答案

函数的奇偶性与周期性 一、填空题 1.已知函数f(x)=1+m ex -1是奇函数,则m 的值为________. 解析:∵f(-x)=-f(x),即f(-x)+f(x)=0,∴1+m e -x -1+1+m ex -1=0, ∴2- mex ex -1+m ex -1=0,∴2+m ex -1 (1-ex)=0,∴2-m =0,∴m =2. 答案:2 2.设f(x)是定义在R 上的奇函数,且当x >0时,f(x)=2x -3,则f(-2)=________. 解析:设x <0,则-x >0,f(-x)=2-x -3=-f(x),故f(x)=3-2-x ,所以f(-2)=3 -22=-1. 答案:-1 3.已知函数f(x)=a -12x +1,若f(x)为奇函数,则a =________. 解析:解法一:∵f(x)为奇函数,定义域为R ,∴f(0)=0?a -120+1=0?a =1 2. 经检验,当a =1 2 时,f(x)为奇函数. 解法二:∵f(x)为奇函数,∴f(-x)=-f(x),即a -1 2-x +1=-????a -12x +1. ∴2a = 12x +1+2x 1+2x =1,∴a =1 2. 答案:1 2 4.若f(x)=ax2+bx +3a +b 是定义在[a -1,2a]上的偶函数,则a =________,b = ________. 解析:由a -1=-2a 及f(-x)=f(x),可得a =1 3,b =0. 答案:13 5.设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时,f(x)的图象如图所示,则不等式 f(x)<0的解集是________. 解析:由奇函数的定义画出函数y=f(x),x ∈[-5,5]的图象.由图象可知f(x)<0的解集 为:{x|-2<x <0或2<x <5}. 答案:{x|-2<x <0或2<x <5}

高中数学函数常用函数图形及其基本性质

高中数学函数常用函数图形及其基本性质 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见函数性质汇总 常数函数f (x )=b (b ∈R) 图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴) 的直线 一次函数f (x )=kx +b (k ≠0,b ∈R)|k|越大,图象越陡;|k|越小,图象越平缓; 图象及其性质:直线型图象。b=0;k>0;k<0 定义域:R 值域:R 单调性:当k>0时,当k<0时 奇偶性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反函数:有反函数。K=±1、b=0的时候 周期性:无 补充:一次函数与其它函数之间的lianxi 1、与一元一次函数之间的联系 2、与曲线函数的联合运用 反比例函数f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第 一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定义域:),0()0,(+∞-∞ 值域:),0()0,(+∞-∞ 单调性:当k>0时;当k<0时 奇偶性:奇函数反函数:原函数本身周期性:无 x y b O f (x )=b x y O f (x )=kx +b x y O f (x )=x k

补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个— —⑴直接带入,李永二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图)f (x )= d cx b ax ++(c ≠0且d ≠0) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为,顶点坐标为 ②当0>a 时,开口向上,有最低点当00时,函数图象与x 轴有两个交点();当<0时,函数图象与x 轴有一个交点();当=0时,函数图象与x 轴没有交点。 ④)0()(2≠++=a c bx ax x f 关系)0()(2≠=a ax x f 定义域:R 值域:当0>a 时,值域为();当0a 时;当0

高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数. (2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f

高一数学--奇偶性

高一数学第四讲 函数的奇偶性 一、知识要点: 1、函数奇偶性定义: 如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数; 如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )既不是奇函数也不是偶函数 如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 2、函数奇偶性的判定方法:定义法、图像法 (1)利用定义判断函数奇偶性的格式步骤: ①首先确定函数的定义域是否关于原点对称;②确定f (-x )与f (x )的关系;③作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 ①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,定义域关于原点对称。 (2) 利用图像判断函数奇偶性的方法: 图像关于原点对称的函数为奇函数,图像关于y 轴对称的函数为偶函数, (3)简单性质: 设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 二、基础练习: 1. f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则f (x ),g (x )均为偶函数,h (x )一定为偶函数吗? 反之是否成立? 2.已知函数y =f (x )是定义在R 上的奇函数,则下列函数中是奇函数的是 ①y =f (|x |); ②y =f (-x ); ③y =x ·f (x ); ④y =f (x )+x . 3.设函数若函数2 ()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 4.已知y =f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2 -2x ,则在x<0上f (x )的表达式为 5. 设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0,且x 1+x 2>0,则 f (x 1)与f (-x 2)的大小关系是 三、例题精讲: 题型1: 函数奇偶性的判定 例1. 判断下列函数的奇偶性: ① x x x x f -+-=11)1()(,②y =,③22 (0)()(0) x x x f x x x x ?+??④2 211)(x x x f --= 变式:设函数f (x )在(-∞,+∞)内有定义,下列函数: ① y =-|f (x )|; ②y =xf (x 2); ③y =-f (-x ); ④y =f (x )-f (-x )。 必为奇函数的有_ __(要求填写正确答案的序号)

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高中数学必修一函数的奇偶性练习

单元测试(2) 一、选择题:(每小题4,共40分) 1. 下列哪组中的两个函数是同一函数 ( ) A .2y =与y x = B 。3y =与y x = C .y = 2y = D 。y =与2 x y x = 2. 若()f x =(3)f -等于 ( ) (A)32- (B)34 - (C)34 (D)32± 3. 函数f(x)=2-x +(x-4)0的定义域为 ( ) A . {x|x>2,x ≠4} B 。{x|x ≥2,或x ≠4} C 。[) ()2,44,+∞ D 。[)2,+∞ 4.函数y=x 2-1的值域是 ( ) A . (-∞,-1) B 。 [)1,-+∞ C 。 [-1,0] D 。 R 5. 函数f(x)=x|x|+x 3是 ( ) A . 偶函数 B 。奇函数 C 。非奇非偶函数 D 。既奇又偶函数 6.若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上 ( ) A .必是增函数 B 。必是减函数 C .是增函数或是减函数 D 。无法确定增减性 7.函数x x x x f +=)(的图象是 ( ) 8. .函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上递减,则a 的取值范围是 ( ) A.[)3,-+∞ B.(],3-∞- C.(-∞,5) D.[)3,+∞ 9、设偶函数f(x)的定义域为R ,当x [0,)∈+∞时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是 A B C D

( ) A 。f(π)>f(-3)>f(-2) B 。f(π)>f(-2)>f(-3) C .f(π)-a >0,则F (x )= f (x)-f (-x)的定义域是 . 12.若函数 f (x )=(k -2)x 2+(k-1)x +3是偶函数,则f (x )的递减区间是 . 13.函数y=(x-1)2-2,0≤x ≤2的最大值是 ,最小值是 . 14.设奇函数f(x)的定义域为[?5,5].若当x ∈[0,5]时,f (x )的图象如右图, 则不等式f (x )<0的解集是 . 三、解答题:(共40分). 15.已知,a b 为常数,若22 ()43,()1024,f x x x f ax b x x =+++=++ 则求b a -5的值。 16. (12分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f (x ),并写出它的定义域.

高中数学阶段常见函数性质汇总

高中阶段常见函数性质汇总 函 数 名 称:常数函数 解析式 形 式:f (x )=b (b ∈R) 图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 定 义 域:R 值 域:{b} 单 调 性:没有单调性 奇 偶 性:均为偶函数[当b =0时,函数既是奇函数又是偶函数] 反 函 数:无反函数 周 期 性:无周期性 函 数 名 称:一次函数 解析式 形 式:f (x )=kx +b (k ≠0,b ∈R) 图象及其性质:直线型图象。|k|越大,图象越陡;|k|越小,图象越平缓; 当b =0时,函数f (x )的图象过原点; 当b =0且k =1时,函数f (x )的图象为一、三象限角平分线; 当b =0且k =-1时,函数f (x )的图象为二、四象限角平分线; 定 义 域:R 值 域:R 单 调 性:当k>0时,函数f (x )为R 上的增函数; 当k<0时,函数f (x )为R 上的减函数; 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数。[特殊地,当k =-1或b =0且k =1时,函数f (x )的反函数为原函数f (x )本身] 周 期 性:无 函 数 名 称:反比例函数 解析式 形 式:f (x )= x k (k ≠0) 图象及其性质:图象分为两部分,均不与坐标轴相交,当k>0时,函数f (x )的 图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 图象成中心对称图形,对称中心为原点; 图象成轴对称图形,对称轴有两条,分别为y =x 、y =-x ; 定 义 域:),0()0,(+∞-∞Y 值 域:),0()0,(+∞-∞Y 单 调 性:当k>0时,函数f (x )为)0,(-∞和),0(+∞上的减函数; 当k<0时,函数f (x )为)0,(-∞和),0(+∞上的增 函数; 奇 偶 性:奇函数 反 函 数:原函数本身 b

高中数学必修一函数的性质单调性与奇偶性典型精讲精练

1文档收集于互联网,已整理,word 版本可编辑. 函数单调性 证明格式: ① 取任意两个数12,x x 属于定义域D ,且令12x x <(反之亦可); ② 作差12()()f x f x -并因式分解; ③ 判定 12()()f x f x -的正负性,并由此说明函数的增减性; 例 1 用定义法判定下列函数的增减性: ① y x =; ②2y x =; ③3y x =; ④y = ⑤1 y x = ; 练习:1. 判断函数()f x = 2.证明函数 3()f x x x =+在R 上是增函数; 例 2 已知函数 1 ()(0)f x x x x =+>,求证:函数的单调减区间为(0,1],增区间为[1,)+∞,并画出图像; 练习:证明函数 x x x f 2 )(+ =在),2(+∞上是增函数。 3.复合函数的单调性 复合函数的单调性判断(同增异减):构造中间过度函数,按定义比较函数大小并确定函数的单调性; 例 3 判断函数的单调性: (1 ) ()f x = (2 )()f x =; (3) 2 1 ()2 f x x = +; 练习:① y = ②2 13y x = -; ③ 2 154y x x = +-; ④ y ; 4.函数的单调性的等价关系 设[]1212,,,x x a b x x ∈≠那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --时,()1f x >且对任意的,a b 都有()()()f a b f a f b +=? (1)求证: (0)1f = ; (2)求证:对任意的x R ∈恒有 ()0f x > ; (3)求证:f(x)是R 上的增函数 ; (4)若2()(2)1f x f x x ?->,求x 的取值范围 相关练习 1、设 ()f x 的图像关于原点对称,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是………………( ) A {}|303x x x -<<>或 B {}|303x x x <-<<或 C {}|33x x x <->或 D {}|3003x x x -<<<<或 2、若 )(x f 的图像关于y 轴对称,且在[)+∞,0上是减函数,则235()(2)2 2 f f a a -++与的大小关系…( ) A )2 3(-f >)25 2(2++a a f B )23 (-f <)25 2(2++a a f C ) 23 (-f ≥ )2 5 2(2++a a f D 3() 2f -≤25(2)2 f a a ++

北京四中高中数学 奇偶性基础知识讲解 新人教A版必修1

函数的奇偶性 【学习目标】 1.理解函数的奇偶性定义; 2.会利用图象和定义判断函数的奇偶性; 3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】 要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:()()()0,1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数. 3.用定义判断函数奇偶性的步骤 (1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数()f x 的定义域,化简函数()f x 的解析式; (3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性. 若()f x -=-()f x ,则()f x 是奇函数; 若()f x -=()f x ,则()f x 是偶函数; 若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数; 若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数

人教高中数学必修一函数的奇偶性知识点及例题解析

高中数学函数的奇偶性知识点及例题解析 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象: 奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

高中数学人教版必修奇偶性教案(系列五)

1.3.2 奇偶性 整体设计 教学分析 本节讨论函数的奇偶性是描述函数整体性质的.教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念.因此教学时,充分利用信息技术创设教学情景,会使数与形的结合更加自然. 值得注意的问题:对于奇函数,教材在给出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念.教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=x与y=2x1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明. 三维目标 1.理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力. 2.学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想. 重点难点 教学重点:函数的奇偶性及其几何意义. 教学难点:判断函数的奇偶性的方法与格式. 安排 1 教学过程 导入新课 思路1.同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美……)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,

我们以麦当劳的标志为例,给它适当地建立直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y 轴对称.)数学中对称的形式也很多,这节课我们就同学们谈到的与y 轴对称的函数展开研究. 思路2.结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x 2和y=x 3的图象各有怎样的对称性?引出课题:函数的奇偶性. 推进新课 新知探究 提出问题 ①如图1-3-21所示,观察下列函数的图象,总结各函数之间的共性. 图1-3-21 ②那么如何利用函数的解析式描述函数的图象关于y 轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征? x 3 2 1 0 1 2 3 f(x)=x 2 表1 x 3 2 1 0 1 2 3 f(x)=|x| 表2 ③请给出偶函数的定义? ④偶函数的图象有什么特征? ⑤函数f(x)=x 2,x ∈[1,2]是偶函数吗? ⑥偶函数的定义域有什么特征? ⑦观察函数f(x)=x 和f(x)= x 1 的图象,类比偶函数的推导过程,给出奇函数的定义和性质? 活动:教师从以下几点引导学生: ①观察图象的对称性.

高一数学必修一函数专题:奇偶性

高一数学必修一函数专题:奇偶性 第一部分:常见的奇函数和偶函数 常见奇函数: 第一种:n x x f =)((n 为奇数)例:x x f =)(;x x x f 1)(1==-;3)(x x f =;331)(x x x f ==-。第二种:n x x f =)((n 为奇数)例:331 )(x x x f ==;5 1 5)(x x x f ==。第三种:) sin()(x A x f ?=例:)2sin()(x x f =;)sin()(x x f --=;x x f sin 21)(= 。第四种:) tan()(x A x f ?=例:x x f tan )(=;)2 1tan(2)(x x f - -=;x x f tan 3)(=。常见偶函数: 第一种:n x x f =)((n 为偶数)例:2)(x x f =;221)(x x x f ==-;4)(x x f =;4 41)(x x x f ==-。第二种:c x f =)((c 为常数) 例:2)(=x f ;2 1)(-=x f 。第三种:)cos()(x A x f ?=例:)cos(3)(x x f -=;)2cos(2 1)(x x f =;)cos()(x x f -=。第四种:|)(|)(x g x f =()(x g 为奇函数或者偶函数)例:|)sin(2|)(x x f -=;||)(4 x x f =;|tan |)(x x f =;|)21cos(|)(x x f -=。两种特殊的奇偶函数: 第一种:)()()()(x f x g x g x f ?-+=是偶函数 例:x x e e x f -+=)(,假设:)()()()()()(x f x g x g x f e x g e x g x x ?-+=?=-?=-是偶函数。 第二种:)()()()(x f x g x g x f ?--=是奇函数例:x x x f 313)(-=,假设:)()()()(313)(3)(x f x g x g x f x g x g x x x ?--=?==-?=-是奇函数。)2ln()2ln(22ln )(x x x x x f --+=-+=,假设:)2ln()(x x g +=)()()()2ln()(x g x g x f x x g --=?-=-?

高中数学函数知识点归纳及常考题型

《函数》知识要点和基本方法 1.映射定义:设非空集合A,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射。若集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 可建立n m 个映射。 2.函数定义:函数就是定义在非空数集A,B 上的映射f 。此时称数集A 为函数f(x)的定义域,集合C={f(x)|x ∈A}为值域,且C ?B 。 3.定义域、对应法则和值域构成了函数的三要素。 相同函数的判断方法:①定义域、值域;②对应法则。(两点必须同时具备) 4.求函数的定义域常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义;⑥正切函数角的终边不在y 轴上。 5.函数解析式的求法:①配凑法; ②换元法: ③待定系数法; ④赋值法;⑤消元法等。 6.函数值域的求法:①配方法;②分离常数法;③逆求法;④换元法;⑤判别式法;⑥单调性法等。 7.函数单调性及证明方法: 如果对于定义域内某个区间上的任意..两个自变量的值x 1,x 2,当x 1f(x 2)),那么就说f(x)在这个区间上是增函数(或减函数)。 第一步:设x 1、x 2是给定区间内的两个任意的值,且x 1

高中数学阶段常见函数性质汇总

高中阶段常见函数性质汇总 函 数 名 称:常数函数 解析式 形 式:f (x )=b (b ∈R) 图象及其性质:函数f (x)得图象就是平行于x 轴或与x 轴重合(垂直于y 轴)得直线 定 义 域:R 值 域:{b} 单 调 性:没有单调性 奇 偶 性:均为偶函数[当b=0时,函数既就是奇函数又就是偶函数] 反 函 数:无反函数 周 期 性:无周期性 函 数 名 称:一次函数 解析式 形 式:f(x )=kx +b (k ≠0,b∈R) 图象及其性质:直线型图象、|k |越大,图象越陡;|k |越小,图象越平缓; 当b =0时,函数f(x)得图象过原点; 当b =0且k =1时,函数f(x )得图象为一、三象限角平分线; 当b=0且k =-1时,函数f (x )得图象为二、四象限角平分线; 定 义 域:R 值 域:R 单 调 性:当k >0时,函数f (x )为R上得增函数; 当k<0时,函数f (x)为R上得减函数; 奇 偶 性:当b=0时,函数f(x )为奇函数;当b ≠0时,函数f (x)没有奇偶性; 反 函 数:有反函数。[特殊地,当k=-1或b =0且k=1时,函数f (x)得反函数为原函数f (x )本 身] 周 期 性:无 函 数 名 称:反比例函数 解析式 形 式:f (x )= (k ≠0) 图象及其性质:图象分为两部分,均不与坐标轴相交,当k 〉0时,函数f (x )得图象 分别在第一、第三象限;当k<0时,函数f(x )得图象分别在第 二、第四象限; 双曲线型曲线,x 轴与y 轴分别就是曲线得两条渐近线; 图象成中心对称图形,对称中心为原点; 图象成轴对称图形,对称轴有两条,分别为y =x 、y =-x ; 定 义 域: 值 域: 单 调 性:当k〉0时,函数f (x )为与上得减函数; 当k 〈0时,函数f(x )为与上得增函数; 奇 偶 性:奇函数 反 函 数:原函数本身 周 期 性:无 函 数 名 称:变式型反比例函数 解析式 形 式:f (x)= (c ≠0且 d ≠0) 图象及其性质:图象分为两部分,均不与直线、直线相交,当k〉0时,函数 f (x )得图象分别在直线与直线形成得左下与右上部分;当 k<0时,函数f (x)得图象分别在直线与直线形成 得左上与 b

相关文档
相关文档 最新文档