文档视界 最新最全的文档下载
当前位置:文档视界 › 蓝牙通讯详细原理

蓝牙通讯详细原理

蓝牙通讯详细原理
蓝牙通讯详细原理

一、HCI在蓝牙软件协议模型位置的分析

蓝牙系统的协议模型如图1

所示。从图中可以看出,HCI是

位于蓝牙系统的L2CAP(逻辑链

路控制与适配协议)层和LMP

(链路管理协议)层之间的一Array层协议。HCI为上层协议提供了

进入LM的统一接口和进入基带

的统一方式。在HCI的主机

(Host)和HCI主机控制器

(Host Controller)之间会存

在若干传输层,这些传输层是

透明的,只需完成传输数据的

任务,不必清楚数据的具体格

式。目前,蓝牙的SIG规定了

四种与硬件连接的物理总线方

式:USB、RS232、UART和PC卡。

其中通过RS232串口线方式进

行连接具有差错校验。

由图可看出,HCI层屏蔽了基带,为协

议层的上层提供了进入基带的统一方

式。

二、HCI与基带通信方式的研究与

分析

蓝牙系统的底层协议通信如图3所

示。下面结合图3对蓝牙系统中HCI

层与基带间的通信作一些分析研究。

1.通信方式的分析

HCI是通过包的方式

来传送数据、命令和事件

的,所有在主机和主机控

制器之间的通信都以包

的形式进行。包括每个命Array令的返回参数都通过特

定的事件包来传输。HCI

有数据、命令和事件三种

包,其中数据包是双向

的,命令包只能从主机发

往主机控制器,而事件包

始终是主机控制器发向

主机的。主机发出的大多

数命令包都会触发主机

控制器产生相应的事件

包作为响应。

命令包分为六种类型:

* 链路控制命令; * 链路政策和模式命令; * 主机控制和基带命令; * 信息命令; * 状态命令; * 测试命令。

事件包也可分为三种类型:

* 通用事件,包括命令完成包(Command Complete )和命令状态包(

Command Status ); * 测试事件;

* 出错时发生的事件,如产生丢失(Flush Occured )和数据缓冲区溢出(Data Buffer Overflow )。

数据包则可分为ACL 和SCO 的数据包。包的格式如图4所示。

2.包的参数分析研究 命令包:命令包中的OCF (Opcode Command Field )和OGF (Opcode Group Field )是用于区分命令种

的。

Paramete

r Length

表示所带

参数的长

度,以字

节数为单

位,随后

就是所带

的参数列

表。下面

Inquiry

命令为例

对HCI的

命令包做

具体说

明。

在Inquiry命令中,OGF=0x01表示此命令属于链路控制命令,同时

OCF=0x0001则表示此命令为链路控制命令中的Inquiry命令。OCF与OGF共占2字节,又由于底位字节在前,则它们在命令包为0x0104。在Inquiry 命令中,参数Parameter Length为5。Inquiry命令带3个参数,第一个参数为LAP(low address part),它将用来产生Baseband中查询命令包的包头中的Access Code。第二个参数为Inquiry_Length,它时表示在Inquiry命令停止前所定义的最大时间,超过此时间,Inquiry命令将终止。第三个参数为NUM_Response,它的值为0X00表示设备响应数不受限制,只为0x00-0xff则表示在Inquiry命令终止前最大的设备响应数。因此,若LAP=0x9e8b00,Inquiry_Length=0x05,NUM_Response=0x05,则协议上层调用Inquiry命令是HCI向基带发的明令包将为:0x01 04 05 00 8b 9e 05 05。

事件包:事件包的Event Code用来区分不同的事件包,Parameter Length 表示所带参数的长度,以字节数为单位,随后就是所带的参数列表。以Command Status Event事件包为例对HCI的事件包进行具体说明。

当主机控制器收到主机发来的如上面所提到的Inquiry命令包并开始处理时,它就会向主机发送Command Status Event事件包,此事件包为:0x0f 04 00 0a 01 04。0xOf表示此事件包为Command Status Event事件包,0x04表示此事件包带4字节长度的参数,0x00为此事件包的第一个参数即Status,表示命令包正在处理。0x0a为事件包的第二个参数

NUM_HCI_Command_Packets,表示主机最多可在向主机控制器发10个命令包。0x01 04 为第三个参数Command_Opcode,表示此事件包是对Inquiry命令包的响应。

数据包:ACL和SCO数据包中的Connection Handle即连接句柄是一个12比特的标志符,用于唯一确认两台蓝牙设备间的数据或语音连接,可以看作是两台蓝牙设备间唯一的数据通道的标识。两台设备间只能有一条ACL连接,也就是只有一个ACL的连接句柄,相应L2CAP的信道都是建立在这个连接句柄表示的数据通道上;两台设备间可以有多个SCO的连接,则一对设备间会有多个SCO的连接句柄。连接句柄在两设备连接期间一直存在,不管设备处于什么状态。在ACL数据包中,Flags分为PB Flag和BC Flag,PB Flag为包的界限标志,PB Flag=0x00表示此数据包为上层协议包(如L2CAP包)的起始部分;PB Flag=0x01表示此数据包为上层协议包(如L2CAP包)的后续部分。BC Flag 为广播发送的标志,BC Flag=0x00表示无广播发送,只是点对点的发送;BC Flag=0x01表示对所有处于激活状态的从设备进行广播发送,BC Flag=0x02表示对所有的从设备包括处于休眠状态的从设备进行广播发送。ACL和SCO数据包中的Data Total Length 都表示所载荷的数据的长度,以字节位单位。

3.通信过程的研究与分析

当主机与基带之间用命令的方式进行通信时,主机向主机控制器发送命令包。主机控制器完成一个命令,大多数情况下,它会向主机发出一个命令完成事件包(Command Complete Packet),包中携带命令完成的信息。有些命令不会收到命令完成事件,而会收到命令状态事件包(Command Status Packet),

当收到该事件则表示主机发出的命令已经被主机控制器接收并开始处理,过一段时间该命令被执行完毕时,主机控制器会向主机发出相应的事件包来通知主机。如果命令参数有误,则会在命令状态事件中给出相应错误码。假如错误出现在一个返回Command Complete事件包的命令中,则此Command Complete事件包不一定含有此命令所定义的所有参数。状态参数作为解释错误原因同时也是第一个返回的参数,总是要返回的。假如紧随状态参数之后是连接句柄或蓝牙的设备地址,则此参数也总是要返回,这样可判别出此Command Complete 事件包属于那个实例的一个命令。在这种情况下,事件包中连接句柄或蓝牙的设备地址应与命令包种的相应参数一致。假如错误出现在一个不返回Command Complete事件包的命令中,则事件包包含的所有参数都不一定是有效的。主机必须根据于此命令相联系的事件包中的状态参数来决定它们的有效性。

4.HCI流量控制(Flow Control)的分析研究

HCI的流量控制是为了管理主机和主机控制器中有限的资源并控制数据流量而设计的,由主机管理主机控制器的数据缓存区,主机可动态地调整每个连接句柄的流量。

对于命令包的流量控制,主机在每发一个命令之前都要确定当前能发命令包的数目,当然,在开机和重启动时发命令包可以不用考虑接收情况,直到收到命令完成事件包或命令状态事件包为止。因为在每个命令完成事件包和命令状态事件包中都有Num_HCI_Command_ Packets选项表明当时主机能向主机控制器发送的命令包的数目,而对于每个命令必然会有相应的命令完成事件包和命令状态事件包,主机就能控制命令包不会溢出。

对于数据包的流量控制,一开始,主机调用Read_Buffer_Size命令,该命令返回的两个参数决定了主机能发往主机控制器的ACL和SCO两种数据包的大小的最大值,同时两个附加参数则说明了主机控制器能接收的ACL和SCO数据包总的数目。而每隔一段时间,主机控制器会向主机发

Number_Of_Complete_Packets事件,该事件的参数值表明了对每个连接句柄已经处理的数据包的数目(包括正确传输和被丢弃的)。主机根据一开始就知道的总数,减去已经处理的包的数目,则可计算出还能发多少数据包,从而控制数据包的流量。

如有必要,HCI的流量控制也可由主机控制器来实现对主机的控制,可以通过Set_Host_ Controller_To_Host_Flow_Control命令来设置,其控制过程基本与主机控制过程类似,只是命令稍有不同。当主机收到断链确认的事件后,就认为所有传往主机控制器的数据包已经全部被丢弃了,同时主机控制器中的数据缓冲区也被释放了。

三、HCI协议层软件开发

我们在对HCI层进行全面的分析研究之后,提出了HCI协议层软件开发的方案,定出了HCI层提供给协议上层的接口。这些接口给蓝牙协议栈的上层提供了进入BaseBand的统一入口。整个接口按协议站的要求分为八大部分。下面介绍每部分的接口。整个软件层采用传递消息加函数调用相结合的机制来实现,即上层对HCI层接口的调用采用函数调用的机制,HCI对上层的通信采用传递消息的方式。

1.接口分类及举例说明

(1)开始命令

此命令接口是主机向HCI注册及并启动HCI。

如启动HCI的函数接口为HCI_ReqStart(),HCI在启动后发向上层的消息接口为HCI_START_CNF()。命令执行过程如图5所示。

(2)链路控制命令

链路控制命令是允许

主机控制器控制与其他

蓝牙设备的连接。在链路

控制命令运行时, LM 控

制蓝牙微微网与分布网

的建立与维持。这些命令

指示LM创建及修改与远

端蓝牙设备的连接链路,

查询范围内的其他蓝牙

设备,及其他链路管理协

议命令。

以查找并发现周围设备为例,HCI层为上层提供了函数接口

HCI_ReqInquiry,消息接口为HCI_INQUIRY_RESULT_EVT和HCI_INQUIRY_CNF。命令执行过程如图6所示。

主机首先调用HCI的

HCI_ReqInquiry函数开

始查询过程,在此过程

中,如有蓝牙响应此查

询,则会产生一

HCI_INQUIRY_RESULT_EV

T事件通知主机。在此次

查询过程结束时,会产生HCI_INQUIRY_CNF这条消息通知主机,参数NrofResponse表示在此次查询过程所响应的蓝

牙设备数。

(3)链路政策命令

链路政策命令提供了一种影响LM怎样管理微微网的方法。当链路政策命令运行时,

LM仍然以可调整的参数控制微微网及分布网的建立和维持。这些链路政策命令调整LM的行为,从尔导致与远端蓝牙设备的链路层连

接的改变。

已建立服务质量为例,HCI层为上层提供了函数接口HCI_ReqQoSSetup,消息接口为HCI_QOS_SETUP_EVT和HCI_QOS_SETUP_CNF,

HCI_QOS_SETUP_CNF_NEG。命令执行过程如图7所示。

主机首先调用

HCI_ReqQosSetup

请求建立Qos。当

Qos建立成

HCI_QOS_SETUP_CN

F 消息被送往发起

端,同时一个事件

消息送往远端设

备。当Qos建立失

败时,

HCI_QOS_SETUP_CN

F_NEG被送往发起

端。

(4)主机控制

器及基带命令

主机控制器及

基带命令被用来改

变与建立诸如声音

设置,认证模式,

加密模式的连接相

联系的LM的操作方

式。

已读取主机控制器所存储的Link Key为例,HCI层为上层提供了函数接口HCI_ReqReadLinkKey,消息接口为HCI_READ_LINK_KEY_RRESULT_EVT和

HCI_READ_LINK_KEY_ CNF。命令执行过程如图8所示。

(5)信息命令

这些信息命令的参数是由蓝牙硬件制造商确定的。它们提供了关于蓝牙设备及设备的主机控制器,链路管理器及基带的信息。主机设备不能更改

这些参数。

HCI层为上层提供了函

数接口为:

HCI_ReqCountryCode HCI_ReqLocalAddress HCI_ReqReadLocalFeatur

es

HCI_ReqReadLocalVersio

n

HCI_ReqReadBD_ADDR HCI层提供的消息接口为:HCI_COUNTRY_CODE_CNF HCI_COUNTRY_CODE_CNF_N

EG

HCI_LOCAL_ADDRESS_CNF HCI_LOCAL_ADDRESS_CNF_

NEG

HCI_READ_LOCAL_FEATURE

S_CNF

HCI_READ_LOCAL_FEATURE

S_CNF_NEG

HCI_READ_LOCAL_VERSION

_CNF

HCI_READ_LOCAL_VERSION

_CNF_NEG

HCI_READ_BD_ADDR_CNF

HCI_READ_BD_ADDR_CNF_N

EG

(6)状态命令

状态命令提供了目前HCI,LM,及BB的状态消息。这些状态参数不能被主机改变,除了一些参数可以被重置。

HCI层为上层提供了函数接口为:

HCI_ReqGetLinkQuality HCI_ReqReadFailedCounter

HCI_ReqResetFailedCounter HCI_ReqRssi

HCI层提供的消息接口为:

HCI_GET_LINK_QUALITY_CNF HCI_GET_LINK_QUALITY_CNF_NEG

HCI_READ_FAILED_COUNTER_CNF HCI_READ_FAILED_COUNTER_CNF_NEG

HCI_RESET_FAILED_COUNTER_CNF HCI_RESET_FAILED_COUNTER_CNF_NEG

HCI_RSSI_CNF HCI_RSSI_CNF_NEG

(7)测试命令

测试命令能够测试蓝牙硬件各种功能,并蔚蓝牙设备的测试提供不同的测试条件。

HCI层为上层提供了函数接口为:

HCI_ReqEnableDutMode HCI_ReqReadLoopbackMode

HCI_ReqWriteLoopbackMode

HCI层提供的消息接口为:

HCI_ENABLE_DUT_MODE_CNF HCI_ENABLE_DUT_MODE_CNF_NEG

HCI_READ_LOOPBACK_MODE_CNF HCI_READ_LOOPBACK_MODE_CNF_NEG

HCI_WRITE_LOOPBACK_MODE_CNF HCI_WRITE_LOOPBACK_MODE_CNF_NEG

(8)数据传输

命令:

这些命令为蓝

牙设备之间传输数

据提供了所需要的

内存的接口

HCI_DataAlloc,传

输数据的接口

HCI_DataSend,提

取数据的接口

HCI_DataExtract。

图9说明了在蓝牙

系统中传输数据时

对这些接口的使

用。

四、结论

HCI为为蓝牙协议层的上层提供了进入基带的统一接口。经过测试,所开发的接口能将上层的数据流匹配到基带,使基带能对之进行处理,并产生相应的事件。

表1 HCI包格式

First Byte Last Byte

Packet Type Indicator(1byte) HCI Packet(Variable length)

表2 HCI 包类型

HCI Packet Type Packet Type Indicator

HCI Command Packet 0x01

HCI ACL Data Packet 0x02

HCI SCO Data Packet 0x03

HCI Event Packet 0x04

表3 HCI命令包结构

First Last

OCF OGF Length Para0 Para1 ------

表4 进入测试模式的HCI命令

命令操作码参数

HCI_Write_PageScan_Activity 0x001c 0x0800,0x0012

HCI_Write_InquireScan_Activity 0x001e 0x0800,0x0012

HCI_Write_Scan_Enable 0x0c1a 0x03

HCI_Write_Device_Under_Test_Mode 0x1803 无

系统的软件实现

测试软件在Labwindows/CVI软件开发平台下完成。Labwindows/CVI是由NI公司开发的半图形化的编程工具,该工具以标准C语言为基础,具有强大的库函数,

提供了灵活的开发手段和良好的用户界面。该测试系统的软件从功能角度可以划分为四部分:对综测仪的初始化、对蓝牙手机的初始化、建立连接和测试指标子程序。

第一部分:对综测仪的初始化,步骤如下:

步骤1. 查找听者。函数原形为:

ibln(int Board/Device,int Primary Address,int Second Address,short Found Listener );

查找听者的主要目的是为了确认听者的Primary Address,由于一个总线上最多有30个听者,可以通过有限循环查找,如果确认只有一个听者,当找到一个听者时即可停止查找。

步骤2. 打开设备。函数原形为:

ibdev(int Board_Index,int Primary_Address,int Secondary_Address,int Timeout_Value,int END_Message,int EOS_Character);

函数返回值相当于一个操作句柄,当成功打开设备后,对仪器的读写操作均通过操作句柄完成。

对于有些仪器,通过以上两个步骤就可以得到一个有效的操作句柄,但有的仪器,如R&S公司的CMU200,不但有Primary Address,还有Secondary Address,这就需要在得到总的操作句柄后,通过ibwrt函数对各子项(这里指的是bluetooth signalling和bluetooth non-signalling)设置次地址,当次地址设置完成后,可以通过ibdev函数得到具体的针对子项的操作句柄。

第二部分:对手机的初始化。对手机的初始化是通过串行通信端口(RS-232)实现的,步骤如下:

步骤1. 打开串口。函数原形如下:

int OpenComConfig(int COM_Port,char Device_Name[],long Baud_Rate,int Parity,int Data_Bits,int Input_Queue_Size,int Output_Queue_Size);

函数中的参数根据蓝牙模块所支持的方式进行设置。

步骤2. 发送HCI命令,使手机进入测试模式。通过函数ComWrtByte(int Com Port,char Byte)发送,发送时按照HCI命令标准包格式,选择相应的参数,从高字节向低字节,以16进制的形式,逐字节发送。HCI包格式如表1所示。其中Packet Type Indicator按照表2确定。而详细的HCI命令包组成见表3。其中OCF,OGF为操作码,Length指的是参数长度,如果参数为一个,则Length值为1,参数为HCI命令自身所带的参数,因命令而异。以HCI_Write_Scan_Enable 命令为例,因为是命令包,故Packet Type Indicator应为0x01;又操作码为0x0c1a,打开扫描时参数为0x03,故参数长度为1,所以该命令的发送序列应为(16进制):01 1a 0c 01 03。

使手机进入测试模式,首先激活寻呼扫描和查询扫描,然后才能发送进入测试模式的指令。主要通过发送表4中的HCI命令实现。

第三部分:建立连接。在讨论蓝牙建立连接的过程之前,首先要了解蓝牙设备的组网过程。蓝牙根据网络的概念提出点对点和点对多点的无线连接,在任意一个有效通信范围内,所有设备的地位都是平等的。首先提出通信要求的设备成为主设备(Master),被动进行通信的设备成为从设备(Slave),利用TDMA,一个Master 可以最多和7个Slave进行通信。在本测试系统中,考虑到生产线上一般采用屏蔽箱防止干扰,所以认为系统中只有1个Master和1个Slave,同时,由于测试的需要,并考虑到实际情况(现在很多蓝牙综测仪在测试过程中并不能作为

Slave),一般将蓝牙综测仪作为Master,待测手机作为Slave。

本测试系统软件中,通过ibwrt函数控制蓝牙综测仪发出查询指令,查找当前有效范围内的待测手机。当查找完成后,ibwrt函数继续控制蓝牙综测仪发出连接请求,当已经进入测试模式的待测手机收到连接请求后,将会返回接受或拒绝连接请求的信息,该信息通过发送HCI_Accept_Connection_Request指令完成,当蓝牙综测仪收到该信息后,即确认可以建立连接,这样,双方的连接就建立成功了。

第四部分:测试指标子程序。

建立连接成功后,下一步就是测试手机的性能指标,这里测试的主要是蓝牙的发射机和接收机的性能指标。由于在蓝牙规范中对于每个测试指标都有相应的测试条件及测试标准的详细规定,而每项测试指标的测试条件相差很大,特别是对蓝牙综测仪的设置方面。因此,在本测试软件中,将每个测试指标封装成子函数,程序通过调用每个测试项的子函数来实现对指标的测试,这样也有利于程序的优化,使程序看起来一目了然,同时也利于在测试过程中根据需要选择测试项。这里以测试蓝牙发射机的输出功率为例来说明测试子项的软件实现。

蓝牙规范中对蓝牙发射机的输出功率的测试条件和测试结果要求如下:Hopping: on;Test Type: Loopback;Payload Pattern: PRBS9

Packet Type: DH5;测试频点:3个(本软件选择2402MHz,2441 MHz,2480 MHz) 测试标准:

平均功率:在-6dBm至4dBm之间;最大功率:不大于23dBm

首先通过ibwrt函数设置蓝牙测试仪的各项配置,使之符合以上的测试条件,然后在3个测试频点上进行循环测试,用ibrd函数从蓝牙测试仪上读取相应的测试结果,根据规范要求的测试标准进行判断,得出最后的结果。

结语

通过对蓝牙规范的研究,已编写了一套以GPIB协议控制蓝牙测试仪,通过串口控制蓝牙芯片的自动测试程序,界面灵活,易于维护。该测试系统软件也可作为子程序被嵌入GSM手机测试系统中,可以在生产测试中减少测试站的设置,降低成本。■

断开连接

完成一次数据传输过程主要由以下几个步骤组成:

1.多路控制信道的建立:应用程序申请建立RFCOMM链路时首先由L2CAP层建立一条L2CAP信道,然后L2CAP中请建立一条RFCOMM链路,即建立一条控制信道DLCl0,L2CAP建立相应的链路并为其分配一个CID(Channel ID)。这一过程由发起方在控制信道DLCl0上发送SABM帧,响应方在控制信道DLCl0上发送相应的UA响应帧来完成。

2.参数设定:这一过程由PN命令和响应帧来完成。根据通信的需要,进行参数协商,通常情况下可以使用参数的缺省值进行通信。

3.数据链路的建立:RFCOMM根据应用程序需要的服务类型建立相应的DLCI链路,其完成过程与多路控制信道的建立基本相同,唯一的区别是在相应的DLCI上发送命令和响应帧,而不是在控制信道DLCIO。

4.用户数据的传输:通过UIH帧来完成不同的DLCI链路上的用户数据传输。

5.断开链路:用户数据传输完毕以后,发送方发送DISC帧请求拆除DLCI的连接。

收到响应方发送相应的DM帧后,拆除RFCOMM连接。

蓝牙新应用场景与规模分析

蓝牙新应用场景与规模分析 蓝牙应用随着蓝牙标准的演进,在应用上也经历不同的场景。 蓝牙4.0版本之前的蓝牙主要用于电脑,手机等设备,作为数据和音频传输的接口。作为手机标配确立了蓝牙在互联网生态中的优势地位。 蓝牙4.0/4.2版本,带动了可穿戴,智能家居等业务的巨大浪潮,催生了一大批基于连接和数据的物联网应用公司,模组公司。应用场景体现为各种小互联设备,智能家居,智能楼宇等等。 蓝牙5.0及5.1版本的发布除了在传统的应用上对效率和用户体验带来质变之外,还给蓝牙带来了更为广阔的应用空间,包括组网与位置服务。应用场景扩展到智慧城市,工业互联,汽车,医疗等各个场景。 未来蓝牙芯片的出货量也将持续保持非同一般的增长态势。预测2018~2022年复合增长率仍可达8%~12%,低功耗蓝牙增长在20~30%,2022年蓝牙设备整体出货量达52亿颗以上。 未来几年,蓝牙设备每年净增4亿台,目前应该没有哪种芯片能以如此规模增长,应当密切关注。 针对蓝牙5.0/5.1的新应用方面,我们可以举2个例子说明BLE的增长规模。首先是位置服务。包括, 地标信息:零售商较早就开始采用地标(PoI)信息,包括智能楼宇、智能工业和智慧城市也开始探索蓝牙beacon的应用,我们云里物里早期已推出Beacon模块MS49SF2B。 寻物:越来越多的消费者将蓝牙标签贴在钥匙、钱包、手包和其他个人财物上,也包括商店的奢侈品管理等,这种就相当于是F5防丢器一样,就是采用蓝牙技术。 资产追踪:蓝牙正在推进用于资产和人员跟踪的实时位置服务(RTLS)解决方案的快速增长,无论是在仓库中对工具和工人定位,或是在医院中对医疗设备及患者定位。 导航:从机场和火车站到博物馆和体育馆,蓝牙室内定位系统(IPS)已迅速成为解决GPS 室内覆盖难题的标准,可助力访客在复杂环境中进行导航。 其次是蓝牙网络设备出货,也将保持两位数的增长,包括, 控制系统:蓝牙mesh网络正迅速成为许多控制系统的首选无线通信平台,包括用于智能楼宇和智能工业市场中的先进照明解决方案。

蓝牙BQB检验概述

蓝牙BQB测试简介(一) BQB认证知识介绍 只有Bluetooth SIG的会员才有权将Bluetooth的商标使用在商品和服务上。只有通过Bluetooth资格认证程序确认的有关Bluetooth无线技术的产品和服务,会员才能将商标用在产品和服务上。蓝牙资格认证实验室(BQTF)和蓝牙资格认证专家(BQE)可以协助厂商取得产品的资格认证 简言之就是如果您的产品具有蓝牙功能并且在产品外观上标明蓝牙标志,必须通过一个叫做BQB的认证。蓝牙认证是任何使用蓝牙无线技术的产品所必须经过的证明程序. 蓝牙认证团体(BQB)是由蓝牙认证评估委员会(BQRB)授权的,为需要获得蓝牙产品认证的成员提供服务的团体。成员直接通过BQB获得认证服务。 BQTF的全称是Bluetooth Qualification Test Facility,蓝牙认证测试工具(BQTF)是经过BQRB正式认可的,能完成测试实例引用列表(TCRL)中的“A类”蓝牙认证一致性测试鉴别。BQTF角色的权威描述在蓝牙认证程序参考文档(PRD)中4.3.3一节。成员可以直接将BQTF用于测试服务。通常,BQTF也可以提供额外的蓝牙测试服务。 4. BQB认证测试内容简介

●蓝牙资格认证所要求的测试项目全部在TCRL中有定义和分类;基本上划Core分为两大类 Core测试项目: 包含RF、BB、LM、L2CAP、SDP和GAP; 以及其他扩展测试(包含Profile, Protocol测试)和Profile IOP互通性测试。 ●按照测试类型来分,BQB 测试包含如下测试项目 1.RF Testing .射频测试 2.Protocol Conformance Test 协议一致性测试 3.Profile Conformance Test 概要文件一致性测试 4.Profile Interoperability Test .配置互操作性测试 ●所有测试●项又分为A, B, C, D四类, 细则如下

蓝牙技术原理

蓝牙技术原理 蓝牙无线技术是一种短距离通信系统,旨在取代连接便携设备和/或固定电子设备的缆线。蓝牙无线技术的主要特点在于功能强大、耗电量低、成本低廉。核心规格的许多功能均为可选功能,以实现产品多样性。蓝牙核心系统包括射频收发器、基带及协议堆栈。该系统可以提供设备连接服务,并支持在这些设备之间交换各种类别的数据。操作概览蓝牙射频(物理层)在无需申请许可证的2.4GHz ISM 波段运行。系统采用了跳频收发器来防止干扰和衰落,并提供多个FHSS (跳频扩频)载波。射频操作采用了成形的二进制频率调制,降低了收发器复杂性。符率为每秒1 兆符(Msps),支持每秒1 兆位(Mbps) 的比特率;对于增强的数据率,可支持2 或3Mb/s 的总空气比特率。这些模式分别称为“基本速率”和“增强数据率”。在一般操作情况下,同步至共用时钟及跳频图的一组设备将共享一个物理无线电信道。提供同步基准的设备称为主设备。所有其它设备称为从设备。以此方式同步的一组设备形成了一个微微网(piconet)。这就是蓝牙无线技术通信的基本形式。微微网中的设备使用特定跳频图,该图由蓝牙规格地址中的特定字段和主设备时钟依据特定算法来确定。基本跳频图是对ISM 波段中的79 个频率进行

伪随机排序。跳频图可以调整以排除干扰设备使用的一部分频率。自适应跳频技术改善了蓝牙技术与静态(非跳频)ISM 系统的共存状态(当两者共存时)。物理信道被复分为称作时隙的时间单位。数据以时隙中数据包的形式在启用蓝牙的设备之间传送。如果条件允许,可以将多个连续时隙分配给一个数据包。跳频发生在传输或接收数据包时。蓝牙技术通过使用时分双工(TDD) 方案提供全双工传输效果。物理信道上方有一个链路、信道及相关控制协议层。物理信道以上的信道及链路层级为物理信道、物理链路、逻辑传输、逻辑链路及L2CAP 信道。在物理信道内,任意两个传输设备之间可以形成物理链路,并且可双向传输数据包。在微微网物理信道中,对哪些设备可以形成物理链路有一些限制。每个从设备和主设备间有一个物理链路。微微网中的从设备之间不会直接形成物理链路。物理链路可作为一个或多个逻辑链路的传输层,支持单播同步、异步和等时通信量及广播通信量。逻辑链路上的通信量可通过占有资源管理器中的调度功能分配的时隙分化到物理链路上。除用户数据外,逻辑链路还负载了基带和物理层的控制协议。即链路管理协议(LMP)。微微网中的活动设备具有默认的面向异步连接的逻辑传输,用于传输LMP 协议信令。由于历史原因,这被称作为ACL 逻辑传输。每次有设备加入微微网时都会创建默认的ACL 逻辑传输。可在需要时创建附加逻辑传输以传输

蓝牙技术原理及应用

蓝牙技术的原理及应用 学院:****姓名:**** 班级:*** 学号:**** 产生背景 随着经济的发展,人们对随时随地提供信息服务的移动计算机和宽带无线通信的需求越来迫切。以人为本、个性化、智能化的移动计算机,以其方便、快捷的无线接人、无线互联的新产品,已经逐渐融入到人们的日常生活和工作中。随之而来的便携式终端和无线通信相关的新技术层出不穷,其中短距离的无线通讯技术更是百花齐放、目不暇接。蓝牙技术就是在这种背景下产生的。 蓝牙技术的起源 1998年5月,爱立信、IBM、Intel、Nokia和东芝五家公司联合成立T蓝牙特别利益集团(Bluetoothspeeial Interest Group—BSIG),并制订了近距离无线通信技术标准—蓝牙技术。旨在利用微波取代传统网络中错综复杂的电缆,使家庭或办公场所的移动电话、便携式计算机、打印机、复印机、键盘、耳机及其它手持设备实现无线互连互通。它的命名借用了一千多年前一位丹麦皇帝哈拉德·布鲁斯(Harald Bluetooth)的名字。 所谓蓝牙技术,实际上是一种短距离无线电技术,它以低成本的近距离无线连接为基础,为固定和移动设备通信环境建立一个特别连接的短程无线电技术。利用“蓝牙”技术,能够有效地简化掌上电脑、笔记本电脑和移动电话等移动通信终端设备之间的通信,也能够成功地简化以上这些设备与因特网之间的通信,从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效,为无线通信拓宽了道路。它具有无线性、开放性、低功耗等特点。因此,蓝牙技术已经引起了全球通信业界和广泛用户的密切关注。 蓝牙技术的特点 蓝牙技术具有许多优越的技术性能,主要有蓝牙特性、TDMA结构、使用跳频技术、蓝牙设备的组网、软件的层次结构等,下面详细介绍其特点。 蓝牙设备的工作频段选在全球通用的2.4GHz的ISM(工业、科学、医学)频段,这样用户不必经过申请便可以在2400~2500MHz范围内选用适当的蓝牙无线电收发器频段。频道采用23个或79个,频道间隔均为1MHz,采用时分双工

蓝牙技术原理

蓝牙技术原理 1.蓝牙技术原理--简介 所谓蓝牙技术,实际上是一种短距离无线通信技术,利用“蓝牙”技术,能够有效地简化掌上电脑、笔记本电脑和移动电话手机等移动通信终端设备之间的通信,也能够成功地简化以上这些设备与Internet之间的通信,从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效,为无线通信拓宽道路。说得通俗一点,就是蓝牙技术使得现代一些轻易携带的移动通信设备和电脑设备,不必借助电缆就能联网,并且能够实现无线上因特网。 2.蓝牙技术原理--主从关系 蓝牙技术规定每一对设备之间进行蓝牙通讯时,必须一个为主角色,另一为从角色,才能进行通信,通信时,必须由主端进行查找,发起配对,建链成功后,双方即可收发数据。理论上,一个蓝牙主端设备,可同时与7个蓝牙从端设备进行通讯。一个具备蓝牙通讯功能的设备,可以在两个角色间切换,平时工作在从模式,等待其它主设备来连接,需要时,转换为主模式,向其它设备发起呼叫。一个蓝牙设备以主模式发起呼叫时,需要知道对方的蓝牙地址,配对密码等信息,配对完成后,可直接发起呼叫。 3.蓝牙技术原理--呼叫过程 蓝牙主端设备发起呼叫,首先是查找,找出周围处于可被查找的蓝牙设备。主端设备找到从端蓝牙设备后,与从端蓝牙设备进行配对,此时需要输入从端设备的PIN码,也有设备不需要输入PIN码。配对完成后,从端蓝牙设备会记录主端设备的信任信息,此时主端即可向从端设备发起呼叫,已配对的设备在下次呼叫时,不再需要重新配对。已配对的设备,做为从端的蓝牙耳机也可以发起建链请求,但做数据通讯的蓝牙模块一般不发起呼叫。链路建立成功后,主从两端之间即可进行双向的数据或语音通讯。在通信状态下,主端和从端设备都可以发起断链,断开蓝牙链路。 4.蓝牙技术原理--数据传输 蓝牙数据传输应用中,一对一串口数据通讯是最常见的应用之一,蓝牙设备在出厂前即提前设好两个蓝牙设备之间的配对信息,主端预存有从端设备的PIN码、地址等,两端设备加电即自动建链,透明串口传输,无需外围电路干预。一对一应用中从端设备可以设为两种类型,一是静默状态,即只能与指定的主端通信,不被别的蓝牙设备查找;二是开发状态,既可被指定主端查找,也可以被别的蓝牙设备查找建链.

基于蓝牙通信的三种应用

华北电力大学 实验报告 | | 实验名称综合设计(蓝牙通信的三种应用) 课程名称微计算机原理与嵌入式系统 | | 专业班级:自动实1201 学生姓名:徐海洲 学号:2 成绩: 指导教师:林永君实验日期:2014/7/8

引言(Introduction)1 高层次设计(High Level Design)2 硬件(Hardware)3 蓝牙部分3 蓝牙模块规格3 模式与指示灯3 蓝牙无线模块设置方式:4 蓝牙串口通信参数设置5 蓝牙与单片机的连接6 遥控车(智能车)部分6 软件(Software)7 遥控车部分7 单片机下位机7 手机遥控器(上位机)10 智能车无线上位机部分11 单片机下位机程序11 MATLAB GUI上位机部分12 手机玩电脑游戏放映PPT15 利用手机放映PPT16 远程桌面16 手机玩极品飞车17 结果(Results)17 准确性17 实用性17 结论(Conclusions)18

引言(Introduction) 本设计利用蓝牙无线通信完成三项内容: 1、基于Android的无线蓝牙遥控小车。 2、基于MATLAB GUI的无线蓝牙智能车上位机。 3、利用蓝牙实现利用手机控制电脑,玩电脑游戏,放映PPT 等功能。 蓝牙在我们生活和学习中的应用非常广泛,几乎每一部手机、电脑都有蓝牙功能。我们可以利用蓝牙进行近距离的文件传输。我们可以利用蓝牙把手机做成四轴飞行器的遥控器,从而省去高昂的遥控器的费用。可以利用蓝牙做智能车的无线上位机,从而高效的调节智能车控制系统的参数。能够利用好蓝牙可以为我们的学习生活带来很大的方便。因此本次综合设计,我利用蓝牙完成了上述三个内容。

蓝牙技术与原理概述

英特网和移动通信的迅速发展,使人们对电脑以外的各种数据源和网络服务的需求日益增长。蓝牙作为一个全球开放性无线应用标准,通过把网络中的数据和语音设备用无线链路连接起来,使人们能够随时随地实现个人区域内语音和数据信息的交换与传输,从而实现快速灵活的通信。 一、蓝牙出现的背景 早在1994年,瑞典的爱立信公司便已经着手蓝牙技术的研究开发工作,意在通过一种短程无线链路,实现无线电话用PC、耳机及台式设备等之间的互联。1998年2月,爱立信、诺基亚、因特尔、东芝和IBM共同组建特别兴趣小组。在此之后,3COM、朗讯、微软和摩托罗拉也相继加盟蓝牙计划。它们的共同目标是开发一种全球通用的小范围无线通信技术,即蓝牙。它是针对目前近距的便携式器件之间的红外线链路(IrDA)而提出的。应用红外线收发器链接虽然能免去电线或电缆的连接,但是使用起来有许多不便,不仅距离只限于1~2m,而且必须在视线上直接对准,中间不能有任何阻挡,同时只限于在两个设备之间进行链接,不能同时链接更多的设备。“蓝牙”技术的目的是使特定的移动电话、便携式电脑以及各种便携式通信设备的主机之间在近距离内实现无缝的资源共享。 蓝牙是一个开放性的无线通信标准,它将取代目前多种电缆连接方案,通过统一的短程无线链路,在各信息设备之间可以穿过墙壁或公文包,实现方便快捷、灵活安全、低成本小功耗的话音和数据通信。它推动和扩大了无线通信的应用范围,使网络中的各种数据和语音设备能互连互通,从而实现个人区域内的快速灵活的数据和语音通信。 二、蓝牙中的主要技术 蓝牙技术是一种无线数据与语音通信的开放性全球规范,它以低成本的近距离无线连接为基础,为固定与移动设备通信环境建立一个特别连接的短程无线电技术。其实质内容是要建立通用的无线电空中接口(Radio Air Interface)及其控制软件的公开标准,使通信和计算机进一步结合,使不同厂家生产的便携式设备在没有电线或电缆相互连接的情况下,能在近距离范围内具有互用、互操作的性能(Iteroperability)。 “蓝牙”技术的作用是简化小型网络设备(如移动PC、掌上电脑、手机)之间以及这些设备与Internet之间的通信,免除在无绳电话或移动电话、调制解调器、头套式送/受话器、PDA、计算机、打印机、幻灯机、局域网等之间加装电线、电缆和连接器。此外,蓝牙无线技术还为已存在的数字网络和外设提供通用接口以组建一个远离固定网络的个人特别连接设备群。 蓝牙的载频选用在全球都可用的2.45GHz工科医学(ISM)频带,其收发信机采用跳频扩谱(Frequency Hopping Spread Spectrum)技术,在2.45GHz ISM频带上以1600跳/s的速率进行跳频。依据各国的具体情况,以2.45GHz为中心频率,最多可以得到79个1MHz 带宽的信道。在发射带宽为1MHz时,其有效数据速率为721kb/s,并采用低功率时分复用方式发射,适合30英尺(约10m)范围内的通信。数据包在某个载频上的某个时隙内传递,不同类型的数据(包括链路管理和控制消息)占用不同信道,并通过查询(Inquiry)和寻呼(Paging)过程来同步跳频频率和不同蓝牙设备的时钟。除采用跳频扩谱的低功率传输外,蓝牙还采用鉴权和加密等措施来提高通信的安全性。 蓝牙支持点到点和点到多点的连接,可采用无线方式将若干蓝牙设备连成一个微微网(Piconet),多个微微网又可互连成特殊分散网,形成灵活的多重微微网的拓扑结构,从而实现各类设备之间的快速通信。它能在一个微微网内寻址8个设备(实际上互联的设备数量是没有限制的,只不过在同一时刻只能激活8个,其中1个为主7个为从)。 蓝牙技术涉及一系列软硬件技术、方法和理论,包括无线通信与网络技术,软件工程、

蓝牙基础:蓝牙的工作原理

蓝牙基础:蓝牙的工作原理 双击自动滚屏发布者:admin 发布时间:2008-1-27 10:01:53 【字体:大中小】 1、什么是蓝牙? 蓝牙(BlueTooth)是一种支持设备短距离通信的无线电技术,功率级别分CLASS1 100米距离和CLASS 2 10米距离两种。能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。蓝牙的标准是IEEE802.15,工作在2.4GHz 频带,带宽可达3Mb/s。 手机、PDA、GPS蓝牙、耳机、笔记本内置蓝牙等一般为CLASS2 10米功率级别,工业用蓝牙应用100米级的多一些,如GC-06,KC-03蓝牙模块。 蓝牙技术规范由SIG组织开发维护,目前具备蓝牙通讯功能的产品已经很多。 2、蓝牙通信的主从关系 蓝牙技术规定每一对设备之间进行蓝牙通讯时,必须一个为主角色,另一为从角色,才能进行通信,通信时,必须由主端进行查找,发起配对,建链成功后,双方即可收发数据。 理论上,一个蓝牙主端设备,可同时与7个蓝牙从端设备进行通讯。 一个具备蓝牙通讯功能的设备,可以在两个角色间切换,平时工作在从模式,等待其它主设备来连接,需要时,转换为主模式,向其它设备发起呼叫。 一个蓝牙设备以主模式发起呼叫时,需要知道对方的蓝牙地址,配对密码等信息,配对完成后,可直接发起呼叫。 3、蓝牙的呼叫过程 蓝牙主端设备发起呼叫,首先是查找,找出周围处于可被查找的蓝牙设备,此时从端设备需要处于可被查找状态,如:蓝牙耳机需要按键操作才能进入可被查找状态,我公司预装GCM-301、101等固件的模块始终处于可被查找状态。 主端设备找到从端蓝牙设备后,与从端蓝牙设备进行配对,此时需要输入从端设备的PIN码,一般蓝牙耳机默认为:1234或0000,立体声蓝牙耳机默认为:8888,也有设备不需要输入PIN码。 配对完成后,从端蓝牙设备会记录主端设备的信任信息,此时主端即可向从端设备发起呼叫,根据应用不同,可能是ACL数据链路呼叫或SCO语音链路呼叫,已配对的设备在下次呼叫时,不再需要重新配对。 已配对的设备,做为从端的蓝牙耳机也可以发起建链请求,但做数据通讯的蓝牙模块一般不发起呼叫。 链路建立成功后,主从两端之间即可进行双向的数据或语音通讯。 在通信状态下,主端和从端设备都可以发起断链,断开蓝牙链路。 4、蓝牙一对一的串口数据传输应用 蓝牙数据传输应用中,一对一串口数据通讯是最常见的应用之一,蓝牙设备在出厂前即提前设好两个蓝牙设备之间的配对信息,主端预存有从端设备的PIN码、地址等,两端设备加电即自动建链,透明串口传输,无需外围电路干预。 一对一应用中从端设备可以设为两种类型,一是静默状态,即只能与指定的主端通信,不被别的蓝牙设备查找;二是开发状态,既可被指定主端查找,也可以被别的蓝牙设备查找建链。

蓝牙技术的8个特点

蓝牙是一种短距无线通信的技术规范,它最初的目标是取代现有的掌上电脑、移动电话等各种数字设备上的有线电缆连接。在制定蓝牙规范之初,就建立了统一全球的目标,向全球公开发布,工作频段为全球统一开放的2.4GHz工业、科学和医学(Industrial, Scientific and Medical, ISM)频段。从目前的应用来看,由于蓝牙体积小、功率低,其应用已不局限于计算机外设,几乎可以被集成到任何数字设备之中,特别是那些对数据传输速率要求不高的移动设备和便携设备。蓝牙技术的特点可归纳为如下几点: (1)全球范围适用:蓝牙工作在2.4GHz的ISM频段,全球大多数国家ISM频段的范围是2.4~2.4835GHz,使用该频段无需向各国的无线电资源管理部门申请许可证。 (2)同时可传输语音和数据:蓝牙采用电路交换和分组交换技术,支持异步数据信道、三路语音信道以及异步数据与同步语音同时传输的信道。每个语音信道数据速率为64kbit/s,语音信号编码采用脉冲编码调制(PCM)或连续可变斜率增量调制(CVSD)方法。当采用非对称信道传输数据时,速率最高为721kbit/s,反向为57.6kbit/s;当采用对称信道传输数据时,速率最高为342.6kbit/s。蓝牙有两种链路类型:异步无连接(Asynchronous Connection-Less,ACL)链路和同步面向连接(Synchronous Connection-Oriented,SCO)链路。 (3)可以建立临时性的对等连接(Ad-hoc Connection):根据蓝牙设备在网络中的角色,可分为主设备(Master)与从设备(Slave)。主设备是组网连接主动发起连接请求的蓝牙设备,几个蓝牙设备连接成一个皮网(Piconet)时,其中只有一个主设备,其余的均为从设备。皮网是蓝牙最基本的一种网络形式,最简单的皮网是一个主设备和一个从设备组成的点对点的通信连接。 通过时分复用技术,一个蓝牙设备便可以同时与几个不同的皮网保持同步,具体来说,就是该设备按照一定的时间顺序参与不同的皮网,即某一时刻参与某一皮网,而下一时刻参与另一个皮网。 (4)具有很好的抗干扰能力:工作在ISM频段的无线电设备有很多种,如家用微波炉、无线局域网(Wireless Local Area Network,WLAN)和HomeRF等产品,为了很好地抵抗来自这些设备的干扰,蓝牙采用了跳频(Frequency Hopping)方式来扩展频谱(Spread Spectrum),将2.402~2.48GHz频段分成79个频点,相邻频点间隔1MHz。蓝牙设备在某个频点发送数据之后,再跳到另一个频点发送,而频点的排列顺序则是伪随机的,每秒钟频率改变1600次,每个频率持续625μs。 (5)蓝牙模块体积很小、便于集成:由于个人移动设备的体积较小,嵌入其内部的蓝牙模块体积就应该更小,如爱立信公司的蓝牙模块ROK101008的外形尺寸仅为32.8mm×16.8mm×2.95mm。 (6)低功耗:蓝牙设备在通信连接(Connection)状态下,有四种工作模式——激活(Active)模式、呼吸(Sniff)模式、保持(Hold)模式和休眠(Park)模式。Active 模式是正常的工作状态,另外三种模式是为了节能所规定的低功耗模式。 (7)开放的接口标准:SIG为了推广蓝牙技术的使用,将蓝牙的技术标准全部公开,

蓝牙天线设计

引言 蓝牙是一种支持设备短距离通信(一般是1Om之内)的无线电技术,能在设备之间进行无线信息交换,其工作频段是2.4~2.483 GHz的全球通信自由频段,目前已广泛应用在移动通信设备中。天线是蓝牙无线系统中用来传送与接收电磁波能量的重要必备组件。由于目前技术尚无法将天线整合至半导体芯片中,故在蓝牙模块里除了核心的系统芯片外,天线是另一个影响蓝牙模块传输特性的关键性组件。本文给出了一款倒F型天线的设计,该天线尺寸小,设计简约,制造成本低,工作效率高,适用于蓝牙系统应用。 1 天线设计 倒F型天线是上世纪末发展起来的一种天线,具有结构简单、重量轻、可共形、制造成本低、辐射效率高、容易实现多频段工作等独特优点,因此,近几年来,倒F型天线得到了广泛的应用研究和发展。 倒F天线是在倒L天线abc的垂直元末端加上一个倒L结构edb构成。它使用附加的edb结构来调整天线和馈电同轴线的匹配。该天线具有低轮廓结构,辐射场具有水平和垂直两种极化,另外由于结构紧凑而且具有等方向辐射特性,同时其良好的接地设计可以有效提高天线的工作效率。图1所示是典型的倒F型天线结构图,该天线可以看作是e端短路,a端开路的谐振器,所以,a端电压最大,电流为零,e端电压为零,电流最大。由于倒F天线的结构中包含了接地的金属面,可以降低对射频模块中接地金属面的敏感度,因此非常适合用于片上系统。另外,由于倒F天线只需利用金属导体配合适当的馈线来调整天线短路端到接地面的位置,因而制作成本较低,可以直接与PCB电路板焊接在一起。图2所示为倒F型天线在电路板上的布置图。 倒F型天线在电路板上的布置图 2 测量基本原理 图3所示是一个网络分析仪的原理框图。在对倒F天线进行测量时,先由仪器发出扫频信号,并将该信号通过输出口送到被测设备,当信号通

蓝牙耳机的工作原理

蓝牙耳机的工作原理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

蓝牙及蓝牙耳机工作原理 1.蓝牙技术的特点 蓝牙协议体系结构 整个蓝牙协议体系结构可分为底层硬件模块、中间协议层和高端应用层三大部分。 链路管理层(LMP)、基带层(BBP)和蓝牙无线电信道构成蓝牙的底层模块。 BBP层负责跳频和蓝牙数据及信息帧的传输。LMP层负责连接的建立和拆除以及链路的安全和控制,它们为上层软件模块提供了不同的访问入口,但是两个模块接口之间的消息和数据传递必须通过蓝牙主机控制器接口的解释才能进行。 也就是说,中间协议层包括逻辑链路控制与适配协议(L2CAP)、服务发现协议(SDP)、串口仿真协议(RFCOMM)和电话控制协议规范(TCS)。L2CAP完成数据拆装、服务质量控制、协议复用和组提取等功能,是其他上层协议实现的基础,因此也是蓝牙协议栈的核心部分。SDP为上层应用程序提供一种机制来发现网络中可用的服务及其特性。 在蓝牙协议栈的最上部是高端应用层,它对应于各种应用模型的剖面,是剖面的一部分。 目前定义了13种剖面。 蓝牙底层模块 蓝牙的底层模块是蓝牙技术的核心,是任何蓝牙设备都必须包括的部分。 蓝牙工作在的ISM频段。采用了蓝牙结构的设备能够提供高达720kbit/s的数据交换速率。 蓝牙支持电路交换和分组交换两种技术,分别定义了两种链路类型,即面向连接的同步链路(SCO)和面向无连接的异步链路(ACL)。 为了在很低的功率状态下也能使蓝牙设备处于连接状态,蓝牙规定了三种节能状态,即停等(Park)状态、保持(Hold)状态和呼吸(Sniff)状态。这几种工作模式按照节能效率以升序排依次是:Sniff模式、Hold模式、Park模式。 蓝牙采用三种纠错方案:1/3前向纠错(FEC)、2/3前向纠错和自动重发(ARQ)。前向纠错的目的是减少重发的可能性,但同时也增加了额外开销。然而在一个合理的无错误率环境中,多余的投标会减少输出,故分组定义本身也保持灵活的方式,因此,在软件中可定义是否采用FEC。 一般而言,在信道的噪声干扰比较大时,蓝牙系统会使用前向纠错方案,以保证通信质量:对于SCO链路,使用1/3前向纠错(FEC);对于ACL链路,使用2/3前向纠错。在无编号的自动请求重发方案中,一个时隙传送的数据必须在下一个时隙得到收到的确认。只有数据在收端通过了报头错误检测和循环冗余校验(CRC)后认为无错时,才向发端发回确认消息,否则返回一个错误消息。 蓝牙系统的移动性和开放性使得安全问题变得及其重要。虽然蓝牙系统所采用的调频技术就已经提供了一定的安全保障,但是蓝牙系统仍然需要链路层和应用层的安全管理。在链路层中,蓝牙系统提供了认证、加密和密匙管理等功能。每个用户都有一个个人标识码(PIN),它会被译成128bit的链路密匙(LinkKey)来进行单双向认证。一旦认证完毕,链路就会以不同长度的密码(EncryphonKey)来加密(此密码已shit为单位增减,最大的长度为128bit)链路层安全机制提供了大量的认证方案和一个灵活的加密方案(即允许协商密码的长度)。当来自不同国家的设备互相通信时,这种机制是及其重要的,因为某些国家会指定最大密码长度。蓝牙系统会选取微微网中各个设备的最小的最大允许密码长度。例如,美

蓝牙收发器IC测试

蓝牙收发器IC测试 蓝牙规范的第一个正式版本1.0版已于1999年7月发布,之后许多厂商都推出了支持蓝牙产品的高性价比集成电路芯片。随着蓝牙产品越来越普及,制造商需要以较低的成本完成大量测试工作。本文针对蓝牙射频前端收发器,着重介绍蓝牙技术规范中定义的各类测试参数。 今天的电子工程师几乎没有人没听说过“蓝牙”的概念,这个词出自公元10世纪丹麦国王Harald Blaatand,他为了联系他的臣民曾在挪威和丹麦建立了一个通信系统。开发蓝牙技术是为了使个人数字助理(PDA)、移动电话外设及其它移动计算设备不必使用昂贵的专用线缆就可以进行通信,正因为此,蓝牙又被称作“个人区域网络(PAN)”。对蓝牙产品来说,最基本的要求是低价格、 高可靠性、低能耗和有限工作范围。 最初蓝牙定义为采用全球适用的2.4GHz ISM频段进行短距离通信(10至15米),不过最近芯片制造商的不断提高使蓝牙技术远远超出当初的设计水平,一些OEM制造商希望能在20到30 米办公室环境和100米开放环境下使用蓝牙技术,他们期待将蓝牙作为网络连接技术,使笔记 本电脑用户通过无线接入点进入到局域网中。 蓝牙技术由4个主要部分组成,分别是应用软件、蓝牙栈、硬件和天线,本文针对硬件和射频 前端收发器,重点介绍蓝牙技术规范中定义的各类测试参数。 蓝牙收发器 对集成RF收发器的测试要求可以典型的RF蓝牙原理框图(图1)来说明。 ◆蓝牙发射器蓝牙无线信号采用高斯频移键控(GFSK)方式调制,发射数据(Tx)通过高斯滤波器滤波后,用滤波器的输出对VCO频率进行调制。根据串行输入数据流逻辑电平,VCO频率会 从其中心频率向正负两端偏离,偏移量决定了发射器的调制指数,调制的信号经放大后由天线发射出去。 蓝牙无线信号在半双工模式下工作,用一个RF多路复用开关(位于天线前)将天线连接到发射或接收模式。 ◆蓝牙接收器与设备接收部分相似,从另一个蓝牙设备发射来的GFSK信号也是由天线接收的。在这期间,开关与低噪声放大器(LNA)相连,对接收到的信号(Rx)进行放大。下一级混频器将接收信号下变换到IF频率 (

蓝牙结构分析

蓝牙结构分析
目的:利用 OSI 分层的体系结构办法分析蓝牙结构,利于以后分析定位问题。
一、OSI 回顾:
定义:
OSI 是 Open System Interconnect 的缩写,意为开放式系统互联。开放,是指非垄断的。系统是指现实的系统中与 互联有关的各部分。
目的:
OSI 模型的设计目的是成为一个所有销售商都能实现的开放网路模型,来克服使用众多私有网络模型所带来的困难 和低效性。
方法论:
OSI 标准制定过程中采用的方法是将整个庞大而复杂的问题划分为若干个容易处理的小问题, 这就是分层的体系结 构办法。在 OSI 中,采用了三级抽象,既体系结构,服务定义,协议规格说明。 OSI 参考模型中,对等层协议之间交换的信息单元统称为协议数据单元(PDU,Protocol Data Unit)。
OSI 参考模型表格
具体 7 层 (体 系结构) 应 用 层 Application 数据格式 服务(服务定义) 为操作系统或网络 应用程序提供访问 网络服务的接口。 为上层提供格式化 的表示和转换数据 服务 为上层提供建立和 维持会话,并能使 会话获得同步 Telnet FTP HTTP JPEG MPEG ASII OBEX NFS 功 能 ( 协 议 规 格 说 明 ) 网 络 服务 与使 用者 应用 程序间的一个接口 设备
APDU
网关 FTP 允 许 你选择以二 进制或 ASII 格式传输 服务器验证 用户登录, 断点续传
表 示 层 Presentation
PPDU
数据表示、数据安全、数 据压缩
会 话 Session

SPDU
建立、管理和终止会话

索爱k800i使用技巧

1.如何进入k790/k800的测试模式? 答:在待机画面下输入右*左左*左*(左右为左右方向键),输入过程中不用理会屏幕出现了什么,输入完即可进入测试模式 2.k790/k800的氙气闪光灯能作为电筒来使用吗? 答:不能.氙气闪光灯的工作原理是电容瞬间放电时产生的高压电流激发氙气发光达到闪光效果,氙气闪光灯不能像k750的闪光灯那样长时间工作. 3.K790/k800支持哪些视频格式?视频文件应放在哪里? 答:K790/k800支持的视频格式有rm,mp4,3gp.视频文件需放入文件管理器的video(视频)文件夹里 4.GPRS,彩信,电子邮件设置 全自动索尼爱立信手机网络参数设定方法(准确可用)(适用所有机型) 手动设置上网参数: 第一步:主菜单->手机设定—> 连接->数据通信->数据账户->添加账户->GPRS 数据->随便建立一个名称->APN:cmwap,用户名 和密码不用填写! 第二步:再到“数据通信”下面的“互联网设定”—> 添加模式—> 随便建立一个名称(建议与第一步所建立的帐户同名)—> 连接方式—> 选 择第一步的那个帐户—> 保存! 第三步:然后在刚才第二部建立的模式按更多—> 设置—> 连接方式(不用理会,其实就是刚才第二部建立的那个)—> 使用代理:是—> 代 理地址:010.000.000.172或者10.0.0.172(其实没分别)—> 端口号:80—> 用户名,密码不用填写—> 保存! 彩信设置:前提是开通GPRS ,能上网 主菜单--信息功能--设定--彩信--彩信模式--随便建立一个名称(建议与上网设置中建立的帐户名相同)--更多--编辑--信息服务器: https://www.docsj.com/doc/e42974838.html, 电子邮件设置:前提是开通中国移动的无线上网(一般都是20元/月) 目前手机的屏幕、内存都不适合,不建议使用手机收发Mail 第一步:主菜单->手机设定—> 连接->数据通信->数据账户->添加账户->GPRS 数据->随便建立一个名称->APN:cmnet,用户名 和密码不用填写! 第二步:再到“数据通信”下面的“互联网设定”—> 添加模式—> 随便建立一个名称(建议与第一步所建立的帐户同名)—> 连接方式—> 选 择第一步的那个帐户—> 保存! 第三步:信息功能---- 电子邮件----设定----帐户设定----添加帐户----输入帐户名称(比如我的xxx@https://www.docsj.com/doc/e42974838.html,)----确定,然后你选上你 刚才建立的互联网模式,进入。 {第四步:在我刚才选定的xxx@https://www.docsj.com/doc/e42974838.html,下连接方式----选GPRS连接互联网协议:

蓝牙技术浅析

蓝牙技术浅析 蓝牙是一种支持设备短距离通信的无线电技术,近年来已经成为研究的热点问题并获得了广泛的应用。本文从蓝牙技术的起源和特点讲起,详细介绍了蓝牙系统的组成、蓝牙技术的信息安全机制和蓝牙技术的组网方案,最后对蓝牙技术的发展做了展望。 标签:蓝牙系统组成信息安全机制组网方案 1 蓝牙技术概况 1.1 蓝牙的起源 蓝牙的名字来源于10世纪丹麦国王Harald Blatand,因为他十分喜欢吃蓝梅,所以牙齿每天都带着蓝色。蓝牙将当时的瑞典、芬兰与丹麦都统一了起来。 1999年12月1日,蓝牙特殊利益集团——Bluetooth SIG发布了蓝牙技术最新标准1.0B版。发展至今,加盟的公司已超过2000多家。一项公开的全球统一的技术规范能得到工业界如此广泛的关注和支持是前所未有的。当然,这主要得益于蓝牙技术本身所具有的广阔应用前景和诱人的商机。 1.2 蓝牙技术的特点 蓝牙技术使用高速跳频和时分多址等先进技术,在近距离内最廉价地将几台数字化设备呈网状链接起来。 蓝牙是一个开放性的、短距离无线通信技术标准。它可以用来在较短距离内取代目前多种线缆连接方案,穿透墙壁等障碍,通过统一的短距离无线链路,在各种数字设备之间实现灵活、安全、低成本、小功耗的话音和数据通信。 蓝牙作为一种新兴的短距离无线通信技术已经在各个领域得到广泛应用,它提供低成本、低功耗、近距离的无线通信,构成固定与移动设备通信环境中的个人网络,使得近距离内各种信息设备能够实现无缝资源共享。 2 蓝牙系统的参数指标及组成 2.1 蓝牙系统结构基本系统参数及指标 工作频段:ISM频段2.402GHz—2.480GHz 双工方式:TDD 业务类别:同时支持电路交换及分组交换业务

蓝牙技术原理2

蓝牙技术 SIG组织于1999年7月26日推出了蓝牙技术规范1.0版本。蓝牙技术的系统结构分为三大部分:底层硬件模块、中间协议层和高层应用。底层硬件部分包括无线跳频(RF)、基带(BB)和链路管理(LM)。无线跳频层通过2.4GHz无需授权的ISM频段的微波,实现数据位流的过滤和传输,本层协议主要定义了蓝牙收发器在此频带正常工作所需要满足的条件。基带负责跳频以及蓝牙数据和信息帧的传输。链路管理负责连接、建立和拆除链路并进行安全控制。 蓝牙技术结合了电路交换与分组交换的特点,可以进行异步数据通信,可以支持多达3个同时进行的同步话音信道,还可以使用一个信道同时传送异步数据和同步话音。每个话音信道支持64kb/秒的同步话音链路。异步信道可以支持一端最大速率为721kb/秒、另一端速率为57.6kb/秒的不对称连接,也可以支持43.2kb/秒的对称连接。 中间协议层包括逻辑链路控制和适应协议、服务发现协议、串口仿真协议和电话通信协议。逻辑链路控制和适应协议具有完成数据拆装、控制服务质量和复用协议的功能,该层协议是其它各层协议实现的基础。服务发现协议层为上层应用程序提供一种机制来发现网络中可用的服务及其特性。串口仿真协议层具有仿真9针RS232串口的功能。电话通信协议层则提供蓝牙设备间话音和数据的呼叫控制指令。 主机控制接口层(HCI)是蓝牙协议中软硬件之间的接口,它提供了一个调用基带、链路管理、状态和控制寄存器等硬件的统一命令接口。蓝牙设备之间进行通信时,HCI以上的协议软件实体在主机上运行,而HCI以下的功能由蓝牙设备来完成,二者之间通过一个对两端透明的传输层进行交互。 在蓝牙协议栈的最上部是各种高层应用框架。其中较典型的有拨号网络、耳机、局域网访问、文件传输等,它们分别对应一种应用模式。各种应用程序可以通过各自对应的应用模式实现无线通信。拨号网络应用可通过仿真串口访问微微网(Piconet),数据设备也可由此接入传统的局域网;用户可以通过协议栈中的Audio(音频)层在手机和耳塞中实现音频流的无线传输;多台PC或笔记本电脑之间不需要任何连线,就能快速、灵活地进行文件传输和共享信息,多台设备也可由此实现同步操作。 总之,整个蓝牙协议结构简单,使用重传机制来保证链路的可靠性,在基带、链路管理和应用层中还可实行分级的多种安全机制,并且通过跳频技术可以消除网络环境中来自其它无线设备的干扰。 蓝牙技术的优势:支持语音和数据传输;采用无线电技术,传输范围大,可穿透不同物质以及在物质间扩散;采用跳频展频技术,抗干扰性强,不易窃听;使用在各国都不受限制的频谱,理论上说,不存在干扰问题;功耗低;成本低。蓝牙的劣势:传输速度慢。蓝牙的技术性能参数:有效传输距离为10cm~10m,增加发射功率可达到100米,甚至更远。收发器工作频率为2.45GHz ,覆盖范围是相隔1MHz的79个通道(从2.402GHz到2.480GHz )。数据传输技术使用短封包,跳频展频技术,1600次/秒,防止偷听和避免干扰;每次传送一个封包,封包的大小从126~287bit;封包的内容可以是包含数据或者语音等不同服务的资料。数据传输带宽为同步连接可达到每个方向32.6Kbps,接近于10倍典型的56kb/s Modem的模拟连接速率,异步连接允许一个方向的数据传输速率达到721kb/s,用于上载或下载,这

手机的音频电路原理设计

摘要 本论文先分别论述了手机用麦克、耳机、蓝牙送话、受话、录音的原理,还论述了播放MP3、MIDI音、录音的原理,先从大体上分析了手机的音频原理。 接着以MOTO的经典机型E680为例,详细分析了手机的音频电路原理。 最后是关于手机音频的维修分析。 通过这次论文,在分析原理的基础上指导维修。 关键字:语音总线PCAP集成芯片龙珠(主CPU)NEP(从CPU) Abstract This paper first describes respectively phone with Mike, headphone, Bluetooth sent, the subject, recording the principle, also outlined the play MP3, MIDI Music, the recording of principle, with the general on the phone audio principle. MOTO then to the classic models E680 for example, gave a detailed account of the phone audio circuit. Finally, with regard to the maintenance of cell phone audio analysis. Keywords : Speech PCAP IC Bus

目录 第一章绪论 (3) 第二章手机音频原理论述 (3) 2.1主MIC(麦克)的打电话原理 (4) 2.2主听筒接电话原理 (5) 2.3普通录音原理 (5) 2.4 播放普通录音原理 (6) 2.5耳机送话原理 (6) 2.6 耳机受话原理 (7) 2.7 蓝牙打电话原理 (7) 2.8 蓝牙接电话原理 (8) 2.9 播放MP3原理 (8) 2.10 免提接电话原理 (9) 2.11 播放MIDI音原理 (9) 2.12收音机使用原理 (9) 2.13 E680音频原理总结 (10) 第三章音频电路原理的详细分析 (11) 3.1 Y AMAHA电路原理分析 (11) 3.2收音机电路原理分析 (12) 3.3 音频的路由选择 (16) 3.4 耳机电路原理分析 (20) 3.5蓝牙电路原理分析: (22) 第四章音频故障维修分析 (23) 4.1 无铃声故障 (23) 4.2收音机不能调台,无声音 (26) 4.3无振铃,耳机无声 (27) 4.4 插耳机无收音机 (28) 第五章总结 (32)

蓝牙技原理及其应用

蓝牙技术的原理及其应用 符鹤1 周忠华2 彭智朝2 1 空军驻长沙地区军事代表室 长沙 410081; 2 中南大学信息学院 长沙 410083 摘 要:本文介绍了蓝牙技术,阐述了其技术特点、系统组成和应用,最后讨论了蓝牙技术在应用中的一些问题和发展前景。 关键词:蓝牙技术 系统组成 应用 Principle and Application of Bluetooth Technology FU He ZHOU Zhonghua PENG Zhichao2 1 Changsha’s Military Delegation of Air Force of PLA, Changsha, 410083; 2 School of Information Science and Engineering, Central South University, Changsha,410083 Abstract:This article discusses the technological characters、Systematic components and application of Bluetooth.At last,we put forward its problem and propensity. Keywords: Bluetooth technology; systematic components; application 1 引 言 随着通信网络的发达,各种通信电缆五花八门,不但办公室中电缆无处不在,家用设备的发展也使居室成了电缆的世界。人们在觉得它们必不可少的同时,又伤透了脑筋,如电缆使用不便,连线频出故障,各种电缆之间无法通用。电缆成为现代通信中的美中不足。为了取消连线,以较低成本实现各设备间的无线通信,诞生了蓝牙 (Bluetooth)技术。 2 什么是蓝牙技术 爱立信、IBM、Intel、Nokia和东芝五家公司于1998年5月联合成立了蓝牙特别利益集团(Bluetooth Special Interest Group-BSIG),并制订了近距离无线通信技术标准—— 蓝牙技术。它的命名借用了一千多年前一位丹麦皇帝Harald Bluetooth的名字。所谓蓝牙(Bluetooth)技术,实际上是一种短距离无线电技术,利用“蓝牙”技术,能够有效地简 化掌上电脑、笔记本电脑和移动电话等移动通信终端设备之间的通信,也能够成功地简化以上这些设备与因特网之间的通信,从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效,为无线通信拓宽了道路。它具有无线性、开放性、低功耗等特点。因此,目前“蓝牙”刚刚露出一点儿芽尖,却已经引起了全球通信业界和广大用户的密切关注。 7

相关文档