文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料改性硅胶的研究进展

纳米材料改性硅胶的研究进展

纳米材料改性硅胶的研究进展
纳米材料改性硅胶的研究进展

纳米材料改性硅橡胶的研究进展

摘要:综述了近年来纳米蒙脱土改性硅橡胶、纳米Si02改性硅橡胶、纳米siox

改性硅橡胶、纳米纤维改性硅橡胶、纳米TiQ改性硅橡胶的研究与应用进展,并介绍了硅橡胶纳米改性材料的发展方向。

关键词:硅橡胶,纳米材料,改性

用纳米材料对传统硅橡胶进行改性,可以提高硅橡胶的力学、耐热、导电和阻燃等性能。通常所说的纳米相改性硅橡胶是指采用特殊工艺或技术手段将制备好的纳米相材料均匀分散于硅橡胶基体中从而得到比原有性能更好的材料。在纳米相改性硅橡胶体系中存在纳米颗粒之间的相互作用和纳米颗粒与硅橡胶基体问的作用;同时,改性硅橡胶中除了纳米颗粒本身具有特殊的纳米效应外,还与硅橡胶基体颗粒周围局部场效应的形式发生协同作用,因此在其内部各组分的协同作用下会产生一些母体不具备的力学、阻隔、抗老化和导电等特异性质。

1、纳米蒙脱土改性硅橡胶

近年来,对蒙脱土/硅橡胶复合材料的研究是阻燃高分子材料的一个研究热点。这类材料具有较白炭黑/聚合硅橡胶无法比拟的优点,可以同时改善高分子材料的力学性能、热稳定性、气体阻隔性和阻燃性等[1。3]。硅橡胶具有热稳定性高、热释放速率低、成炭率高、低烟、无毒等优点,成为阻燃防火橡胶的首选材料;但硅橡胶本身具有可燃性,需要进行阻燃改性以便扩大其应用。

赖亮庆[4]等采用蒙脱土(MMT)、钠基蒙脱土(Na-MMT)、用羧基插层剂改性的蒙脱土(DK3)和用十八烷基插层剂改性的蒙脱土(DK4)粉末,计算出MMT、Na-MMT、DK3和DK的[0013面层间距d001分别为1.2rim、1.5rim、2.5rim、3.4nm,并且以它们作为填充剂,用熔融共混法制备了蒙脱土/硅橡胶复合材料,研究了蒙脱土对硅橡胶的力学和阻燃性能。结果表明:有机插层剂改性有利于蒙脱土在硅橡胶中的分散,并且提高硅橡胶的拉伸强度和阻燃等性能。一般而言,未改性蒙脱土的层间距较小,且具有亲水性,与硅橡胶的相容性较差;所以蒙脱土在硅橡胶中不易被剥离而呈微米级分散,达不到补强和阻燃的效果。而经有机插层剂改性的蒙脱土DK3、Ⅸ<4的层间距增大,且有机阳离子的引入使蒙脱土的疏水性大大提高;从而使蒙脱土与硅橡胶的相容性提高,蒙脱土易被插层或剥离成纳米级片层分散在硅橡胶中。这种硅橡胶依托蒙脱土纳米片层超大的比表面积和极高的径/厚比来增强材料的力学性能;另外。纳米片层分散在硅橡胶中能够阻隔氧气、自由基以及热量等往里层传递,所以硅橡胶的阻燃性能得到提高。研究还发现,当层间距d001为3.4nm的有机改性蒙脱土的质量分数为6%时,硅橡胶的拉伸强度达到12.1MPa,扯断伸长率为362%,氧指数为32.7%,硅橡胶的起始分解温度和终止分解温度分别比空白样提高83℃和13℃。

王锦成L5j等对蒙脱土(MMT)进行有机改性后,再用其作为填料,采用溶液插层法制备了有机蒙脱土(0MMT)填充脱醇型RTV-2硅橡胶。与MMT质量分数为2%的硅橡胶相比,OMMT质量分数为20%的硅橡胶的拉伸强度由1.39Mpa提高到1.98MP提高了42.4%;断裂伸长率由190%提高到210%,提高了lo.5%;透气量只有其0.003%,而透气系数只有其0.009%;热分解中心温度变化不大,分解的剧烈程度也得到较大程度的抑制。

2、纳米SiQ改性硅橡胶

室温硫化硅橡胶(RTV)涂料具有良好的介电特性、物理特性、优异的憎水性以及憎水迁移性,能够显著提高玻璃和瓷绝缘子的污闪电压。在传统的玻璃和瓷绝缘子上使用RTV涂料是目前我国电力部门常用的防污闪措施[6。7]。RTV硅橡胶胶粘剂具有优异的耐候、工艺性能及稳定的化学结构,在特种炸药粘接领域也得到了广泛的应用。RTV硅橡胶胶粘剂与多种敏感特种炸药相容,具有长期贮存稳定的优越性,同时也存在自身的强度和对特种炸药的粘接强度较低等弱点,通过在体系中加入纳米Si02可以提高RTV的强度和对特种炸药的粘结强度。

方苏[8。等研究了两种不同结构、不同粒径的Si02对RTV涂料机械性能的影响及不同si02添加量对RTV涂料憎水迁移性能的影响。发现颗粒大小、表面处理剂等影响SiQ在硅橡胶中的补强效果,在填料添加量较低时,颗粒大小起主要作用;在填料添加量较高时,填料在胶中分散的均匀性起主要作用。增加Si02的添加量能增加RTV硅橡胶材料的机械性能,但也会降低其憎水迁移。

廖宏L9J等通过超声波分散法制备了纳米si02/室温硫化硅橡胶胶粘剂,研究了纳米Si02对RTV硅橡胶胶粘剂自身强度及对JOB-9003炸药的粘接强度的影响。发现JOB-9003炸药粘接面经钛酸丁酯处理后,有利于提高IUV硅橡胶胶粘剂/纳米Si02(经KH-570处理)复合体系对其的粘接力;体系中加入纳米Si02RTV 硅橡胶胶粘剂的线膨胀系数降低,黏度有所增加;同时RTv硅橡胶胶粘剂的拉伸强度、断裂伸长率及JOB-9003炸药粘接件的拉伸强度明显提高,并在纳米SiOz 含量为4%~5%时达到最大值;将不同粒径的纳米si02加入硅橡胶胶粘剂中,保持纳米Si02加入量为4%时,改变不同粒径纳米Si02的重量分数,复合体系的拉伸强度随之有规律地变化,并有最大值。

潘伟[10]等对添加气相法制备的siQ纳米粉对硅橡胶/炭黑体系的压阻、阻温效应影响及其导电机制做过研究。发现在添加15%导电炭黑的硅橡胶中,随着Si02纳米粉的增加,压阻效应越来越显著。在~定压力范围内,材料电阻随压力呈线性增加。添加15%导电炭黑的硅橡胶的电阻率随温度升高而略有降低,而加入纳米级气相法制成的Si02的导电炭黑/硅橡胶复合材料的电阻随温度增加而增加。一般认为电导率取决于导电团聚体间的电子跃迁的势垒高度和能隙宽度。在一定温度范围内,升温会使得导电团聚体间电子跃迁几率增大。此外,由于橡胶基体的膨胀系数大于导电炭黑,升温会导致链状团聚体间问隙和导电网络无序度增大。由于不添加si02纳米粉的材料中炭黑含量较高,形成连续链状高导电通道,升温并不能导致连续链状团聚体断裂,构成间隙,因而前者的影响占主导,使得电阻率随温度升高而降低。而加入Si()z纳米粉的材料内部为不连续导电团聚体结构。升温使间隙加大,因而材料体电阻率随温度升高而增大,且其导电机制为欧姆导电,其电导率受导电团聚体间的电导率控制。

3、纳米SiOx改性硅橡胶

纳米Si0)c(x=1.2~1.6)是一种无定型白色粉末,具有无毒、无味、无污染的特点。其颗粒尺寸为5~15nm,比表面积达640~700mz/g,表面存在不饱和的残键及不同键合状态的羟基,经高分辨电镜观测发现,其表面含有许多纳米级介孔结构,用Om_nisorp IOOCX比表面和孔隙率分析仪测得其表面孔隙率值为0.611ml/g。因表面欠氧而偏离了稳态的硅氧结构,故分子式为SiOx[1¨。利用纳米si())(对室温硫化硅橡胶改性时将产生特殊的效果,如对硅胶的硫化反

应产生较强的阻聚作用,提高硅橡胶的拉伸强度等。

陈江涛[12]等以纳米SiOx取代白炭黑用作硅橡胶混炼胶补强用料,进行了纳米SiOx在硅橡胶中的应用研究。发现以纳米级SiOx取代白炭黑,在不改变原配方的基础上,采用传统混炼方法进行纳米填料的分散,可使硅橡胶在其它性能数据变化不大的情况下拉伸强度提高55%。

郭亚林r131等采用纳米SiOx对双组分室温硫化硅橡胶(RTv-2)做了改性研究。考察了纳米SiOx对RTv_2胶硫化反应和力学性能的影响,发现纳米SiOx 粒子对RTV-2胶的硫化反应有较强的阻聚作用,表现在胶液的凝胶时间随纳米SiOx含量的增大而延长;纳米SiOx粒子对RTV-2硫化胶的拉伸性能有一定的改进作用,硫化胶的拉伸强度和断裂伸长率在纳米SiOx质量分数为6%时较高。

4、纳米纤维改性硅橡胶

纳米导电纤维(Nano-F)是由纳米铜粒子催化乙炔聚合反应而制得的一种导电填料。用它作为硅橡胶填料时发现:Nano-F对硅橡胶硫化没有影响,且其填充的硅橡胶胶料具有硬度低、弹性好和扯断永久变形小等优点,但其导电性能不如导电炭黑,采用Nano-F/导电炭黑并用填充的硅橡胶可获得最佳的物理性能与导电性能[i“。

陈克正[15]等考察了纳米导电纤维/导电炭黑填充硅橡胶胶料的流变性能,发现在低剪切速率下,Nanco-F的各向异性增加了硅橡胶分子链缠结点,阻碍其在流场中的取向,提高了胶料的表观黏度;在高剪切速率下,Nanco~F的取向有助于硅橡胶分子链的取向运动,可降低胶料的表观黏度,改善胶料的加工性能。并且提出Nanco-F/导电炭黑并用填充硅橡胶可作为一新型的导电橡胶使用。

陈克正[16]等还研究了纳米导电纤维(Nanco-F)与导电炭黑(H∞)填充硅橡胶复合材料的电性能,Nanco-F/HG-CB填充硅橡胶复合材料具有高的导电性;电阻率随温度增加在25~40℃之间呈负温度系数,而在40~120℃之间电阻率变化不大,具有较高的热稳定性;在不同温度下的伏一安特性呈欧姆线性关系。

5、纳米Ti02改性硅橡胶

纳米Ti02粒子具有表面缺陷少、非配对原子多、比表面积大等优点,可以与聚合物发生物理或化学结合。用纳米T慨填充硅橡胶基体,可以增加硅橡胶的物理或化学交联点,提高硅橡胶的交联密度,在应力场的作用下,当受外力损伤时,基体内产生微变形区,可以吸收能量,从而表现出较好的抗辐照能力。同时,纳米Ti02具有半导体性质,质子辐照下,带电粒子激发电子e-由低能的价带向高能级的导带跃迁,产生电子(e_)一空穴(h+)x,-t,通过电子跃迁吸收部分能量后,再通过电子一空穴对的复合以振动热或其它形式释放,从而避免质子对聚合物分子链的破坏,因此添加纳米Ti02可提高硅橡胶抗辐照性能。

邸明伟[17]等以MQ树脂(MQ硅树脂是由单官能硅氧单元(民Si00.5,简称M 单元)和四官能硅氧单元(Si02,简称Q单元)组成的有机硅树脂)增强硅橡胶为基体,采用机械共混的方式,加入少量纳米Ti(]2进行改性。采用空间综合辐照模拟设备研究了,纳米Ti02,在100keV和150keV能量质子辐照下,对MQ硅树脂增强加成型硅橡胶的损伤及热性能的影响。试验结果表明,添加纳米Ti02的硅橡胶与未改性硅橡胶相比,经过质子辐照后,表面颜色加深和表面裂纹损伤的程度减小,质损率增加、耐热性能下降以及收缩膨胀率变化的程度降低,表现出明显的抗辐照性能。

6展望

硅橡胶/纳米复合材料对研究工作的深入,今后应该从以下方面进行研究:(1)进一步研究并完善插层理论,继续开发各种新型的插层剂,尤其是功能型插层剂,以制备性能更高、成本更低的新型硅橡胶/纳米复合材料。(2)充分研究纳米材料中间体和硅橡胶复合的影响因素和各种工艺,以充分发挥硅橡胶/纳米复合材料的性能。(3)进一步研究硅橡胶/纳米复合材料新的制备方法,以便让更多种硅橡胶与更多种纳米材料复合,以制备出更多的性能优异的新材料。(4)根据需要,继续设计开发新型硅橡胶,重点将向新型半导电和导电材料、电致发光或变色材料、非线性光学材料发展。(5)如何针对市场目标去发展应用技术,以便技术优势和市场优势相结合,以及如何通过金融和技术两个市场去推动纳米技术产业化。

参考文献:

【1】Beyer G.Nanocomposites:a new class of flame retardants forpolymersEJ].Hast Addit Comp.2002,10:22—28.

【2】Gilman J W.Flammability and thermal stability studies of polymerlayered-silicate(clay)nanocomposites[J 3.Appl Clay Sci,1999,15:31—49.

【3】欧育湘,吴俊浩,王建荣.新一代潜在阻燃高分子材料一聚合物/无机物纳米硅橡胶EJ].中国。l:程科学,2001,3(2):86—90.

【4】赖亮庆.钱黄海。苏正涛,等.蒙脱土/硅橡胶复合材料的力学和阻燃性能研究EJ].有机硅材料,2008,22(1):24—27.

【5】王锦成。李培.有机蒙脱土填充RTV硅橡胶的性能研究[J].有机硅材料,2009,23(5):302—307.

【6】Zhidong Jia,Su Fang,Haifeng Gao,et a1.Development ofRTV Silicone Coatings in China:Overview and BibliographyEJ3.IEEE Electrical Insulation Magazine,2008,24(2):28—41.

【7】贾志东.RT V长效防污闪涂料的研制及特性研究[D].北京:清华大学电机系,2003.

【8】方苏,高海峰,贾志东,等.纳米Si()2对RTV硅橡胶涂料性能的影响Eli.高电压技术,2009。35(1):125—128.

【9】廖宏,乇翕.纳米SiOz增强室温硫化硅橡胶胶粘剂复合体系的性能研究Ec].高分子材料科学与丁程研讨会,2006,603—604.

【10】潘伟。翟普,刘立志.Si()2纳米粉对炭黑/硅橡胶复合材料的压阻、阻温特性的影响[J].材料研究学报,1997,11(4):397—401.

【11】刘景春.2l世纪高技术材料纳米siox的应用[J].中国粉体工业,2006,

(1):18—21.

【12】陈江涛,唐波,赵云峰.纳米SiOx改性6109硅橡胶研究E1].硅铝化合物,2004,(2):22—23.

【13】郭亚林.粱国正,丘哲明,等.纳米SiOx改性室温硫化硅橡胶研究Eli.弹性体,2003,13(1):19—22.

【14】宁英沛,卢祥来,张志琨,等.纳米导电纤维填充硅橡胶的性能E1].合成橡胶工业,1995,18(6):332—334.

【15】陈克正,裘泽明,张志琨.纳米导电纤维与导电炭黑并用填充硅橡胶胶料的流变性能FJ].橡胶工业。1998。45(10):583—586.

【16】陈克正,王德平,张志琨.纳米导电纤维和导电炭黑并用填充硅橡胶复合材料的电性能E1].材料研究学报,1999,13(3):323—327.【17】邸明伟.张丽新。何世禹,等.纳米二氧化钛对质子辐照下MQ增强硅橡胶热性能的影响E1].材料丁程。2006,(7):31—34.

纳米技术在高分子材料改性中的应用

纳米技术在高分子材料改性中的应用 (南通大学化学化工学院高分子材料与工程132 朱梦成1308052064 ) [摘要] 纳米材料及其技术是随着科技发展而形成的新型应用技术。纳米材料的研究是从金属粉末、陶瓷等领域开始的,现已在微电子、冶金、化工、电子、国防、核技术、航天、医学和生物工程等领域得到广泛的应用。近年来将纳米材料分散于聚合物中以提高高分子材料性能的研究也日益活跃,并取得了许多可观的成果。 [关键词] 纳米技术;高分子材料;改性;应用 1纳米粒子的特性及其对纳米复合材料的性能影响 1.1纳米粒子的特性 纳米粒子按成分分可以是金属,也可以是非金属,包括无机物和有机高分子等;按相结构分可以是单相,也可以是多相;根据原子排列的对称性和有序程度,有晶态、非晶态、准晶态。由于颗粒尺寸进入纳米量级后,其结构与常规材料相比发生了很大的变化,使其在催化、光电、磁性、热、力学等方面表现出许多奇异的物理和化学性能,具有许多重要的应用价值。 1.1.1表面与界面效应 纳米微粒比表面积大,位于表面的原子占相当大的比例,表面能高。由于表面原子缺少邻近配位的原子和具有高的表面能,使得表面原子具有很大的化学活性,从而使纳米粒子表现出强烈的表面效应。利用纳米材料的这种特点,能与某些大分子发生键合作用,提高分子间的键合力,从而使添加纳米材料的复合材料的强度、韧性大幅度提高。 1.1.2小尺寸效应 当超细微粒的尺寸与传导电子的德布罗意波长相当或更小时,晶体周期性的边界条件将被破坏,导致其磁性、光吸收、热、化学活性、催化性及熔点等发生变化。如银的熔点为900℃,而纳米银粉的熔点仅为100℃(一般纳米材料的熔点为其原来块体材料的30%~50%)。应用于高分子材料改性,利用纳米材料的高流动性和小尺寸效应,可使纳米复合材料的延展性提高,摩擦系数减小,材料表面光洁度

粉体表面改性复习要点(精简版)

第2章 纳米粉体的分散 1.粉体分散的三个阶段(名词解释) 润湿 是将粉体缓慢加入混合体系形成的漩涡,使吸附在粉体表面的空气或其它杂质被液体取代的过程。 ?解团聚 是指通过机械或超声等方法,使较大粒径的聚集体分散为较小颗粒。 ?稳定化 是指保证粉体颗粒在液体中保持长期的均匀分散 2.常用的分散剂种类 (1)表面活性剂 空间位阻效应 (2)小分子量无机电解质或无机聚合物 吸附--提高颗粒表面电势 (3)聚合物类(应用最多) 空间位阻效应、静电效应 (4)偶联剂类 3.聚电解质(名词解释) 是指在高分子链上带有羧基或磺酸基等可离解基团的水溶性高分子 4.对不同pH 值下PAA 在ZrO 2表面的吸附构型进行分析。 图.不同pH 值下PAA 在ZrO 2 表 面的吸附构型 a.当pH<4时,PAA 几乎不解离,以线团方式存在于固液界面上,吸附层很薄,几乎无位阻作用 δ δδ

b.随pH值增加,链节间静电斥力使其伸展开 c.ZrO2表面电荷减小直至由正变负,PAA的负电荷量增加,其间斥力增加, 使得PAA链更加伸展,可在较远范围提供静电位阻作用 5.用聚电解质分散剂分散纳米粉体时,影响浆料稳定性的各种因素有哪些? 1、聚电解质的分子量 当聚电解质分子量过小,在粉体表面的吸附较弱,吸附层也较薄,影响位阻作用的发挥。 分子量过大,易发生桥连或空位絮凝,使团聚加重,粘度增加。 2、分散剂用量 适宜的分散剂用量才可以使分散体系稳定。 用量过低,粉体表面产生不同带电区域,相邻颗粒因静电引力发生吸引,导致絮凝。 用量过高,离子强度过高,压缩双电层,减小静电斥力;同时,还易发生桥连或空缺絮凝,稳定性下降。 3、温度 研究表明,为了获得较好的分散效果(以最低粘度为衡量标准),随温度的升高,所需分散剂的用量随之增加 6.结合下图,分析煅烧为什么能够改善纳米Si3N4粉体的分散性? 煅烧改善纳米Si3N4粉体的可分散性 ?此前提到,球磨可有效降低粉体的粒度。但球磨过程可能造成分散介质与粉体发生化学反应。 ?以乙醇为介质球磨Si3N4粉体时,表面的Si-OH可能与乙醇反应生成酯。 ?酯基的生成对粉体的分散性影响很大: a、酯基是疏水基团 b、屏蔽负电荷,影响分散剂的吸附 ?采取煅烧去除酯基,可改善其分散性 第3章纳米粉体表面改性(功能化) 1.表面改性有哪些重要应用? 改善纳米粉体的润湿和附着特性。 改善纳米粉体在基体中的分散行为,提高其催化性能。 改善粉体与基体的界面结合能等。 2.纳米粉体的表面改性方法? 气相沉积法 机械球磨法 高能量法

纳米材料改性水性聚氨酯的研究进展

纳米材料改性水性聚氨酯的研究进展 综述了纳米材料改性水性聚氨酯几种常用方法的特点和研究进展,指出了纳米材料改性水性聚氨酯存在的问题。 标签:水性聚氨酯(WPU);纳米材料;方法;改性 1 前言 近年来,随着人们环保意识的增强,水性聚氨酯(WPU)受到越来越多学者的关注。WPU是以水为分散介质的二元胶态体系,具有不污染环境、VOC(有机挥发物)排放量低、机械性能优良和易改性等优点,使其在胶粘剂、涂料、皮革涂饰、造纸和油墨等行业中得到广泛应用[1~4]。但在制备WPU过程中由于引入亲水基团(如-OH、-COOH等),因此存在固含量低,耐水性、耐热性和耐老化性差等缺陷,从而限制了其应用范围。 纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等特殊性质,为各种材料的改性开辟了崭新的途径。通过纳米材料改性的WPU,其成膜性、耐水性和耐磨性等性能均得到显著提高[5]。 2 纳米材料改性WPU的方法 2.1 共混法 共混法即纳米粒子在WPU中直接分散。首先是合成各种形态的纳米粒子,再通过机械混合的方法将纳米粒子加入到WPU中。但在该方法中,由于纳米粒子颗粒比表面积大,极易团聚。为防止纳米粒子团聚,科研工作者对纳米材料进行表面改性来提高其分散性,改善聚合物表面结构以提高其相容性。 李莉[6]等利用接枝改性后的纳米SiO2和TiO2与WPU共混,制备了纳米材料改性水性WPU乳液。研究发现,纳米粒子在乳液中分散均匀,无团聚现象;改性后的WPU乳液力学性能比未改性前得到改善和提高;当纳米粒子添加量为0.5%时,WPU乳液的力学性能最佳,吸水性降低了70%,添加的纳米粒子对波长290~400 nm的紫外光有吸收。 李文倩[7]等采用硅烷偶联剂(KH560)对纳米SiO2溶胶进行表面改性,然后将其与WPU共混制备出了WPU/SiO2复合乳液,考查了改性纳米溶胶含量对复合乳液及其涂膜性能的影响。结果表明,当纳米SiO2/KH560物质的量比为6:1时,改性后的纳米SiO2溶胶的粒径最小且分布较均一。KH560的加入使纳米SiO2粒子更均匀地分散在聚氨酯乳液中,且SiO2粒子与聚氨酯乳液之间存在一定键合作用,使涂层的耐热性得到显著增强。当改性SiO2溶胶添加量为5%~10%时,涂膜的硬度、耐磨性、耐划伤性、耐水性等性能明显提高。

纳米粒子表面与界面改性

纳米粒子表面改性 摘要:本文介绍了纳米粒子的表面改性原理,对几种纳米粒子ZnO纳米粒子、Fe3O4纳米粒子、SiO2纳米粒子的表面改性方法进行了总结。 关键字:纳米材料;表面改性剂;改性机理 1 前言 在制备纳米材料的过程中,由于纳米粒子比表面积大,表面能高,纳米粒子很容易团聚;另一方面,纳米粒子与表面能比较低的基体的亲和性差,二者在相互混合时不能相溶,导致界面出现空隙,存在相分离现象。只有对纳米粒子在材料中的团聚问题解决得好,纳米粒子的特殊效应才会在材料中得到很好的体现,最终使材料的力学、光学、热学等方面的性能都有较大的提高[1]。 所谓纳米粒子的表面改性就是让纳米粒子表面与表面改性剂发生作用,以改善纳米粒子表面的可润湿性,增强纳米粒子在介质中的界面形容性,使纳米粒子容易在有机化合物或是水中分散。选用特殊的表面改性剂可以使纳米粒子获得特殊的性质。 2 表面改性剂 表面改性剂可以是无机化合物,比如通常采用Al2O3,SiO2,ZnO作为改性剂对纳米TiO2进行表面改性。经过处理后的锐钛矿型TiO2具有较强的紫外吸收能力,可安全地应用到化妆品、造纸、涂料等领域。用氟化物改性α-Al2O3,可制得分散均匀、平均粒径<50nm的氧化铝粉。 也可以是有机化合物,特别是聚合物。实际上有机化合物是主要的纳米粒子改性剂。上面提到在溶胶-凝胶法制备纳米SiO2过程中,用聚合物为表面活性剂对粒子进行改性的过程。实际上,聚合物对纳米粒子表面改性就是以聚合物网络稳定纳米粒子。在聚合物网络中引入羧基盐、磺酸盐等,经硫化氢气流处理成硫化物纳米粒子,粒径平均仅几个纳米,受聚合物网络的立体保护作用,提高了纳米粒子的稳定性,实现了纳米粒子特殊性质的微观调控,聚合物优异的光学性质及易加加工性,为纳米粒子的成型加工提供了良好的载体。

纳米四氧化三铁的制备与表面改性.doc11

纳米四氧化三铁的制备与表面改性 化学与材料科学系09级应用化学1班刘立君李淑媛 摘要:由于纳米Fe3O4在光学、电学、热学、磁学、力学等方面独特的性质,对它的研究越来越多,且在各个领域的应用也越来越广泛,因此本文详细介绍了纳米四氧化三铁的各种制备方法,对其制备工艺的优缺点、应用前景、产品性能进行了详细的比较;并综述了纳米四氧化三铁的表面改性的方法,如有机改性、无机改性、偶联改性、小分子改性、大分子改性等改性手法,以及表面改性后各种纳米Fe3O4的特征与用途前景。 关键词纳米Fe3O4 综述表面改性 1引言 四氧化三铁的性质:四氧化三铁在常温常压状态下是一种具有强磁性的黑色粉末状晶体,潮湿状态的四氧化三铁在空气中容易氧化成三氧化二铁,二价铁离子被氧化成三价铁离子。四氧化三铁具有强磁性,四氧化三铁固体具有优良的导电性。因为在磁铁矿中,由于Fe2 +与Fe3 +在八面体位置上基本上是无序排列的,电子可在铁的两种氧化态间迅速发生转移,所以四氧化三铁固体具有优良的导电性能。X 射线研究表明,四氧化三铁是铁( III) 酸盐,即Fe2 +( Fe3 +O2 -2)2,称为“偏铁酸亚铁”,化学式为Fe( FeO2)2。在四氧化三铁里,铁显两种价态,所以常常将四氧化三铁看成是由FeO 与Fe2O3组成的化合物,也可表示为FeO·Fe2O3,但不能说是FeO 与Fe2O3组成的混合物,它属于纯净物。常见的天然磁铁矿中主要成分是四氧化三铁的晶

体。 磁性纳米粒子的性质:纳米材料指颗粒尺寸在1-100nm间的粒子,及由其聚集而成的纳米固体材料,具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等,使得其与同组成的材料相比,显示独特的光学、电学、热学、磁学、力学及化学性质。当磁性纳米材料的尺寸减小到纳米尺度时,尺寸和形状这两个关键参数强烈影响着其磁性能,使磁性纳米粒子呈现超顺磁性,高矫顽力,低居里温度和高磁化率,同时,磁性纳米粒子具有以下几方面的特性:第一,磁性纳米粒子具有可控性的粒径(从几纳米到几十纳米),小于或相当于细胞(10-100nm),病毒(20-450nm),蛋白质(5-50nm),基因(Znm宽10-100nm 长)的尺度,这表明磁性纳米粒子能够接近我们所感兴趣的生物实体.事实上,它们可以被生物分子修饰后连接到生物实体上,由此提供了一种可控的标一记方法;第二,磁性纳米粒子的磁性遵从库仑定律,能够通过外加磁场加以控制;第三,磁性纳米粒子能够对磁场的周期性变化产生响应,从激励场获得能量,由此微粒能够被加热,从而可用于热疗,传输大量的热能到靶区,如肿瘤;第四,磁性纳米粒子可从尿液及大便中排泄,其中经肾脏排出较多,肠道排出较少。这也使其在工业、电子信息、生物医药等领域都有着特殊的应用。常用的磁性纳米材料有金属合金及其金属氧化物,由于镍、钴等存在毒性,在生物、医药等方面受到严格的限制,而铁的氧化物(Fe3O4,γ一Fe2O3)因其低毒(LD50约2000mg/kg体重,远远高于目前临床应用剂量)、易得等特点被广泛推用。

有机无机纳米复合材料中无机纳米粒子表面改性方法的研究进展

有机无机纳米复合材料中无机纳米粒子表面改性方法的研究进展 摘要:纳米粒子和纳米复合材料被广泛的应用在各个领域,如药类、纺织、化妆品、农业、光学、食品包装、光电设备、半导体设备、航天航空设备、建筑行业以及催化剂中。纳米粒子能被添加到纳米聚合材料中。由无机纳米粒子和有机高分子组成的新一类的聚合物纳米复合材料具有他们组成成分本身不具备的性能。因此具有工业应用的前景。无机纳米粒子和聚合物基体的合并能显著提高基体的性能。新聚合物可能会在热力学性能、力学性能、流变性能、电力性能、催化性能、阻滞性和光学性能上获得提升。提升的性能受添加的纳米粒子的大小、形状、浓度以及和聚合物基体融合程度的影响。其中的关键问题在于防止颗粒凝聚。在聚合物基体中很难形成均匀分散的纳米粒子颗粒,因为纳米粒子颗粒的比表面积和体积效应容易造成粒子的凝聚。通过对无机纳米粒子的表面改性可以解决这个难题。改性能提高无机粒子和聚合物基体的表面相互作用。有两种方法对无机粒子表面进行改性。第一种方法是使表面和一些小分子反应或者镶嵌一些小分子,比如硅烷偶联剂;第二种方法是基于通过共价键将聚合物与粒子上的羟基相连接。第二种方法比第一种方法好的地方是,嫁接后的粒子能通过对嫁接单体的种类和嫁接方法的改变而得到想要的性质。 关键词:无机纳米粒子;表面改性;嫁接;硅烷偶联剂;有机无机纳米复合材料 第一章.简介 有机无机纳米复合粒子的发展,经常是通过在无机粒子上嫁接合成高分子或在聚合物基体上添加改性纳米粒子(NPs)来提高复合材料的机械性能和其他性能。一类新材料,以无机纳米粒子和有机高分子组成的纳米复合材料为代表的,当和它们各自本身的组成成分相比时,能展现出更好的性能。无机纳米粒子的表面改性已经吸引了很大的关注。无机纳米粒子的表面改性已经吸引了很大的关注,因为它能很好的融合纳米粒子和聚合物基体,并且提高它们的表面性能。 无机纳米粒子改性的聚合物基体能同时具备聚合物基体的性能和无机纳米粒子本身独特的性能,如更轻的重量和更好的可成形性。加入了具有如下性质的

纳米材料

聚丙烯/无机纳米复合材料研究进展* 摘要少量纳米粒子可同时实现对聚丙烯(PP)基体的增强增韧并对其力学性能、结晶性能、抗老化及抗菌等性能均会产生一定的影响。用无机纳米粒子改性PP 可制备综合性能优异的聚丙烯/无机纳米复合材料, 是目前复合材料领域研究的热点。综述了无机纳米粒子改性聚丙烯的最新研究进展, 在介绍PP 纳米复合材料体系和制备方法的基础上重点对PP 纳米复合材料的微观结构、力学性能, 结晶和抗老化等性能进行了综述。研究表明少量纳米粒子可大幅度提升基体材料的综合性能, 但目前许多文献报道的表面改性和制备技术仍没有解决纳米团聚的难题, 特别是要实现工业生产则纳米粒子在PP 基体中的分散性尚需进一步改善。 关键词无机纳米粒子聚丙烯纳米复合材料 Latest Resear ch Development of Polypropylene/Inorganic Nanocomposites Abstract Small amount of nanoparticles can reinforce and toughen polypropylene (PP) and have much effect on the machanical properties, crystallization behavior, anti-aging and antibacterial properties of PP matrix. High performances andmultifunctional PP/inorganic nanocomposites can be prepared by modification of PP with nanoparticles, which is a new generation composite and has attached great interests. The newest developments, preparations, machanical properties, morphology, crystallization and anti-aging properties of PP/inorganic nanocomposites are summarized and discussed in this paper. Research results indicate that low loading of inorganic nanoparticles may lead to tremendous increase of comprehensive properties, but the surface-modification and preparation methods reported in many articles do not resolve the aggregation ofnanoparticles. The dispersion of nanoparticles in PP matrix needs to be improved

纳米TiO2的分散及表面改性的研究综述1-4

史建新1,徐惠1,张艳君2,陈金妹1 (1.兰州理工大学石油化工学院,甘肃兰州 730050;2.兰州石油化工公司,甘肃兰州730060) 摘要:概述了用物理和化学方法对纳米TiO2粒子表面进行改性,讨论了反应机理.有机物改性是改善纳米TiO2颗粒表面的 润湿性和分散性,无机物改性是为了提高纳米TiO2颗粒的耐久性和化学稳定性,降低粒子的表面能,提高粒子与有机相的亲和力和应用性或赋予新功能满足新材料、新技术发展和新产品开发的需要.文中所用的改性剂和改性工艺可供其他纳米颗粒的改性借鉴. 关键词:纳米TiO2;分散性;表面改性;机理 中图分类号:TB383文献标识码:A文章编号:1004-0439(2007)01-0005-05 纳米TiO 2的分散及表面改性的研究综述 DispersionandsurfacemodificationofnanometerTiO2 SHIJian-xin1,XUHui1,ZHANGYan-jun2,CHENJin-mei1 (1.Coll.Petrochem.Eng.,LanzhouUniv.Technol.,Lanzhou730050,China; 2.LanzhouPetrochem.Co.,Ltd.,Lanzhou730060,China) Abstract: NanometerTiO2particlesweresurfacemodifiedphysicallyandchemically,andthereaction mechanismwasdiscussed.Themodificationwithorg.matterswasforimprovingthewettabilityanddispersibili-tyoftheparticles,andthatwithmineraloneswasforincreasingthedurabilityandchem.stability.,loweringthesurfaceenergy,improvingtheorganophilicityandapplicationpropertiesoftheparticles,orgivingnewfunctionstotheparticlessothattheycouldsatisfytherequirementsofthedevelopmentofnewmaterials,newtechnolo-giesandnewproducts.Themodifierandmodificationprocessusedbytheauthorscouldbeusedasreferencewhenmodifyingothernanometerparticles. Keywords:nanometerTiO2;dispersibility;surfacemodification;mechanism 收稿日期:2006-04-14 作者简介:史建新(1980-),男,陕西延安人,在读硕士,主要从事纳米复合粒子的研究工作. 纳米表面改性通常是指用物理、化学、机械等方法对纳米粉体材料进行处理,改变粉体材料表面的物理化学性质,如表面组成、 结构、官能团、表面能、表面湿润性、电性、光性、吸附和反应特性等,满足现代新材料、新工艺和新技术发展的要求.纳米级TiO2粒子的粒径很小、表面能高,容易发生团聚形成二次粒子,故无法显示其令人满意的面积效应、体积效应及量子尺寸效应等.改善和提高纳米粉体的分散性及在复合材料中的相容性,优化其表面或界面性能是纳米TiO2能否得到广泛应用的关键.本文讨论了所涉及的不同改性方法和多种改性剂以及相应的改性机理. 1纳米TiO2的结构性能 纳米TiO2由晶体组元和界面组元构成.晶体组元由所有晶粒中的Ti和O原子组成,原子都严格位于晶格位置上,界面组元由处于各晶粒之间的界面原子组成.无论是锐钛型还是金红石型,其Ti—O键的距离都很小且不等长.锐钛型为1.937×10-10m和1.946×10-10 m,金红石型为1.944×10-10m和1.988×10-10m.Ti—O的 不平衡使其极性很强,表面吸附的水因极化而发生解离,易形成羟基.TiO2颗粒的比表面积越大,表面羟基数量越多.随处理温度的升高,TiO2的比表面积和表面羟基的量迅速下降.[1]羟基的存在可提高TiO2作为吸附剂及各种载体的极性,为表面改性提供方便.尽管TiO2本性是亲水憎油的,但因其表面不可避免地吸附着数量相当多的空气、水和其他杂质,又会降低其在水性 印染助剂 TEXTILEAUXILIARIES Vol.24No.1Jan.2007 第24卷第1期2007年1月

纳米二氧化钛表面改性

第31卷第2期 唐山师范学院学报 2009年3月 Vol.31 No.2 Journal of Tangshan Teachers College Mar. 2009 ────────── 基金项目:河北省科学研究与发展计划项目(07215107) 收稿日期:2008-04-19 作者简介:刘立华(1969-),女,河北唐山人,硕士,唐山师范学院化学系副教授,研究方向为纳米复合材料制备和应用。 -31- 纳米二氧化钛表面改性 刘立华,刘会媛,张相平 (唐山师范学院 化学系,河北 唐山 063000) 摘 要:对纳米二氧化钛进行表面改性处理是钛白粉工业生产中必不可少的关键步骤,处理的方法和包覆的程度直接影响产品的应用范围。阐述了纳米二氧化钛的表面改性原理和化学表面改性的两种方法──无机包膜改性和有机包膜改性。无机包膜改性包括铝包膜改性、硅包膜改性、铁包膜改性和硅铝复合包膜改性;有机包膜改性主要是醇类化合物和羧酸类化合物对纳米二氧化钛的包覆改性。 关键词:二氧化钛;表面改性;纳米 中图分类号: O 621.4 文献标识码:A 文章编号:1009-9115(2009)02-0031-03 Surface Modification of Nano-Sized Titania LIU Li-hua, LIU Hui-yuan, ZHANG Xiang-pin (Department of Chemistry, Tangshan Teachers College, Hebei Tangshan 063000, China) Abstract: Surface modification of nano-sized titania is one of the key steps in commercial production of titania and it can directly effecte the application fields of titania powder. The principles of modification of nanoscale titania were introduced in this article. Coating a film of organic or inorganic compound on its surface which is two means of surface modification is reviewd in the paper. Inorganic surface modification includes surface modification with Aluminium, surface modification with silicon surface modification with iron and composite surface modification with silicon and aluminium. Organic surface modifications were mainly interpreted by the alcohol compounds and carboxylic acid compounds coating on the surface of titania. Key words: titania; surface modification; nano 纳米二氧化钛因具有光催化活性好、毒性低、稳定、价廉、易于回收等优势而倍受人们的关注。特别是随着环境污染的日益严重,纳米二氧化钛以其高效的光催化降解污染物的能力而成为当前最为活跃的研究热点之一[1]。纳米二氧化钛这种独特的性能主要取决于其粒度的大小。一般来说,粒径越小,比表面积越大,其光催化活性也就越高。 由于纳米二氧化钛表面极强的活性,使得它们很容易团聚,这大大降低了纳米二氧化钛的实际应用效果,同时由于纳米二氧化钛表面亲水疏油,在有机高分子树脂中难以均匀分散,界面上会出现空隙,当空气中的水分进入空隙中就会引起界面处高聚物的降解、脆化、导致材料性能下降。为了充分利用二氧化钛的优良性能,在表面包覆一层无机物或有机物膜对其进行表面改性。 1 表面改性原理 由溶胶稳定性的DLVO 理论可知,纳米级的二氧化钛细粉,单位面积的超额吉布斯自由能升高,表面张力变大,促使二氧化钛发生团聚,此时ζ电位比较高。若要使团聚体重新分散,首先应使表面充分润湿。判断固体能否在液体中润湿以及润湿程度的标准一般有两种。一是根据润湿热的大小,可以用润湿热来比较二氧化钛粉末在不同溶剂中的润湿程度。二氧化钛在水中的润湿程度比较好。实际上,在把二氧化钛粉末中加入水以后,由于颗粒外表面附着的空气与水的置换作用,使细小颗粒的润湿速度较慢。为了加大润湿程度,可以加入少量表面活性剂以降低其表面张力,提高润湿性。通常使用的表面活性剂有三乙醇胺、硅酸盐、烷基萘磺酸等。二是根据接触角的大小判断。二

无机纳米材料表面改性的研究进展

无机纳米材料表面改性的研究进展 姓名:孙震 学号:9901090094 班级:粉冶工程试验班0901

无机纳米材料表面改性的研究进展 摘要:团聚是纳米粉体材料中首先要解决的问题,而表面改性是有效解决此问题的一种方法。本文介绍了纳米表面改性材料的一些基本方法,并介绍了国内外改性材料的一些实例,并对表面改性的前景作出了展望。 纳米粉体是指线度处于1~100nm之间的粒子聚合体, 包括金属、金属氧化物、非金属氧化物和其他各种各类的化合物。与普通纳米粉体相比, 纳米粉体的特异结构使其具有小尺寸效应、量子尺寸效应、表面效应及宏观量子隧道效应, 因而在催化、磁性材料、医学、生物工程、精细陶瓷、化妆品等众多领域显示出广泛的应用前景, 被誉为面向21世纪的高功能材料, 成为各国竞相开发的热点。近年来随着粉体制备技术的发展, 人们已经成功制备出各种纳米粉体, 制备方法多种多样, 如化学气相沉积法、等离子体法、物理气相沉积法、沉淀法、微乳液法、溶胶一凝胶法、高能球磨法等, 并且许多己经实现了工业化。我国现在已能生产铁、钻、镍、镁、银、铜、铝等金属纳米粉, 二氧化硅、二氧化铁、二氧化错、三氧化二铝、氧化钙、氧化锌等氧化物粉末, 以及碳化硅、氮化硅等陶瓷粉末川。但制备出纳米粉体还只是第一步, 最艰巨的一步是针对不同使用介质、不同使用场合的表面改性和处理。因为纳米粉体粒径小、比表面积和表面能极大极易团聚而不能发挥纳米粉体的优异特性, 纳米粉体团聚已经给粉体技术及相关工业领 域带来了很大的麻烦, 是其应用中首要解决的问题川。另 外, 纳米粉体与介质的不相容性导致界面出现空隙, 存在相分离现象, 所以必须对纳米粉体进行表面处理。 1纳米粉体团聚的原因 由于纳米粒子所具有的特殊的表面结构, 所以在粒子间存在着有别于常规粒子(颗粒)间的作用能,即纳米作用能(F n )。定性地讲, 这种纳米作用能就是纳米粒子的表面因缺少邻近配位的原子, 具有很高的活性, 而使纳米粒子彼此团聚的内在属性, 其物理意义应是单位比表面积纳米粒子具有的吸附力。它是纳米粒子几个方面吸附的总和: 纳米粒子间氢键、静电作用产生的吸附; 纳米粒子间

无机微_纳米粒子表面包覆改性技术

第30卷 第9期 电子元件与材料 V ol.30 No.92011年9月 ELECTRONIC COMPONENTS AND MATERIALS Sep. 2011 无机微/纳米粒子表面包覆改性技术 肖 勇,吴孟强,袁 颖,庞 翔,陈 黎 (电子科技大学 电子薄膜与集成器件国家重点实验室,四川 成都 610054) 摘要: 综述了无机微/纳米粒子表面包覆的形成机理,从有机和无机包覆两个方面阐述了无机微/纳米粒子表面改性技术的研究进展,对偶联剂改性、表面接枝聚合法、机械混合法、球磨法、溶胶–凝胶法等常用的包覆方法一一进行了介绍和举例,并提出了超细无机粒子的包覆改性中存在的几个亟待解决的问题。 关键词: 微/纳米粒子;表面改性;综述;偶联剂 中图分类号: TB383 文献标识码:A 文章编号:1001-2028(2011)09-0066-05 Research on the surface coating technologies of inorganic micro/nano-particles XIAO Yong, WU Mengqiang, YUAN Ying, PANG Xiang, CHEN Li (State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China) Abstract : The surface coating mechanisms of inorganic micro/nano-particles are summarized. The research progresses on the surface modification technologies of micro/nano-particles by the organic and inorganic coating are also elaborated. Some common surface coating methods, such as coupling agent modification, surface grafting polymerization, mechanical hybrid method, ball milling method, sol-gel technology, and so on are illustrated respectively. Meanwhile, some problems needed to be solved concerning encapsulation of inorganic ultrafine particles are raised and discussed. Key words : micro/nano-particles; surface modification; review; coupling agents 近年来,随着材料科技的不断发展,微/纳米粒 子以其特有的性质(比表面积大,表面活性大等)而受到越来越多的关注,但由于受到小尺寸、量子尺寸及表面效应[1-2]的影响,在空气和液体介质中很难得到稳定而不团聚[3]的微/纳米粒子,从而影响了其实际使用效果。二十世纪九十年代中期,国际材料会议提出了一个新的概念——纳米粒子的表面修饰工程,即用化学或物理方法使纳米粒子的表面结构和形貌发生改变,赋予其新的物化性能,以提高微/纳米粒子与其他物质的相容性。其中,表面包覆技术,即在微/纳米粒子表面包裹一层有机物或无机物,作为最通用的表面改性技术,能很好地解决微/纳米粒子稳定性和分散性差的问题[4]。笔者对包覆机理和无机微/纳米粒子的表面包覆改性技术进行了介绍。 1 包覆机理 无机微/纳米粒子的表面包覆是指在无机粒子的表面吸附或包裹另一种或多种物质,形成核-壳复合结构,这个过程实际上是不同物质的复合过程(见图1),目前对其形成机理[5-7]的研究尚不完善,主要有以下几种观点: 图1 表面包覆过程示意图 Fig.1 Schematic of surface coating process 1.1 化学键合理论 基体和包覆剂之间由于化学反应生成化学键, 收稿日期:2011-04-27 通讯作者:吴孟强 作者简介:吴孟强(1970-),男,四川成都人,教授,主要研究微波介质材料与器件,E-mail: mwu@https://www.docsj.com/doc/ea3154865.html, ; 肖勇(1985-),男,湖南衡阳人,研究生,主要从事微波复合介质板的研究,E-mail: xiaoyong2350685@https://www.docsj.com/doc/ea3154865.html, 。 综 述

纳米材料改性硅胶的研究进展

纳米材料改性硅橡胶的研究进展 摘要:综述了近年来纳米蒙脱土改性硅橡胶、纳米Si02改性硅橡胶、纳米siox 改性硅橡胶、纳米纤维改性硅橡胶、纳米TiQ改性硅橡胶的研究与应用进展,并介绍了硅橡胶纳米改性材料的发展方向。 关键词:硅橡胶,纳米材料,改性 用纳米材料对传统硅橡胶进行改性,可以提高硅橡胶的力学、耐热、导电和阻燃等性能。通常所说的纳米相改性硅橡胶是指采用特殊工艺或技术手段将制备好的纳米相材料均匀分散于硅橡胶基体中从而得到比原有性能更好的材料。在纳米相改性硅橡胶体系中存在纳米颗粒之间的相互作用和纳米颗粒与硅橡胶基体问的作用;同时,改性硅橡胶中除了纳米颗粒本身具有特殊的纳米效应外,还与硅橡胶基体颗粒周围局部场效应的形式发生协同作用,因此在其内部各组分的协同作用下会产生一些母体不具备的力学、阻隔、抗老化和导电等特异性质。 1、纳米蒙脱土改性硅橡胶 近年来,对蒙脱土/硅橡胶复合材料的研究是阻燃高分子材料的一个研究热点。这类材料具有较白炭黑/聚合硅橡胶无法比拟的优点,可以同时改善高分子材料的力学性能、热稳定性、气体阻隔性和阻燃性等[1。3]。硅橡胶具有热稳定性高、热释放速率低、成炭率高、低烟、无毒等优点,成为阻燃防火橡胶的首选材料;但硅橡胶本身具有可燃性,需要进行阻燃改性以便扩大其应用。 赖亮庆[4]等采用蒙脱土(MMT)、钠基蒙脱土(Na-MMT)、用羧基插层剂改性的蒙脱土(DK3)和用十八烷基插层剂改性的蒙脱土(DK4)粉末,计算出MMT、Na-MMT、DK3和DK的[0013面层间距d001分别为1.2rim、1.5rim、2.5rim、3.4nm,并且以它们作为填充剂,用熔融共混法制备了蒙脱土/硅橡胶复合材料,研究了蒙脱土对硅橡胶的力学和阻燃性能。结果表明:有机插层剂改性有利于蒙脱土在硅橡胶中的分散,并且提高硅橡胶的拉伸强度和阻燃等性能。一般而言,未改性蒙脱土的层间距较小,且具有亲水性,与硅橡胶的相容性较差;所以蒙脱土在硅橡胶中不易被剥离而呈微米级分散,达不到补强和阻燃的效果。而经有机插层剂改性的蒙脱土DK3、Ⅸ<4的层间距增大,且有机阳离子的引入使蒙脱土的疏水性大大提高;从而使蒙脱土与硅橡胶的相容性提高,蒙脱土易被插层或剥离成纳米级片层分散在硅橡胶中。这种硅橡胶依托蒙脱土纳米片层超大的比表面积和极高的径/厚比来增强材料的力学性能;另外。纳米片层分散在硅橡胶中能够阻隔氧气、自由基以及热量等往里层传递,所以硅橡胶的阻燃性能得到提高。研究还发现,当层间距d001为3.4nm的有机改性蒙脱土的质量分数为6%时,硅橡胶的拉伸强度达到12.1MPa,扯断伸长率为362%,氧指数为32.7%,硅橡胶的起始分解温度和终止分解温度分别比空白样提高83℃和13℃。 王锦成L5j等对蒙脱土(MMT)进行有机改性后,再用其作为填料,采用溶液插层法制备了有机蒙脱土(0MMT)填充脱醇型RTV-2硅橡胶。与MMT质量分数为2%的硅橡胶相比,OMMT质量分数为20%的硅橡胶的拉伸强度由1.39Mpa提高到1.98MP提高了42.4%;断裂伸长率由190%提高到210%,提高了lo.5%;透气量只有其0.003%,而透气系数只有其0.009%;热分解中心温度变化不大,分解的剧烈程度也得到较大程度的抑制。

纳米材料对聚氨酯改性的研究现状

纳米材料对聚氨酯改性的研究现状Current Research on Polyurethane modi? ed by Nanomaterials ■乐志威1 吴 燕2 钟世禄3Le Zhiwei1 & Wu Yan2 & Zhong Shilu3 (1.2.3.南京林业大学家具与工业设计学院,江苏南京 210037) 摘 要:近年来,纳米改性已经成为聚合物改性的主要手段之一,它在聚氨酯中的改性研究也取得了重要进展。纳米微粒具有尺寸小、比表面积大、表面能和表面张力随粒径的下降急剧增大等特点。纳米材料可以表现出小尺寸效应、表面效应、子尺寸效应和宏观量子隧道效应等。因此,经过纳米材料改性的聚氨酯复合材料既保持了高分子材料的许多优异性能,又具有纳米材料的很多优点。本文着重讨论了常见的几种纳米材料对聚氨酯改性的研究现状及发展前景。 关键词:聚氨酯;纳米材料;改性;聚合物;现状 中图分类号:TS664 文献标识码:A 文章编号:1006-8260(2013)05-0090-03 Abstract: IIn recent years, nano-modification has become one of the primary means of polymer-modification, modified polyurethane has also made important progress. Nanoparticles with a small size, large surface area, surface energy and surface tension increases with particle size decreasing sharply. Nanomaterials can show the small size effect, surface effect, sub-size effect and macroscopic quantum tunneling effect. So after the nanomaterial modi? ed polyurethane composite material while maintaining many of the excellent properties of the polymer material also has many of the advantages of the nanomaterials. This paper focuses on the research situation and development prospects of polyurethane modi? ed by several common nanomaterials. KeyWords: Polyurethane; Nanomaterials; Modi? cation; Polymer; Situation 聚氨酯(P U)称为聚氨基甲酸酯,它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物的聚合而成的。聚氨酯有多种产物,大致可分为热固性聚氨酯和热塑性聚氨酯两种,这只需通过调节配方中N C O/O H的比例就可制得不同产物,因为聚氨酯中含有强极性氨基甲酸酯基团。然而根据它的分子结构不同又可以分为线型和体型两种。其中体型结构可以制备出呈现硬的、软的或者介于软硬之间的产物,这是因为它的交联密度可控制在不同范围。聚氨酯具有很多优点,如高耐磨、高弹性、良好的挠曲性、较高的杨氏模量以及较好的耐候、耐油、耐脂、耐溶剂等特点。但其还是存在很多不足,如强度不高,耐热、耐水、抗静电等性能差。所以目前出现很多改性聚氨酯的方法,其中纳米改性已渐渐成为重要的改性手段之一,根据不同需求,学者们提出很多纳米材料对聚氨酯进行改性的方法,不同的材料对P U的改性也会出现不同的效果,本文就这些纳米材料把其分成无机纳 用,从而提高分子键合,且纳米S iO2比较容易 分布到高分子链空隙中,从而可以很大程度 上提高复合材料的强度、韧度以及延展性。纳 米SiO2还可以和聚氨酯中不饱和键的电子云 发生作用,从而提高聚氨酯材料的热稳定性、 化学稳定性及光稳定性,起到了提高产品的 抗老化性能和耐化学性等作用[1]。 黄国波等[2]先将纳米SiO2进行预分散处 理,在P U扩链阶段将其加入到反应体系中,进 行原位聚合制备了纳米S i O2/P U复合材料。他们 对材料进行S E M检测,照片显示纳米S i O2基本 上均匀分布在P U中,他们还对复合材料进行力 学检测,结果跟纯P U相比复合材料有较好的 力学性能。 P e t r o v i c a等[3]通过A F M及X射线分析等方 法对纳米SiO2对于P U形态结构影响进行了研 究。结果证明纳米S i O2对P U球晶结构有很大的 影响,由于纳米S i O2粒子均匀分散在P U的硬段 与软段中,从而破坏了P U原有的相分离结构, 抑制了在球晶内形成发散生长微纤,最后减弱米材料和有机纳米材料两部分,对纳米材料 改性聚氨酯进行综述。 1 无机类纳米材料改性聚氨酯的研究 现状 无机纳米微粒具有小尺寸效应、表面效 应、和宏观量子隧道效应等,因为无机纳米微 粒的尺寸较小,它的比表面积大,且随着粒径 的越来越小表面能和表面张力会越来越大。 所以当聚氨酯复合材料经过纳米无机材料 改性后,它既可以保持高分子材料的纵多优 异性能而且还会具有无机纳米材料的很多优 点。这些无机粒子是以纳米级的形式均匀的 分布在基体中的,所以这种复合材料往往在 热学、力学、电学等方面也具有一些特殊的性 能。 1.1S i O2/聚氨酯纳米复合材料 纳米S i O2的比表面积大,分散性也很好, 且具有较高的活性,表面缺氧而偏离稳态的 硅氧结构很容易和聚氨酯中的氧起键合作 专论与综述SEMINAR & SUMMARY 90

纳米颗粒团聚的原因及解决措施

纳米颗粒团聚的原因及 解决措施 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

纳米颗粒团聚问题的研究进展 关键词纳米颗粒;表面修饰;复合材料;超声分散;偶联剂 .纳米科技作为21世纪影响人类发展方向的高新技术具有奇妙而光明的应用情景,而其中纳米复合材料由于其优良的综合性能已经成为纳米材料工程的重要组成部分。所谓“纳米复合材料”指分散相尺度至少有一维小于100nm的复合材料即把纳米颗粒分散到常规的三维固体中。用这种方法获得的纳米复合材料尤其是有机无机分子存在相互作用的复合材料由于其优越性能和广泛的应用前景已成为当今纳米材料学研究的热点之一,但是纳米颗粒本身极易团聚,因而获得理想的有机-无机纳米复合材料的首要问题是如何将纳米颗粒分散到有机聚合物中。研究表明采用适当的物理、化学方法对纳米颗粒进行有效分散和表面修饰可以解决这个问题,笔者综合了近年来国内外的文献报道,对纳米颗粒的团聚问题作一综述。 1纳米颗粒的团聚原理 1.1纳米颗粒的表面效应所谓“纳米颗粒”是指物质颗粒体积效应和表面效应两者之一显着变化或两者都显着变化的颗粒,纳米颗粒的表面效应是指纳米颗粒的表面原子数与总原子数之比随粒径变小而急剧增大后引起的性质上的变化。纳米颗粒具有很高的表面积,当纳米颗粒的粒径在10nm以下时,表面原子的比例迅速增加,当粒径降至1nm时,表面原子比例高达90%以上,原子几乎全部集中到颗粒的表面,处于高度活化状态,导致表面原子配位数不足和高表面能,从而使这些原子极易与其他原子相结合而稳定下来,可见,纳米颗粒具有很高的化学活性,表现出强烈的表面效应。 1.2布朗运动 颗粒与溶剂的碰撞使得颗粒具有与周围颗粒相同的动能,因此小颗粒运动得快,纳米小颗粒在做布朗运动时彼此会经常碰撞到,由于吸引作用,它们会连接在一起,形成二次颗

相关文档