文档视界 最新最全的文档下载
当前位置:文档视界 › 高二第一学期期末统考数学试题(理科)

高二第一学期期末统考数学试题(理科)

高二第一学期期末统考数学试题(理科)
高二第一学期期末统考数学试题(理科)

试卷类型:A

高二第一学期期末统考数学试题(理科)

2017.1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分150分,考试时间120分钟.考试结束后,将答题卡收回. 注意事项:

1.答卷前考生务必用2B 铅笔和0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填涂在答题卡和试卷规定的位置上.

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答在试卷上无效.

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答卷卡各题目指定区域内的相应位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:

回归方程的斜率与截距:

112

221

1

()()()n n

i i i i i i n n i i i i x x y y x y nx y b x x x nx

====∑--∑-==∑-∑- , a y bx =- 第Ⅰ卷(共50分)

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.命题“若12

A. 若2x ≥1,则x ≥1或x ≤1-

B. 若11<<-x ,则12

C. 若1>x 或1-x

D. 若x ≥1或x ≤1-,则2

x ≥1

2.设A 、B 为两个事件,且P (A )=0.3,则当()时一定有P (B )=0.7 A .A 与B 互斥 B .A 与B 对立

C .A 包含B

D .A 不包含B

3.双曲线

22

14x y m

-=的焦距是6,则实数m 的值为 A .2 B .5C .10 D .32

4.已知,x y 的取值如表所示:

如果y 与x 呈线性相关,且回归方程为7

2

y bx =+ ,则b 等于

A. 12-

B.12

C.110

- D.110

5.下面程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为14,18,则输出的为

6.某学校进行特长生选拔,测得7名选手的身高(单位:cm)分布茎叶图为

???

1817

??

?

0 10 3 x 8 9

记录的平均身高为177cm ,有一名候选人的身高记录不清楚,其末位数记为x ,那么x 的值为( )

A .1

B .5

C .6

D .8 7.下列说法中错误..

的是 A .如果命题“”与命题“或”都是真命题,那么命题一定是真命题

B .命题“设A 、B 为两个定点,k 为正常数,||||PA PB k +=

,则动点P 的轨迹为椭圆”

为假命题.

,a b a A.0B.2C.4

D.14p ?p q q

C .命题“若都是偶数,则是偶数”的否命题是“若都不是偶数,则不是偶数”.

D .特称命题“,使”是假命题. 8.如果点(,)M x y

4=,则动

点M 轨迹的标准方程是

A .

22145x y -= B .()22

1045x y x -=< C .

22145y x -= D .()22

1045

y x y -=< 9.已知空间四个点A (1,1,1),B (-4,0,2),C (-3,-1,0),D (-1,0,4),则直线AD 与平面ABC 所成的角为

A .30° B.45°C .60° D.90°

10.设1F ,2F 分别是椭圆()22

2210x y a b a b

+=>>的左、右焦点,过2F 的直线交椭圆于P ,Q

两点,若160F PQ ∠=?,1PF PQ =,则椭圆的离心率为

A.

13 B.2

3

第Ⅱ卷(共100分)

二、填空题:本大题共5小题,每小题5分。共25分。

11.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则模块测试成绩落在中的学生人数是_________.

12.在长为3cm 的线段AB 上任取一点C ,以,AC BC 为邻边作

一矩形,则矩形面积小于2

2cm 的概率为

13.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,

摸出白球的概率为0.23,则摸出黑球的概率为

14..在平行六面体ABCD A B C D ''''-中,4,3,5,AB AD AA '===2

BAD π

∠=

,

3

BAA DAA π

''∠=∠=

,则AC '=

b a ,b a +b a ,b a +R x ∈?2

240x x -+-=[)

50,70

15.已知抛物线C 为:24y x =,一直线斜率为k (0k >)且过(-1,0)点交抛物线C 与,M N 两点,F 是抛物线C 的焦点,若||3||FM FN =,则直线斜率k =_________

三、解答题:本大题共6小题,共75分。

16.(本小题满分12分)

已知:p “0,a ?>使函数2()4f x ax x =-在[2,)+∞上单调递增”是真命题,且

:q “x R ?∈,220x x a ++≤”是假命题,求实数a 的取值范围。

17. (本小题满分12分)

为了解某市民众对某项公共政策的态度,在该市随机抽取了50名市民进行调查,做出了他们的月收入(单位:百元,范围:[1575],)的频率分布直方图,同时得到他们月收入情况以及对该项政策赞成的人数统计表:

(Ⅰ)求月收入在[3545,)内的频率,并补全这个频率分布直方图,并在图中标出相应纵坐

标;

(Ⅱ)根据频率分布直方图估计这50人的平均月收入;

(Ⅲ)若从月收入(单位:百元)在[65,75]的被调查者中随机选取 2人,求 2人都不赞成的概率.

18.(本小题满分12分)

已知抛物线的顶点在原点,它的准线经过曲线122

22=-b

y a x 的右焦点,且与x 轴垂直,抛物

线与此双曲线交于点(

6,2

3

),求抛物线与双曲线的方程.

19.(本小题满分12分)

一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相

同。随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c 。 (Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率。 20.(本小题满分13分)

如图,棱锥P —ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD , PA=AD=2,

BD=(Ⅰ)求证:BD ⊥平面PAC ; (Ⅱ)求二面角P —CD —B 的大小; (Ⅲ)求点C 到平面PBD 的距离.

21.(本小题满分14分)

已知椭圆C :22

221(0)x y a b a b

+=>>,一直线过左焦点1F 且垂直x 轴交椭圆于PQ 两点,||

PQ

=

,P

到左右两焦点距离和为(1)求椭圆C 的标准方程;

(2)已知斜率为k 的直线l 过椭圆的右焦点2F ,交椭圆于,A B 两点 1)求AB 中点M 的轨迹方程

2)在x 轴上是否存在定点N,使得2NA NA AB +?

为定值?若存在,试求出点N 的坐标和定

值;若不存在,请说明理由.

高二数学(理科)试题参考答案

2017.1 1.【命题立意】考查四种命题。

解析:逆否命题的条件和结论恰好是原命题的结论的否定和条件的否定,所以若12

3:命题立意:考察双曲线标准方程和简单性质 解:焦距2c=6.则c=3.所以4+m=9,m=5 选择B

4:【命题立意】考查线性回归方程过样本点的中心,平均数的计算。 解析:因为回归直线必过样本中心(3,5),所以将其代入7

2y bx =+

,得12

b = 。故选B 5:【命题立意】考查程序框图的理解以及推理论证能力

【解析】逐次运行程序,直至程序结束得出a 值。14,18.a b == 第一次循环:1418≠且1418<,18144b =-=; 第二次循环:144≠且144>,14410a =-=; 第三次循环:104≠且104>,1046a =-=; 第四次循环:64≠且64>,642a =-=; 第五次循环:24≠且24<,422a =-=;

第六次循环:2a b ==,跳出循环,输出2a =,故选B 。

6:解:茎叶图算平均数 可以都先减去177 ,得:-7-4+a+1+2+3+4=0 解得:a=1所以x=8 命题意图:考察茎叶图以及在茎叶图中平均数的算法, 7:【命题立意】考查知识的综合应用能力 “都是”的否定为“不都是” 选项C 错

8:【命题立意】考查对于双曲线的定义的理解,以及双曲线标准方程的应用 这个式子表示的是焦点在y 轴上的双曲线的一支,所以答案选择D 【命题立意】空间向量的运算及其直线与平面所成角的求解。

解析:(2,1,3),(5,1,1)AD AB =--=-- ,(4,2,1)AC =---

,设面ABC 的法向量为

(,,)m x y z = ,由0,0.m AB m AC ??=???=??

得30,

20.x y x z +=??-=?

令1x =,得(1,3,2)m =- 。 设直线AD 与平面ABC 所成的角为θ,1sin cos ,2

AD m AD m AD m θ?=<>==

所以6

π

θ=

,故选A

10.解析:因为过2F 的直线交椭圆于P ,Q 两点,

若160F PQ ∠=?,1PF PQ =,则△ABC 是等边三角形,由椭圆和等边三角形的对称性可知,PQ x ⊥轴

121

12123

2,,33F F c PF F PF F =====,由椭圆定义可知,

122PF PF a +=

2a +

=

,即,c a e a ===

11.【命题立意】考查频率分布直方图和频率公式,考查读图、用图能力和运算能力。 解析:由(23672)101a a a a a ++++?=,得1

200

a =

。 成绩落在

中的人数为1

10051025200

??

?=,故答案为25. 12解析:设A C x =,则3B C x =-,以,A C B C 为邻边的矩形面积为S ,则

(3),03S x x x =-<<,矩形面积小于22cm ,即2

(3)2,320

x x x x -<-+>,得12x x <>或,所以矩形面积小于22cm 的概率为

2

3

13.【命题立意】考查随机事件的概率、对立事件概率的计算。 解析:摸出红球的概率为0.45,摸出白球的概率为0.23,故摸出黑球的概率为1-0.45-0.23=0.32。

14.解析:AC AC CC AB AD AA '''=+=++

,

AC '=

=AC

'

15:命题意图:考查直线和抛物线的应用,以及抛物线的定义

解:设M.N 两点的坐标分别为11(,),x y 22(,)x y ,因为|FM|=3|FN|得:1213(1)x x +=+, 直线过(-1,0)交抛物线于M,N 两点得,121x x =,解得:13x

=,所以1y =

M ,所以斜率

16:【命题立意】考查全称命题、特称命题的理解、二次函数的单调性、二次不等式的恒成立,考查等价转化思想。

[)50,70

解:已知p 为真命题,则对称抽42

2x a a

-=-=在区间[2,)+∞的左侧, ……………2分 即

2

2a

≤,所以,1a ≥。 ……………4分 又因为

q 为假命题,所以:q ?“x R ?∈,2

20x x a ++>”是真命题, ……………6分 所以22a x x >--恒成立, ……………8分

又因为22y x x =--的最大值为1,所以1a > ……………10分 综上,所求实数a 的取值范围是1a >。 ……………12分

17:解:【命题立意】考查随机抽样与频率分布直方图等统计学基本知识,考查用样本估计

总体的思想性以及数据分析处理能力

(Ⅰ)10.11030.021020.3-??-??=……………………………………………………2分

………………………………………3分

(Ⅱ)200.1300.2400.3500.2600.1700.143?+?+?+?+?+?=(百元)…5分 即这50人的平均月收入估计为4300元…………………………………………………6分 (Ⅲ)[65,75]的人数为5人,其中2人赞成,3人不赞成

记赞成的人为a 、b ,不赞成的人为x 、y 、z ……………………………………………8分 任取2人的情况分别是:,,,,,,,,ab ax ay bx by bz xy xz yz 共10种情况………………10分 其中2人都不赞成的是:,,xy xz yz 共3种情况. ………………………………………11分

2人都不赞成的概率为

3

10

.………………………………………………………………12分 18【命题立意】本题主要考察双曲线以及抛物线的标准方程和利用圆锥曲线的定义来解决标准方程问题

解:由题意可知

抛物线的焦点到准线间的距离为2C (即双曲线的焦距).…………1分

设抛物线的方程为.42cx y =…

∵抛物线过点112

346)6,23(22=+=∴?=∴b a c c 即①………………4分

又知16

491

)6()23(2

22

2

22=-∴

=-b

a b a ②………………………………8分

由①②可得4

3,4

122==b a ………………………………10分

∴所求抛物线的方程为x y 42=,………………………11分 双曲线的方程为13

4422=-y x ………………………12分

19:【命题立意】本题主要考察随机事件的概率、古典概型等概念及相关计算,考察应用意识。

解:(Ⅰ)由题意,(,,)a b c 所有的可能为:

(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3), (1,3,1),(1,3,2),(1,3,3),

(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3), (2,3,1),(2,3,2),(2,3,3),

(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3), (3,3,1),(3,3,2),(3,3,3),共27种. ……………4分 设“抽取的卡片上的数字满足a +b =c ”为事件A ,

则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种, ……………6分 所以P (A )=327=1

9

.

因此,“抽取的卡片上的数字满足a +b =c ”的概率为1

9. ……………8分

(Ⅱ)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,

则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种. ……………10分 所以38()1()1279

P B P B =-=-

=

因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为

8

9

………12分 20.【命题立意】以棱柱为载体,考查空间向量的应用,用向量求解线线垂直、异面直线所成角、二面角问题,考查学生的运算求解能力。 证:(Ⅰ)建立如图所示的直角坐标系,

则A (0,0,0)、D (0,2,0)、P (0,0,2).…………1分 在R t △BAD 中,AD =2,BD =22,

∴AB =2.∴B (2,0,0)、C (2,2,0),

∴)0,2,2(),0,2,2(),2,0,0(-===BD AC AP …………3分 ∵0,0=?=?,即BD ⊥AP ,BD ⊥AC , 又AP ∩AC =A ,∴BD ⊥平面PAC . ………………4分 解:(Ⅱ)由(Ⅰ)得)0,0,2(),2,2,0(-=-=.

设平面PCD 的法向量为),,(1z y x n =,则0,011=?=?n n , 即??

?=++-=-+00020220x z y ,∴???==z

y x 0

故平面PCD 的法向量可取为)1,1,0(1=n

∵PA ⊥平面ABCD ,∴)01,0(=为平面ABCD 的法向量. …………6分

设二面角P —CD —B 的大小为θ

,依题意可得2

2

cos =

=

θ,∴θ = 450 . …8分 (Ⅲ)由(Ⅰ)

得)2,2,0(),2,0,2(-=-=PD PB ,设平面PBD 的法向量为),,(2z y x n =,

则0,022=?=?n n ,即?

??=-+=-+02200

202z y z x ,∴x =y =z ,

故平面PBD 的法向量可取为)1,1,1(2=n . ……………………10分

∵)2,2,2(-=,∴C 到面PBD

的距离为3

3

2=

=

d ……13分 命题意图:空间向量在立体几何中的综合应用,证垂直以及求角和距离 21(本小题满分14分)

解答.(1)由题意知:

2a=

|PQ|=22b a

得22b =

所以椭圆C 的标准方程为12

62

2=+y x ………4分 (2)

1)方法1:

由题意设直线l 的方程为:(2)y k x =-

由?????-==+)

2(12622x k y y x 得061212)31(2222=-+-+k x k x k

设A(x 1,y 1)、B(x 2,y 2),

所以22121222

12126

,1313k k x x x x k k

-+==++………5分 设中点M (x ,y )

所以x=21226213x x k k +=+ (2)y k x =-

消去k 得M 的轨迹方程为:2

2

320x y x +-=…………7分 方法2:点差法

设A(x 1,y 1)、B(x 2,y 2),中点M (x ,y )代入椭圆方程得:

22112

2

223636

x y x y +=+=…………4分

相减得:12121212()()3(y )(y )0x x x x y y +-+-+=将中点M 坐标代入

30x ky +=得:………………………………5分

又因为(2)y k x =-………………………………6分 消去k 得M 的轨迹方程为:

22320x y x +-=………………………………8分

2)根据题意,假设x 轴上存在定点N (m,0),

使得2()NA NA AB NA AB NA NA NB +?=+?=?

为定值.………9分 则()()()11221212,,()NA NB x m y x m y x m x m y y ?=-?-=--+

=()()()()22

2

2121

2

124k x x k m

x x k

m +-++++

()()

2

222

31210613m m k m k -++-=

+……………………11分

要使上式为定值,即与k 无关,()

631012322-=+-m m m ,………12分

得37

=

m . ……………………13分 此时,

22569

NA NA AB m +?=-=- , 所以在x 轴上存在定点E(3

7

,0)使得2NA NA AB +? 为定值,且定值为

9

5

-. ……………………14分

命题意图:考查椭圆中点轨迹的求法以及定点定值的和椭圆的综合应用

高二数学期末试卷(理科)

高二数学期末考试卷(理科) 一、选择题(本大题共11小题,每小题3分,共33分) 1、与向量(1,3,2)a =-r 平行的一个向量的坐标是( ) A .( 3 1 ,1,1) B .(-1,-3,2) C .(-21,2 3 ,-1) D .(2,-3,-22) 2、设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ?”、“q ?”、“p q ∧”、“p q ∨”为假命题的个数为( ) A .0 B .1 C .2 D .3 3、“a >b >0”是“ab <2 2 2b a +”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 4、椭圆14 2 2=+y m x 的焦距为2,则m 的值等于 ( ). A .5 B .8 C .5或3 D .5或8 5、已知空间四边形OABC 中,===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则=( ) A . 21 3221+- B .21 2132++- C .2 1 2121-+ D .2 13232-+ 6、抛物线2 y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( ) A . 1716 B .1516 C .7 8 D .0 7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x +2y -3=0,则该双曲线的离心率为( ) A.5或 54 或 C. D.5或5 3 8、若不等式|x -1|

高二下学期期末数学试题及答案

第1页(共4页) 第2页(共4页) 密 封 线 内 不 要 答 题 XXX 学年下学期期末考试 高二数学试卷 一、选择题(每题2分,共30分) 1、sin450cos150-cos450sin150的值是 ( ) A.-23 B.21 C.-21 D.2 3 2、若cos α=-21,sin β=2 3,且α和β在第二象限,则 sin(α+β)的值( ) A.213- B.23 C.-23 D.2 1 3、x y 2 12-=的准线方程 ( ) A. 21=y B. 8 1=x C. 41=x D. 161 =x 4、由1,2,3可以组成多少个没有重复数字的三位数 ( ) A. 6个 B . 3个 C. 2个 D. 1个 5、(n x )6-的展开式中第三项的系数等于6,那么n 的值 ( ) A . 2 B .3 C . 4 D .5 6、从放有7个黑球,5个白球的袋中,同时取出3个,那么3个球是同色的概率( ) A. 221 B. 447 C. 44 9 D. 221或44 7 7、x y 2=与抛物线2x y =的交点有( ) A .1个 B .2个 C .3个 D .4个 8、化简x y x x y x cos )cos(sin )sin(+++的结果是( ) A . )2cos(y x + B .y cos C .)2sin(y x + D .y sin 9、已知△ABC 的三边分别为a=7, b=10, c=6,则△ABC 为( ) A.锐角三角形B.直角三角形 C.钝角三角形 D.无法确定 10、函数y x y 的图象可由函数)6sin(2π+==的图象x sin 2 而得到( ) A. 向右平移6π个单位 B. 向左平移6π个单位 C. 向右平移3π个单位 D. 向左平移3π个单位 11、椭圆155322=+y x 的焦点坐标为 ( ) A.)0,8(),0,8(- B.)8,0(),8,0(- C.)0,2(),0,2(- D.)2,0(),2,0(- 12、 6 1??? ? ? +x x 的展开式中常数项是 ( ) A.C 36 B.C 4 6 C.C 06 D.C 56 专业 班级 考场 座号

高二上学期期末数学试卷(理科)第23套真题

高二上学期期末数学试卷(理科) 一、选择题 1. 抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是() A . B . C . D . 2. 直线x+y﹣3=0的倾斜角为() A . B . C . D . 3. 为研究两变量x和y的线性相关性,甲、乙两人分别做了研究,利用线性回归方法得到回归直线方程m和n,两人计算相同,也相同,则下列说法正确的是() A . m与n重合 B . m与n平行 C . m与n交于点(,) D . 无法判定m与n是否相交 4. 一束光线从A(1,0)点处射到y轴上一点B(0,2)后被y轴反射,则反射光线所在直线的方程是() A . x+2y﹣2=0 B . 2x﹣y+2=0 C . x﹣2y+2=0 D . 2x+y﹣2=0 5. 完成下列抽样调查,较为合理的抽样方法依次是() ①从30件产品中抽取3件进行检查. ②某校高中三个年级共有2460人,其中高一890人、高二820人、高三810人,为了了解学生对数学的建议,拟抽取一个容量为300的样本; ③某剧场有28排,每排有32个座位,在一次报告中恰好坐满了听众,报告结束后,为了了解听众意见,需要请28名听众进行座谈.

A . ①简单随机抽样,②系统抽样,③分层抽样 B . ①分层抽样,②系统抽样,③简单随机抽样 C . ①系统抽样,②简单随机抽样,③分层抽样 D . ①简单随机抽样,②分层抽样,③系统抽样 6. 有四个游戏盒,将它们水平放稳后,在上面仍一粒玻璃珠,若玻璃珠落在阴影部分,则可中奖,则中奖机会大的游戏盘是() A . B . C . D . 7. 以点(5,4)为圆心且与x轴相切的圆的方程是() A . (x﹣5)2+(y﹣4)2=16 B . (x+5)2+(y﹣4)2=16 C . (x﹣5)2+(y﹣4)2=25 D . (x+5)2+(y﹣4)2=25 8. 直线l1:(a+3)x+y﹣4=0与直线l2:x+(a﹣1)y+4=0垂直,则直线l1在x轴上的截距是() A . 1 B . 2 C . 3 D . 4 9. 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为()(参考数据:sin15°=0.2588,sin75°=0.1305)

高二下学期数学期末考试试卷(理科)

高二下学期数学期末考试试卷(理科) (时间:120分钟,分值:150分) 一、单选题?每小题 分,共 ?分? .平面内有两个定点? ?- ???和? ?????,动点 满足 ? - ? = ,则动点 的轨迹方程是?? ??? ?-? = ???- ? ? ? - ? ?= ???- ? ?? ?- ? = ????? ? ? - ? ?= ????? .用秦九韶算法计算??????? ?? ?? ?? ?? ????当?????时的值 需要进行乘法运算和加法运算的次数分别为???? ??? ? ??? ? ??? ? ???? .下列存在性命题中,假命题是?? ?? ? ?,? ??? ? 至少有一个? ?,?能被 和 整除 ? 存在两个相交平面垂直于同一条直线 ? ? {?是无理数},? 是有理数 页脚内容

页脚内容 .将甲、乙两枚骰子先后各抛一次,?、?分别表示抛掷甲、乙两枚骰子所出现的点数.若点 ??,??落在直线?+?=???为常数?上,且使此事件的概率最大,则此时?的值为 ? ? ?? ? ? ? ? ? ? ? .已知点P 在抛物线2 4x y =上,则当点P 到点()1,2Q 的距离与点P 到抛物线 焦点距离之和取得最小值时,点P 的坐标为? ? ?? ()2,1 ? ()2,1- ? 11, 4??- ??? ? 11,4?? ??? .按右图所示的程序框图,若输入81a =,则输出的 i ? ? ?? ?? ? ?? ? ?? ? ?? .若函数()[)∞+- =,在12x k x x h 在上是增函数,则实数 的取值范围是? ? ?? ? ? ? .空气质量指数???? ?◆?●??? ?????,简称????是定量描述空气质量状况的无量纲指数,空气质量按照???大小分为六

高二期末数学(文科)试卷及答案

. 银川一中2016/2017学年度(上)高二期末考试 数学试卷(文科) 一、选择题(每小题5分,共60分) 1.抛物线24 1x y =的准线方程是( ) A .1-=y B .1=y C .16 1-=x D .16 1=x 2.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 ( ) A .(0,+∞) B .(0,2) C .(1,+∞) D .(0,1) 3.若双曲线E :116 92 2=-y x 的左、右焦点分别为F 1、F 2,点P 在双曲线E 上,且|PF 1|=3, 则|PF 2|等于 ( ) A .11 B .9 C .5 D .3或9 4.已知条件p :1-x <2,条件q :2 x -5x -6<0,则p 是q 的 A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件 5.一动圆P 过定点M (-4,0),且与已知圆N :(x -4)2+y 2=16相切,则动圆圆心P 的轨迹方程是 ( ) A .)2(112 42 2≥=-x y x B .)2(112 42 2≤=-x y x C .112 422 =-y x D .112 422=-x y 6.设P 为曲线f (x )=x 3+x -2上的点,且曲线在P 处的切线平行于直线y =4x -1,则P 点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)或(-1,-4) D .(2,8)或(-1,-4) 7.已知椭圆E 的中心为坐标原点,离心率为 2 1 ,E 的右焦点与抛物线C :y 2=8x 的焦点重合,点A 、B 是C 的准线与E 的两个交点,则|AB |= ( ) A .3 B .6 C .9 D .12 8.若ab ≠0,则ax -y +b =0和bx 2+ay 2=ab 所表示的曲线只可能是下图中的 ( ) 9.抛物线y =x 2到直线 2x -y =4距离最近的点的坐标是 ( ) A .)4 5 ,23( B .(1,1) C .)4 9 ,23( D .(2,4) 10. 函数x e y x =在区间?? ? ???221, 上的最小值为 ( ) A .e 2 B . 221e C . e 1 D .e 11.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为 ( ) A . 4 3 B .2 3 C .1 D .2 12.已知椭圆22 22:1(0)x y C a b a b +=>>的左焦点为F ,C 与过原点的直线相交于A 、B 两点, 连接AF 、BF . 若|AB |=10,|BF |=8,cos ∠ABF = 4 5 ,则C 的离心率为 ( ) A. 3 5 B. 5 7 C. 4 5 D. 67 二、填空题(每小题5分,共20分) 13.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,则点M 的坐 标为________. 14.已知函数f (x )= 3 1x 3+ax 2 +x +1有两个极值点,则实数a 的取值范围是 . 15.过椭圆22 154 x y +=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△OAB 的面积为__________.

高二上学期文科数学期末试题(含答案)

东联现代中学2014-2015学年第一学期高二年级期末考 试 文科数学 【试卷满分:150分,考试时间:120分钟】 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的。 1、抛物线x y 162 =的焦点坐标为( ) A . )4,0(- B. )0,4( C. )4,0( D. )0,4(- 2.在ABC ?中,“3 π = A ”是“1 cos 2 A = ”的( ) A .充分而不必要条件 B .必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 3.直线经过椭圆的一个焦点和一个顶点,则该椭 圆的离心率为( ) A. B . C. D. 4、ABC ?中,角C B A ,,所对的边分别是c b a ,,,若A b c cos <,则ABC ?为 ( ) A 、等边三角形 B 、锐角三角形 C、直角三角形 D、钝角三角形 5.函数f(x )=x-ln x 的递增区间为( ) A .(-∞,1) ?B.(0,1) C.(1,+∞) D.(0,+∞) 6. 已知函数()f x 的导函数()f x '的图象如图 所示,那么函数()f x 的图象最有可能的是( ) 220x y -+=22 221(0)x y a b a b +=>>55122552 3

7.设等比数列{}n a 的公比2q =,前n 项和为n S ,则 2 4 a S 的值为( ) (A )154 ? (B)152? ?(C)74 (D )72 8.已知实数x y ,满足2203x y x y y +≥?? -≤??≤≤? , ,,则2z x y =-的最小值是( ) (A)5 (B ) 52 (C)5- (D )52 - 9.已知12(1,0),(1,0)F F -是椭圆的两个焦点,过1F 的直线l 交椭圆于,M N 两点,若 2MF N ?的周长为8,则椭圆方程为( ) (A )13422=+y x (B )1342 2=+x y (C ) 1151622=+y x (D)115 162 2=+x y 10、探照灯反射镜的轴截面是抛物线)0(22>=x px y 的一部分,光源位于抛物线的焦点处,已知灯口圆的直径为60cm,灯深40cm ,则抛物线的焦点坐标为 ( ) A、??? ??0,245 B 、??? ??0,445 C 、??? ??0,845 D、?? ? ??0,1645 11、双曲线C 的左右焦点分别为21,F F ,且2F 恰好为抛物线x y 42=的焦点,设双曲线C 与该抛物线的一个交点为A ,若21F AF ?是以1AF 为底边的等腰三角形,

高二下学期期末考试数学试卷(含答案)

高中二年级学业水平考试 数学 (测试时间120分钟,满分150分) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试卷上无效. 4.考试结束,将本试卷和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知i 是虚数单位,若复数))((R a i a i ∈+-的实部与虚部相等,则=a (A )2- (B )1- (C )1 (D )2 (2)若集合{}0,1,2A =,{} 2 4,B x x x N =≤∈,则A B I = (A ){} 20≤≤x x (B ){} 22≤≤-x x (C ){0,1,2} (D ){1,2} (3)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 没有公共点”是“平面α和平面β平 行”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 (4)若()1sin 3πα-= ,且2 π απ≤≤,则sin 2α的值为 (A )9- (B )9- (C )9 (D )9 (5)在区间[]1,4-上随机选取一个数x ,则1≤x 的概率为 (A ) 23 (B )15 (C )52 (D )14

图2 俯视图 侧视图 主视图 (6)已知抛物线2 y x =的焦点是椭圆22 21 3 x y a +=的一个焦点,则椭圆的离心率为 (A ) 37 (B )13 (C )14 (D )17 (7)以下函数,在区间[3,5]内存在零点的是 (A )3()35f x x x =--+ (B )()24x f x =- (C )()2ln(2)3f x x x =-- (D )1 ()2f x x =-+ (8)已知(2,1),(1,1)a b ==r r ,a r 与b r 的夹角为θ,则cos θ= (A (B (C (D (9)在图1的程序框图中,若输入的x 值为2,则输出的y 值为 (A )0 (B )12 (C )1- (D )32 - (10)某几何体的三视图如图2所示,则该几何体的侧面积是 (A )76 (B )70 (C )64 (D )62 (11)设2()3,()ln(3)x f x e g x x =-=+,则不等式 (())(())11f g x g f x -≤的解集为 (A )[5,1]- (B )(3,1]- (C )[1,5]- (D )(3,5]- (12) 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且00x <,则a 的取值范围为 (A )∞(-,-2) (B )1∞(-,-) (C )(1,+)∞ (D )(2,)+∞ 第Ⅱ卷 本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答. 二、填空题( 本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上. (13)函数()cos f x x x =+的最小正周期为 .

人教版高中数学必修5期末测试题

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.在等差数列3,7,11…中,第5项为( ). A .15 B .18 C .19 D .23 2.数列{}n a 中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列 D .首项为1的等比数列 3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4 B .5 C .6 D .7 4.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°, 则c 的值等于( ). A .5 B .13 C .13 D .37 5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 6.△ABC 中,如果A a tan =B b tan =C c tan ,那么△ABC 是( ). A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 7.如果a >b >0,t >0,设M =b a ,N =t b t a ++,那么( ). A .M >N B .M <N C .M =N D .M 与N 的大小关系随t 的变化而变化 8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n = n 21 D .a n =1+log 2n

高二上学期数学 期 末 测 试 题

高 二 上 学 期 数 学 期 末 测 试 题 一、选择题:1.不等式21 2 >++ x x 的解集为( ) A.()()+∞-,10,1Y B.()()1,01,Y -∞- C.()()1,00,1Y - D.()()+∞-∞-,11,Y 2.0≠c 是方程 c y ax =+22 表示椭圆或双曲线的( )条件 A .充分不必要 B .必要不充分 C .充要 D .不充分不必要 3.若,20πθ≤≤当点()θcos ,1到直线01cos sin =-+θθy x 的距离为41,则这条直线的斜率为( ) B.-1 C.2 3 D.- 3 3 4.已知关于x 的不等式012 3 2>+-ax ax 的解集是实数集 R ,那么实数a 的取值范围是( ) A.[0,9 16] B.[0, 9 16) C.(9 16,0) D.????? ? 38,0 5.过点(2,1)的直线l 被04222=+-+y x y x 截得的最长弦所在直线方程为:( ) A. 053=--y x B. 073=-+y x C. 053=-+y x D. 013=+-y x 6.下列三个不等式:①;232x x >+②2,0,≥+≠∈b a a b ab R b a 时、;③当0>ab 时,.b a b a +>+其中恒成立的不等 式的序号是( )A.①② B.①②③ C.① D.②③ 7.圆心在抛物线x y 22=上,且与x 轴和该抛物线的准线都相切的一个圆的方程是( ) A .041 222=---+y x y x B .01222=+-++y x y x C .0122 2 =+--+y x y x D .04 1222=+--+y x y x 8.圆C 切y 轴于点M 且过抛物线452+-=x x y 与x 轴的两个交点,O 为原点,则OM 的长是( ) A .4 B . C .22 D .2 9.与曲线14924 22=+y x 共焦点,而与曲线164 36 2 2=-y x 共渐近线的双曲线方程为( ) A .19 1622=-x y B .191622=-y x C .116922=-x y D .116 92 2=-y x 10.抛物线x y 42-=上有一点P ,P 到椭圆115 162 2=+y x 的左顶点的距离的最小值为( ) A .32 B .2+ 3 C . 3 D .3 2- 11.若椭圆)1(122>=+m y m x 与双曲线)0(122 >=-n y n x 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则2 1PF F ?的面积是( )A .4 B .2 C .1 D .

高二下学期数学期末考试试卷含答案.(word版)

高二下学期期末考试 数学试题 第Ⅰ卷(选择题,共60分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.集合{}0,2,4的真子集个数为( ) A. 3个 B. 6个 C. 7个 D. 8个 2.若复数()21i z +=,则其共轭复数_ z 的虚部为( ) A. 0 B. 2 C. -2 D. -2i 3. 已知幂函数()y f x =的图象过点(3,则)2(log 2f 的值为( ) A .21- B .21 C .2 D .2- 4.已知x x f ln )(5=,则=)2(f ( ) A.2ln 51 B. 5ln 21 C. 2ln 31 D. 3ln 2 1 5. 在画两个变量的散点图时,下面哪个叙述是正确的( ) A. 可以选择两个变量中的任意一个变量在x 轴上 B. 可以选择两个变量中的任意一个变量在y 轴上 C. 预报变量在x 轴上,解释变量在y 轴上 D. 解释变量在x 轴上,预报变量在y 轴上 6.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有 ( )

A .①②③④ B .①②③ C .②③ D .② 7. 若6.03=a ,2.0log 3=b ,36.0=c ,则( ) A .c b a >> B .b c a >> C .a b c >> D .a c b >> 8. 函数y =x -1x 在[1,2]上的最大值为( ) A . 0 B . 3 C . 2 D . 32 9. 函数()43x f x e x =+-的零点所在的区间为( ) A .1,04??- ??? B .10,4?? ??? C .11,42?? ??? D .13,24?? ??? 10. 函数42019250125)(3+++=x x x x f ,满足(lg 2015)3f =,则1(lg )2015f 的值为( ) A. 3- B. 3 C. 5 D. 8 11. 若函数()f x 为定义在R 上的奇函数,且在()0,+∞为增函数,又(2)f 0=,则不等式[]1ln ()0x f x e ????< ??? 的解集为( ) A .()()2,02,-+∞U B .()(),20,2-∞-U C .()()2,00,2-U D .()(),22,-∞-+∞U 12. 已知函数27,(1)()(1)x ax x f x a x x ?---≤?=?>??是R 上的增函数,则a 的取值范围是( )

高二上学期数学期末考试试卷真题

高二上学期数学期末考试试卷 一、解答题 1. 直线的倾斜角的大小为________. 2. 设直线,, . (1)若直线,,交于同一点,求m的值; (2)设直线过点,若被直线,截得的线段恰好被点M平分,求直线的方程. 3. 如图,在四面体中,已知⊥平面, ,,为的中点. (1)求证:; (2)若为的中点,点在直线上,且, 求证:直线//平面. 4. 已知,命题{ |方程 表示焦点在y轴上的椭圆},命题{ |方程

表示双曲线},若命题“p∨q”为真,“p∧q”为假,求实数的取值范围. 5. 如图,已知正方形和矩形所在平面互相垂直, ,. (1)求二面角的大小; (2)求点到平面的距离. 6. 已知圆C的圆心为,过定点 ,且与轴交于点B,D. (1)求证:弦长BD为定值; (2)设,t为整数,若点C到直线的距离为,求圆C的方程. 7. 已知函数(a为实数). (1)若函数在处的切线与直线 平行,求实数a的值; (2)若,求函数在区间上的值域; (3)若函数在区间上是增函数,求a的取值范围. 8. 设动点是圆上任意一点,过作轴的垂线,垂足为,若点在线段上,且满足.

(1)求点的轨迹的方程; (2)设直线与交于,两点,点 坐标为,若直线,的斜率之和为定值3,求证:直线必经过定点,并求出该定点的坐标. 二、填空题 9. 命题“对任意的”的否定是________. 10. 设,,且// ,则实数________. 11. 如图,已知正方体的棱长为a,则异面直线 与所成的角为________. 12. 以为准线的抛物线的标准方程是________. 13. 已知命题: 多面体为正三棱锥,命题:多面体为正四面体,则命题是命题的________条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”之一) 14. 若一个正六棱柱的底面边长为,侧面对角线的长为,则它的体积为________. 15. 函数的单调递减区间为________.

高二下学期数学期末考试试卷(理科)

高二理科数学试卷(4-1) 高二下学期数学期末考试试卷(理科) (时间:120分钟,分值:150分) 一、单选题(每小题5分,共60分) 1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( ) A.x 216-y 2 9 =1(x ≤-4) B.x 29-y 2 16=1(x ≤-3) C.x 216-y 2 9 =1(x ≥4) D.x 29-y 2 16 =1(x ≥3) 2.用秦九韶算法计算f(x)=3x 6+4x 5+5x 4+6x 3+7x 2+8x+1当x=0.4时的值,需要进行乘法运算和加法运算的次数分别为( ) A. 6,6 B. 5,6 C. 6,5 D. 6,12 3.下列存在性命题中,假命题是( ) A. ?x ∈Z ,x 2-2x-3=0 B. 至少有一个x ∈Z ,x 能被2和3整除 C. 存在两个相交平面垂直于同一条直线 D. x ∈{x 是无理数},x 2是有理数 4.将甲、乙两枚骰子先后各抛一次,a 、b 分别表示抛掷甲、乙两枚骰子所出现的点数.若点P (a ,b )落在直线x +y =m (m 为常数)上,且使此事件的概率最大,则此时m 的值为 ( ) A. 6 B. 5 C. 7 D. 8 5.已知点P 在抛物线2 4x y =上,则当点P 到点 ()1,2Q 的距离与点P 到抛物线焦点距离之和取得最小值 时,点P 的坐标为( ) A. ()2,1 B. ()2,1- C. 11, 4??- ??? D. 11, 4?? ??? 6.按右图所示的程序框图,若输入81a =,则输出的

高二理科数学上学期期末试卷及答案

高二理科数学上学期期 末试卷及答案 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

安庆一中2007——2008学年度第一学期高二(理科) 数学期末考试卷 一、 选择题(本大题共11小题,每小题3分,共33分) 1、与向量(1,3,2)a =-平行的一个向量的坐标是( ) A .(31 ,1,1) B .(-1,-3,2) C .(-21,2 3 ,-1) D .(2,-3,-22) 2、设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ?”、“q ?”、“p q ∧”、“p q ∨”为假命题的个数为( ) A .0 B .1 C .2 D .3 3、“a >b >0”是“ab <2 2 2b a +”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 4、椭圆14 2 2=+y m x 的焦距为2,则m 的值等于 ( ). A .5 B .8 C .5或3 D .5或8 5、已知空间四边形OABC 中,c OC b OB a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .213221+- B .212132++- C .c b a 212121-+ D .c b a 2 13232-+ 6、抛物线2y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( ) A . 1716 B .1516 C .7 8 D .0 7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x +2y -3=0,则该双曲线的离心率为( ) 或54 或53 8、若不等式|x -1|

高二数学上期末考试卷及答案

(选修2-1) 说明: 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试时间120分钟。 第Ⅰ卷(选择题 共36分) 注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、座号、考试科目涂写在答题卡上。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,在试题卷上作答无效。 一.选择题(本大题共12小题,每小题3分,共36分。) 1.下列命题是真命题的是 A 、“若0=x ,则0=xy ”的逆命题; B 、“若0=x ,则0=xy ”的否命题; C 、若1>x ,则2>x ; D 、“若2=x ,则0)1)(2(=--x x ”的逆否命题 2.已知p:522=+,q:23>,则下列判断中,错误..的是 A 、p 或q 为真,非q 为假; B 、p 且q 为假,非p 为真; C 、p 且q 为假,非p 为假; D 、p 且q 为假,p 或q 为真; 3.对抛物线24y x =,下列描述正确的是 A 、开口向上,焦点为(0,1) B 、开口向上,焦点为1(0, )16 C 、开口向右,焦点为(1,0) D 、开口向右,焦点为1(0, )16 4.已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ?是B ?的 A 、充分条件 B 、必要条件 C 、充要条件 D 、既不充分也不必要条件 5.经过点)62,62(-M 且与双曲线1342 2=-y x 有共同渐近线的双曲线方程为 A .18622=-y x B .18 62 2=-x y C . 16822=-y x D .16822=-x y 6.已知△ABC 的顶点B 、C 在椭圆13 43 2=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 A.23 B. 8 C.34 D. 4

高二下学期期末数学考试试卷含答案(共3套)

高二年级下学期期末考试 数学试卷 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式532<-x 的解集为( ) A. )4,1(- B. )4,1( C. )4,1(- D. )4,1(-- 2、设复数z 满足i z i 2)1(=+(i 为虚数单位),则复数z 的共轭复数在复平面中对应的点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3、某市对公共场合禁烟进行网上调查,在参与调查的2500名男性市民中有1000名持支持态 度,2500名女性市民中有2000人持支持态度,在运用数据说明市民对在公共场合禁烟是否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率 4、若函数c bx ax x f ++=24)(满足2)1(='f ,则)1(-'f 等于( ) A. 1- B. 2- C. 2 D. 0 5、函数)(x f y =的图象过原点,且它的导函数)(x f y '=的图象是如图所示的一条直线, )(x f y =的图象的顶点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 6、在一组样本数据),(11y x ,),(22y x ,……,),(n n y x n x x x n ???≥21,,2(不全相等)的散点图中, 若所有样本点),(i i y x )2,1(n i ???=都在直线12 1 +=x y 上, 则这组样本数据的样本相关系数为( ) A. 1- B. 0 C. 2 1 D. 1 7、若1b 那么下列命题正确的是( ) A. b a 11> B. 1>a b C. 22b a > D. 1-+x ,0>y ,若 m m y x x y 2822+>+恒成立,则实数m 的取值范围是( ) A. 4≥m 或2-≤m B. 2≥m 或4-≤m C. 24<<-m D. 42<<-m 9、某同学为了了解某家庭人均用电量(y 度)与气温(C x o )的关系,曾由下表数据计算回 归直线方程50?+-=x y ,现表中有一个数据被污损,则被污损的数据为( )

高二上学期理科数学期末考试卷(含答案详解)

绝密★启用前 澜沧一中2019-2020学年度高二年级上学期期末考试 数学试卷(理科) 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,22题,共2页 (考试用时120分钟,满分150分) 注意事项: 1、答题前,考生务必用黑色碳素笔将自己的学校、班级、姓名、学号在答题卡上填写清楚。 2、考生必须把所有答案填写在答题卡上,答在试卷上的答案无效。 3、选择题每小题选出答案后,把正确答案的序号(字母)认真地写在答题卡的相应位置。用黑色碳素笔作答,答案不要超出给定的答题框。 4、考生必须按规定的方法和要求答题,不按要求答题所造成的后果由本人负责。 5、考试结束后,将本试卷和答题卡一并交回。 第I 卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分。每小题给出四个选项中, 只有一项符合题目要求) 1.已知集合M ={1,2,4,8},N ={2,4,6,8},则M ∩N =( ) A .{2,4} B .{2,4,8} C .{1,6} D .{1,2,4,6,8} 2.双曲线y 2-x 2=2的渐近线方程是( ) A .y =±x B .y =±2x C .y =±3x D .y =±2x 3.lg 0.001+ln e =( ) A.72 B .-52 C .-72 D.5 2 4.若a 为实数且2+a i 1+i =3+i ,则a =( ) A . -4 B .-3 C .3 D .4 5.设x ∈R ,则“x >3”是“x 2-2x -3>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.已知点(m,1)(m >0)到直线l :x -y +2=0的距离为1,则m =( ) A. 2 B .2- 2 C.2-1 D.2+1 7.如果正△ABC 的边长为1,那么AB →·AC →等于( ) A .-12 B.1 2 C .1 D .2 8.对于不同直线a ,b ,l 以及平面α,下列说法中正确的是( ) A .如果a ∥b ,a ∥α,则b ∥α B .如果a ⊥l ,b ⊥l ,则a ∥b C .如果a ∥α,b ⊥a 则b ⊥α D .如果a ⊥α,b ⊥α,则a ∥b 9.如图,给出了奇函数f (x )的局部图象,那么f (1)等于( ) A .-4 B .-2 C .2 D .4 10.已知函数f (x )=x -2+log 2x ,则f (x )的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 11.记等比数列{a n }的前n 项和为S n ,已知S 1=-2,S 3=-6,且公比q ≠1,则a 3=( )

高二上学期数学期末考试试卷及答案

高二上学期数学期末考试试卷及答案 考试时间:120分钟试题分数:150分 卷Ⅰ 一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.对于常数、,“”是“方程的曲线是双曲线”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.命题“所有能被2整除的数都是偶数”的否定是 A.所有不能被2整除的数都是偶数 B.所有能被2整除的数都不是偶数 C.存在一个不能被2整除的数是偶数 D.存在一个能被2整除的数不是偶数 3.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为 A.B.C.D. 4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题是“甲降落在指定范围”,是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A.B.C.D. 5.若双曲线的离心率为,则其渐近线的斜率为 A.B.C.D. 6.曲线在点处的切线的斜率为

A.B.C.D. 7.已知椭圆的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线的焦点坐标为 A.B.C.D. 8.设是复数,则下列命题中的假命题是 A.若,则 B.若,则 C.若,则 D.若,则 9.已知命题“若函数在上是增函数,则”,则下列结论正确的是 A.否命题“若函数在上是减函数,则”是真命题 B.逆否命题“若,则函数在上不是增函数”是真命题 C.逆否命题“若,则函数在上是减函数”是真命题 D.逆否命题“若,则函数在上是增函数”是假命题 10.马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的 A.充分条件 B.必要条件 C.充分必要条件 D.既不充分也不必要条 件 11.设,,曲线在点()处切线的倾斜角的取值范围是,则到曲线 对称轴距离的取值范围为 A.B.C.D. 12.已知函数有两个极值点,若,则关于的方程的不同实根个数 为 A.2 B.3 C.4 D.5 卷Ⅱ 二、填空题:本大题共4小题,每小题5分,共20分.

高二下期期末数学测试题及答案解析

高二下期期末数学测试题 第I卷(选择题) 一、选择题(本题共12道小题,每小题5分,共60分) 1.过函数图象上一个动点作函数的切线,则切线倾斜角的范围为(B ) A. B. C. D. 2.曲线y=ln(2x﹣1)上的点到直线2x﹣y+3=0的最短距离是(A) A.B.2 C.3 D.0 3.曲线y=e﹣2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为( A )A.B.C.D.1 4.已知函数与的图象如图所示,则(C) A.在区间(0,1)上是减函数B.在区间(1,4)上是减函数 C.在区间上是减函数D.在区间上是减函数 5.设是虚数单位,若复数,则的共轭复数为(D ) A.B.C.D. 6.某高三学生进行考试心理素质测试,场景相同的条件下每次通过测试的概率为,则连续测试4次,至少有3次通过的概率为(A )

A.B. C.D. 7.将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为91,现场作的7个分数的茎叶图有一个数据模糊,无法辨认,在图中以表示,则5个剩余分数的方差为(C ) A.B. C. 6 D.30 8.在的展开式中,常数项是(D) A.B.C.D. 9.由数字0,1,2,3组成的无重复数字的4位数,比2018大的有( B )个 A.10 B.11 C.12 D.13 10.已知,在的图象上存在一点,使得在处作图象的切线, 满足的斜率为,则的取值范围为(A ) A.B. C.D. 11.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示: 电视台每周安排的甲、乙连续剧的总播放时长不多于600min,广告的总播放时长不少于 30min,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用,表示每周计划播出的甲、乙两套连续剧的次数,要使总收视人次最多,则电视台每周播出甲、乙两套连续剧的次数分别为(A ) A.6,3 B.5,2 C. 4,5 D.2,7

2019-2020年高二数学(理)上学期期末试卷及答案

2019-2020学年度上学期期末考试 高二数学(理科)试卷 考试时间:120分钟 试题分数:150分 卷Ⅰ 一、 选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1. 对于常数m 、n ,“0mn <”是“方程221mx ny +=的曲线是双曲线”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 2. 命题“所有能被2整除的数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数 B .所有能被2整除的数都不是偶数 C .存在一个不能被2整除的数是偶数 D .存在一个能被2整除的数不是偶数 3. 已知椭圆116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为7,则P 到另一焦点距离为 A .2 B .3 C .5 D .7 4 . 在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()()p q ?∨? B .()p q ∨? C .()()p q ?∧? D .p q ∨ 5. 若双曲线22 221x y a b -=3 A .2± B. 1 2 ± C. 222± 6. 曲线sin 1 sin cos 2 x y x x =-+在点(,0)4M π处的切线的斜率为 A. 22 B. 22- C. 12 D. 1 2 -

7. 已知椭圆)0(1222222>>=+b a b y a x 的焦点与双曲线122 22=-b x a y 的焦点恰好是一个 正方形的四个顶点,则抛物线2bx ay =的焦点坐标为 A. )0,43( B. )0,123( C. )123,0( D.)43,0( 8.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜. 记三种盖法屋顶面积分别为123,,P P P , ① ② ③ 若屋顶斜面与水平面所成的角都是α,则 A. 123P P P == B. 123P P P =< C. 123P P P <= D. 123P P P << 9. 马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的 A .充分条件 B .必要条件 C .充分必要条件 D .既不充分也不必要条件 10. 设0>a ,c bx ax x f ++=2)(,曲线)(x f y =在点P ()(,00x f x )处切线的倾斜角的取值范围是]4 ,0[π ,则P 到曲线)(x f y =对称轴距离的取值范围为 A. ]1,0[a B. ]21 ,0[a C. ]2,0[a b D. ]21,0[a b - 11. 已知点O 在二面角AB αβ--的棱上,点P 在α内,且60POB ∠=?.若对于β内异于O 的任意一点Q ,都有60POQ ∠≥?,则二面角AB αβ--的大小是 A. 30? B.45? C. 60? D.90? 12. 已知双曲线22 221(0,0)x y a b a b -=>>的两个焦点为1F 、2F ,点A 在双曲线第一象 限的图象上,若△21F AF 的面积为1,且2 1 tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为

相关文档
相关文档 最新文档