文档视界 最新最全的文档下载
当前位置:文档视界 › 提高含水乙醇汽油稳定性的表面活性剂研究

提高含水乙醇汽油稳定性的表面活性剂研究

提高含水乙醇汽油稳定性的表面活性剂研究
提高含水乙醇汽油稳定性的表面活性剂研究

表面现象知识在药剂学中的应用

表面现象知识在药剂学中的应用 [摘要] 系统地综述微乳的处方组成以及不同的给药途径在药剂学方面的应用状况,微乳作为一种新型药物载体系统具有对难溶性药物强大的增溶作用.还具有明显的缓释作用、靶向作用及较高的生物利用度等优点,在药剂学领域有广阔的应用前景。 [关键词] 微乳;表面活性剂;药剂学 The Application of Surface Phenomenon in Pharmaceutics [Abstract] The prescription composition and the application of various methods of administration in pharmaceutics are systematically reviewed.Microemulsion,with a very good prospect in pharmaceutics in the future ,has many good characters such as good solubilization to indissolvable drugs,delayed release,targets and high bioavailability. [Key words]microemulsions;surfactant; pharmaceutics 表面活性剂在药剂学中有着十分重要的作用,如润湿作用,乳化作用,起泡作用,增溶作用等。常用于难溶性药物的增溶,油的乳化,混悬液的润湿和助悬,可以增加药物的稳定性,促进药物的吸收,增强药物的作用,是制剂中常加的附加剂。阳离子表面活性剂还可以用于消毒、防腐及杀菌等。非离子表面活性剂也可以作为修饰剂,吸附于胶体微粒载体,对其表面进行修饰。而乳化作用是表面活性剂最重要的作用,常用的乳剂为微乳。本文综述了微乳的处方组成及其在几种给药系统中的应用,为表面现象在药剂学中的深入研究和利用提供理论依据。 1 处方组成 微乳是由水相、油相、表面活性剂和助表面活性剂按适当比例自发形成的一种透明或半透明的,低粘度,各向同性且热力学稳定的溶液体系。它首先是由Hoar和Schulman在1943年提出来的[1]。从结构上可分为水包油型(O/W)、油包水型(W/O)及双连续型。

催化剂的组成与功能

催化剂的组成与功能 催化剂的组成:活性组分 载体 助催化剂 催化剂组分与功能关系: 一、 活性组分 它是催化剂的主要组分,有时由一种物质组成,有时由多种物质组成 如:乙烯氧化制环氧乙烷的银催化剂;丙烯氨氧化制丙烯腈用的钼和铋催化剂 2% 4% 6% 8% 10% 氨 含量 Mo的混合比 Mo-Fe合金组成与活性关系

活性组分的分类: 二、载体 载体是催化剂活性组分的分散剂、粘合剂和支撑物,是负载活性组分的骨架。 例如,乙烯氧化制环氧乙烷催化剂中的Ag就是负载在“α—Al2O3上的,这里的α—Al2O 3称为载体。 载体还常分为惰性载体与活性载体。严格来说,催化剂中的组分都不是惰性的,都对主剂与助剂有所影响,只不过活性载体的作用更为明显而已。 载体的作用与助催化剂的作用在很多方面有类似之处,不同的是载体量大,助催化剂量小;前者作用较缓和,后者较明显。另外,由于载体量大,可赋予催化剂以基本的物理结构与性能,如孔结构、比表面、宏观外形、机械强度等。此外,对主催化剂和助催化剂起分散作用,尤其对贵金属既可减少其用量,又可提高其活性,降低催化剂成本。作为高效催化剂,活

性组分与裁体的选择都非常重要。 下面是载体的分类和部分常见载体的种类: 催化剂的活性随载体比表面的增加而增加,为获得较高的活性,往往将活性组分负载于大比表面载体上。 载体与催化剂的活性、选择性、热稳定性、机械强度以及催化过程的传递特性有关,因此,在筛选和制造优良的催化剂时,需要弄清载体的物理性质和它的功能。 催化剂组分与含量的表示方法:例如:合成氨催化剂Fe—K2O—Al2O3用“—’将催化剂中的各组分隔开:加氢脱硫催化剂Co—Mo/α—Al2O3,斜线上为主剂和助剂,斜线下为载体。各组分的含量可用重量%、重量比表示,也可用原子%、原子比表示。

浅谈车用乙醇汽油

龙源期刊网 https://www.docsj.com/doc/e6477559.html, 浅谈车用乙醇汽油 作者:王峰 来源:《职业·下旬》2011年第04期 目前,我国社会和经济面临两大宏观问题:一是石油资源枯竭,已经对我国庞大的社会经济计划形成制约;二是自然环境恶化,特别是大中城市的大气污染,尤为严重。笔者认为,推行以乙醇汽油为主的清洁能源政策,是目前可以综合推进解决上述两大问题的一个有效途径。 燃料乙醇是在20世纪初面世的传统产品,后因石油的大规模、低成本开采而被淘汰。随着石油资源的逐步枯竭,近几年,燃料乙醇工业又在世界许多国家得以迅速发展。乙醇,俗称酒精,以玉米、小麦、薯类等为原料,经发酵、蒸馏而制成。然后,将乙醇进一步脱水,再加上适量汽油后,形成变性燃料乙醇。所谓车用乙醇汽油,是指在不含MTBE含氧添加剂的专 用汽油中,按体积比加入一定比例(我国目前暂定为10%)的变性燃料乙醇。其他国家,如巴西,普遍使用8%含量的乙醇汽油;在日本,法规要求乙醇含量不得超过3%,因为日本业界 的共识是3%乙醇对车辆及动力性无任何不良影响;欧洲乙醇汽油中,乙醇含量通常为5%。 在我国,车用乙醇汽油按研究法辛烷值分为90号、93号、95号三个牌号。标志方法是在汽油标号前加注字母E,作为车用乙醇汽油的统一标示。三种牌号的汽油标志分别为:E90乙醇汽油90号、E93乙醇汽油93号、E95乙醇汽油95号。 一、车用乙醇汽油的优点 1.提高燃油品质 首先,可使氧含量达到3.5%,助燃效果好。其次,含乙醇10%,可使93号汽油辛烷值提高0.1—2.2(研究法),0-1.5(马达法)。这是由于乙醇辛烷值高于汽油的缘故,因而提高了油品的抗爆性能。调配合适的乙醇汽油,可抑制发动机的爆震。 2.降低尾气有害排放 车用乙醇汽油的使用,由于燃烧充分,可使汽车有害尾气排放总量降低33%以上。 3.燃烧充分,减少积碳 它可以有效改善油品的性能和质量,降低一氧化碳、碳氢化合物等主要污染物排放。 4.燃油系统自洁功能 有效地消除汽车油箱及油路系统中燃油杂质的沉淀和凝结,具有良好的疏通作用。 5.减少积碳

水性聚氨酯配制方法

1.低聚物多元醇:聚醚二醇、聚酯二醇、聚醚三醇、聚丁二烯二二醇、丙烯酸酯多元醇等 水性聚氨酯胶粘剂制备中常用的低聚物多元醇一般以聚醚二醇、聚酯二醇居多,有时还使用聚醚三醇、低支化度聚酯多元醇、聚碳酸酯二醇等小品种低聚物多元醇。聚醚型聚氨酯低温柔顺性好,耐水性较好,且常用的聚氧化丙烯二醇(PPG)的价格比聚酯二醇低,因此,我国的水性聚氨酯研制开发大多以聚氧化丙烯二醇为主要低聚物多元醇原料。由聚四氢呋喃醚二醇制得的聚氨酯机械强度及耐水解性均较好,惟其价格较高,限制了它的广泛应用。 聚酯型聚氨酯强度高、粘接力好,但由于聚酯本身的耐水解性能比聚醚差,故采用一般原料制得的聚酯型水性聚氨酯,其贮存稳定期较短。但通过采用耐水解性聚酯多元醇,可以提高水性聚氨酯胶粘剂的耐水解性。国外的聚氨酯乳液胶粘剂及涂料的主流产品是聚酯型的。脂肪族非规整结构聚酯的柔顺性也较好,规整结构的结晶性聚酯二醇制备的单组分聚氨酯乳液胶粘剂,胶层经热活化粘接,初始强度较高。而芳香族聚酯多元醇制成的水性聚氨酯对金属、RET等材料的粘接力高,内聚强度大。 其他低聚物二醇如聚碳酸酯二醇、聚己内酯二醇、聚丁二烯二醇、丙烯酸酯多元醇等,都可用于水性聚氨酯胶粘剂的制备。聚碳酸酯型聚氨酯耐水解、耐候、耐热性好,易结晶,由于价格高,限制了它的广泛应用。 2.异氰酸酯:TDI、MDI、IPDI、HDI等 制备聚氨酯乳液常用的二异氰酸酯有TDI、MDI等芳香族二异氰酸酯,以及TDI、MDI、HDI:MDI等脂肪族、脂环族二异氰酸酯。由脂肪族或脂环族二异氰酸酯制成的聚氨酯,耐水解性比芳香族二异氰酸酯制成的聚氨酯好,因而水性聚氨酯产品的贮存稳定性好。国外高品质的聚酯型水性聚氨酯一般均采用脂肪族或脂环族异氰酸酯原料制成,而我国受原料品种及价格的限制,大多数仅用TDI为二异氰酸酯原料。 多亚甲基多苯基多异氰酸酯一般用于制备乙烯基聚氨酯乳液和异氰酸酯乳液。 3.扩链剂:1,4—丁二醇、乙二醇、己二醇、乙二胺等 水性聚氨酯制备中常常使用扩链剂,其中可引入离子基团的亲水性扩链剂有多种,除了这类特种扩链剂外,经常还使用1,4—丁二醇、乙二醇、一缩二乙二醇、己二醇、乙二胺、二亚乙基三胺等扩链剂。由于胺与异氰酸酯的反应活性比水高,可将二胺扩链剂混合于水中或制成酮亚胺,在乳化分散的同时进行扩链反应。 4.水:蒸馏水、离子水 水是水性聚氨酯胶粘剂的主要介质,为了防止自来水中的Ca2+、寸+等杂质对阴离子型水性聚氨酯稳定性的影响,用于制备水性聚氨酯胶粘剂的水一般是蒸馏水或去离子水。除了用作聚氨酯的溶剂或分散介质,水还是重要的反应性原料,合成水性聚氨酯目前以预聚体法为主,在聚氨酯预聚体分散与水的同时,水也参与扩链。由于水或二胺的扩链,实际上大多数水性聚氨酯是聚氨酯—脲乳液(分散液),聚氨酯—脲比纯聚氨酯有更大的内聚力和粘接力,脲键的耐水性比氨酯键好。

电导法测定水溶性表面活性剂的临界胶束浓度

2020年 6 月 9 日 评定 室温:25 0C 大气压:101kpa 一、实验名称:电导法测定水溶性表面活性剂的临界胶束浓度 二、实验目的 1. 用电导法测定十二烷基磺酸钠的临界胶束浓度; 2. 了解表面活性剂的特性及胶束形成原理; 3. 掌握电导率仪的使用方法; 4. 培养学生对日常生活中表面活性剂物质性能的测定能力; 三、实验原理 能使水的表面张力明显降低的溶质称为表面活性物质,特别是具有明显“两亲”性质的分子,既含有亲油的足够长的(大于10~12个碳原子)烃基,又含有亲水的极性基团(通常是离子化的)。由这一类分子组成的物质称为表面活性剂,如肥皂和各种合成洗涤剂等。 表面活性剂分子都是由极性部分和非极性部分组成的,若按离子的类型分类,可分为三大类: (1) 阴离子型表面活性剂,如羧酸盐[肥皂,C 17H 35COONa], 烷基硫酸盐[十二烷基硫酸钠,CH 3(CH 2)11SO 4Na],烷基磺 酸盐[十二烷基苯磺酸钠,CH 3(CH 2)11C 8H 5SO 3Na]等; (2) 阳离子型表面活性剂,多为胺盐,如十二烷基二甲基叔 胺[RN(CH 3)2HCl]和十二烷基二甲基氯化胺[RN(CH 3)Cl]; (3) 非离子型表面活性基,如聚氧乙烯类 [R -O -(CH 2CH 2O)n H]。 表面活性剂进入水中,在低浓度时呈分子状态,并且 三三两两地把亲油基团靠拢而分散在水中。当溶液浓度加大 到一定程度时,许多表面活性物质的分子立刻结合成很大的 集团,形成“胶束”。以胶束形式存在于水中的表面活性物 质是比较稳定的。表面活性物质在水中形成胶束所需的最低 浓度称为临界胶束浓度(critical micelle concentration ),以CMC 表示。在CMC 点上,由于溶液的结构改变导致其物理及化学性质(如表面张力、电导、渗透压、浊度、光学性质等)同浓度的关系曲线出现明显的转折,如图1和图2所示。这个现象是测定CMC 的实验依据,也是表面活性剂的一个重要特征。 本实验利用电导率仪测定不同浓度的十二烷基磺酸钠水溶液的电导率(也可 图2 十二烷基磺酸钠水溶液电导率与浓度的关系 图1 十二烷基磺酸钠水溶液的物理性质与浓度的关系

催化剂常用术语

1.催化剂的活性 是判断催化剂加速某化学反应能力高低的量度。在工业生产中常以在一定反应条件下,单位质量(或体积)催化剂在单位时间内所生成的生成物质量来表示。 单位:g(生成物)/g(催化剂)·h 2. 催化剂的选择性 催化剂并不是对热力学所允许的所有化学反应都起催化作用,而是特别有效地加速平行反应或串联反应中的一个反应,催化剂对这类复杂反应有选择性的发生催化作用的性能。 3.催化剂的稳定性: 可分为三种:1)耐热稳定性,一种良好的催化剂,应能在高温苛刻的反应条件下长期具有一定水平的催化性能;2)抗毒稳定性,催化剂对少量有害杂质毒化的抵制能力;3)活性组分的流失,催化剂组成中的某个或某些活性组分在长期使用过程中发生升华或者发生化学反应,形成有一定蒸气压的化合物而逐渐流失,致使催化剂的功能有所下降。 4.催化剂的比表面 非均相催化剂一般是多孔性的固体,它不但有不规则的外表面,还有不规则的巨大内表面(由毛细管及微孔内壁组成),通常以1克催化剂所具有的总表面积(内表面+外表面)表示。 5.催化剂的比孔容 1克多孔性固体催化剂颗粒内部所有孔道的总体积,ml/g。 6.催化剂的孔隙率 多孔性固体催化剂颗粒内部所有孔道的总体积占催化剂颗粒体积的百分数。 7. 催化剂的寿命 在实际反应条件下,可以保持其活性和选择性的时间。 8. 催化剂的中毒 催化剂在使用过程中,如果其活性衰退是由于反应介质中存在杂质,或是由于催化剂是在制备时夹有少量杂质而引起的,称为催化剂中毒。 主要有两类:均匀吸附中毒和孔口中毒(选择性中毒) 9.催化剂的活化 钝化催化剂在投入实际使用之前,经过一定方法的处理,使之变为反应所需的活化态的过程。 10. 催化剂的失活 在使用过程中由于中毒现象、积碳现象、半熔现象而使催化剂的活性逐渐下降。

浅谈车用乙醇汽油中存在的问题

浅谈车用乙醇汽油中存在的问题 摘要:经抽样检验发现,车用乙醇汽油中存在的主要问题是:低标号汽油冒充高标号汽油;甲醇汽油冒充乙醇汽油;其他含氧化合物含量超标。 关键词:辛烷值乙醇汽油甲醇汽油其他含氧化合物 2012年10月份,洛阳市质量技术监督检验测试中心会同执法部门对洛阳周边部分郊县加油站的成品油进行了质量抽检,此次共抽查了汽油25个批次,其中汽油的不合格率为76%。本次抽查,整体合格率低,原因是受国际油价上涨影响,不少加油站经营者为追求利益,购进土炼油,以次充好、以假充真。 经检验发现,汽油存在的主要问题是:低标号汽油冒充高标号汽油;甲醇汽油冒充乙醇汽油;其他含氧化合物含量超过国家标准要求的0.5%。 一、低标号汽油冒充高标号汽油 汽油的辛烷值是评定汽油在发动机内燃烧时抵抗爆震能力,是区分汽油牌号的重要质量指标,选用汽油时应根据发动机压缩比的高低选择不同辛烷值的汽油,如果选用不当,可能造成发动机产生爆震燃烧,功率下降,油耗上升,甚至损坏发动机零部件。通过这次的抽检发现,不少加油站为了牟取暴利,在高标号汽油中掺入低标号汽油,或者干脆用低标号汽油冒充高标号汽油。例如,在97号汽油中掺入93号汽油,目前河南93号汽油的售价为7.38元/升,而97号汽油的售价为7.7元/升,每升的差价在0.32元,也就是说,每掺入一吨的93号汽油就可以非法获利320元。 二、甲醇汽油冒充乙醇汽油 车用乙醇汽油是指在不含甲基叔丁基醚(MTBE)、含氧添加剂的专用汽油组分油中,按体积比加入一定比例(我国目前暂定为10%)的变性燃料乙醇,由车用乙醇汽油定点调配中心按国标GB18351-2001的质量要要求,通过特定工艺混配而成的新一代清洁环保型车用燃料。而甲醇汽油是指在甲醇汽油组分油中,按体积比加入一定比例的变性燃料甲醇配制而成的一种新型清洁车用燃料。 甲醇汽油的问题首先表现在对发动机及其零部件的腐蚀作用。一些知名品牌的汽车制造商在用户手册中明确表示:使用甲醇汽油的车辆发生损害不在保修范围内。其次,甲醇遇水易分层,因此在使用时对车辆油箱、输油管等设备的密封性要求较高。最后,甲醇是有毒性物质,使用不慎易对人体造成伤害。相比甲醇而言,乙醇辛烷值较高,可以用来提高汽油的辛烷值。同时作为含氧化合物加入汽油中,可改善燃烧性,减少一氧化碳和碳氢化合物的排放。而且,乙醇是从粮食中制得,是可再生能源。

实验十四 电导法测定水溶性表面活性剂的临界胶束浓度

实验十四电导法测定水溶性表面活性剂的临界胶束浓度 专业:11化学姓名:赖煊荣座号:32 同组人:黄音彬时间:2014.4.15 Ⅰ、目的要求 1.用电导法测定十二烷基硫酸钠的临界胶束浓度 2.了解表面活性剂的特性及胶束形成原理 3.掌握电导仪的使用方法 Ⅱ、基本原理 本实验利用电导仪测定不同浓度的十二烷基硫酸钠水溶液的电导值(或摩尔电导率),并作电导值(或摩尔电导率)与浓度的关系图,从图中的转折点即可求得临界胶束浓度。 Ⅲ、仪器试剂 电导仪、电导电极、恒温水浴、容量瓶(1000 ml)、烧杯(100ml、250ml)、氯化钾(分析纯)、十二烷基硫酸钠(分析纯)、电导水 Ⅳ、实验步骤 1.用电导水或重蒸馏水准确配制0.01 mol〃dm-3的KCl标准溶液。 2.配制0.02 mol〃dm-3表面活性剂(十二烷基硫酸钠)溶液,再配成下表中一系列浓度溶液。 3.调节恒温水浴温度至25℃或其它合适温度。 4.用0.01 mol〃dm-3KCl标准溶液标定电导池常数。 5.吸取10ml的0.02 mol〃dm-3十二烷基硫酸钠溶液于100ml烧杯中,依次移入恒温后的电导水2ml、3ml、5ml、5ml、5ml、5ml、10ml、10ml、10ml、20ml,搅拌,分别测其电导率。 每个溶液的电导读数三次,取平均值。电导仪的使用方法(参见前,略)。 6.列表记录各溶液对应的电导,并换算成电导率或摩尔电导率。 Ⅴ、数据处理 1、实验数据记录 表1 实验室条件的记录表 项目实验开始时实验结束时 温度/℃24.5 25.5 压力/hp 1021.5 1021.3 湿度/% 50 47.8 表2 实验数据记录T=30℃

催化剂与催化作用_参考答案剖析

1、催化剂定义 催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。 2、催化剂活性、表示方法 (1)活性定义:一般,指定条件下(压力、温度)一定量催化剂上的反应速率(来衡量)。 (2)表示方法:对于反应, ,速率 3、催化剂选择性、表示方法 (1)定义:当反应可以按照热力学上几个可能的方向进行时,催化剂可以选择性地加速其中的某一反应。 4、载体具有哪些功能和作用?8 ①分散作用,增大表面积,分散活性组分;②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损;④传热和稀释作用,能及时移走热量,提高热稳定性;⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。 5、催化剂选择考虑因素:选择性>寿命>活性>价格 工业催化剂: 6、催化剂一般组成 1)活性组份或称主催化剂2)载体或基质3)助催化剂 7.催化剂分类 按物相均一性:均相催化、多相催化、酶催化 按作用机理:氧化还原催化,酸碱催化(离子型机理,生成正碳离子或负碳离子)配位催化:催化剂与反应物分子发生配位作用而使反应物活化。 按反应类型分类:加氢、脱氢、部分氧化、完全氧化、水煤气、合成气、酸催化、氯氧化、羰基化、聚合8、多相催化反应的过程步骤可分为哪几步?实质上可分为几步? (1)外扩散—内扩散—化学吸附—表面反应—脱附—内扩散—外扩散 (2)物理过程—化学过程—物理过程 9、吸附是如何定义的?物理吸附与化学吸附的本质不同是什么? 吸附:气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。 固体表面吸附:物理吸附: 作用力:van der Waals力 静电力:具有永久偶极矩的分子间的静电吸引力

我们身边的化学

我们身边的化学 随着科学技术的发展,化学作为自然科学与生物、材料、能源等从多学科交叉、渗透、融合,促使化学研究领域极大地拓展,化学新成就不断涌现,已成为高科技发展的强大支柱,化学作为高中科学教育的重要领域之一,进行校本课程开发,具有深厚的物质基础,可以扩大学生知识面,拓展学生视野,提高学生化学素养。因此,开发化学校本课程已势在必行。 一、课程说明 本课程名为《我们身边的化学》,设置本课程旨在拓宽学生的知识面,关注我们身边的生活,关注我们身边的环境,提高学生的学习素养、本课程为任意选修课,适合高中一年级下学期或二年级学生选修。本课程需用18课时完成教学任务。修满并考核合格获1学分。 二、课程目标 以《课程改革纲要》为指导,结合我校课程改革实际,充分发掘学生的个性潜能,促进学生个性全面、和谐地发展,为学生的终身发展奠定基础。学会交流,在合作中学习;学会探究,培养学生的创新意识;学会生活,培养学生良好的生活习惯,懂得生活,成为生活的主人。努力构建具有特色的校本课程体系。 1、着重培养学生探究性学习及创造性学习的能力,主要是通过情感体验和探究实践,对知识的掌握与运用永不满足、追求卓越的学习态度;发现、提出问题,研究、解决问题的过程,问题的创新意识与学习能力。其中最重要的是研究、解决问题的过程,问题能否解决倒是其次,关键是在探究过程中帮助学生养成基本的研究态度与技能。 2、培养学生自主学习、独立思考及解决问题的素质和能力,在查阅资料、实际研究的过程中不断探索,不断研究,不断创新,体味其中的乐趣 3、开阔学生的视野,提高学生学习化学的兴趣,丰富学生的知识,发展学生的思维,促进学生学习化学的主动性。

NMP 对水性聚氨酯胶粘剂性能的影响

NMP 对水性聚氨酯胶粘剂性能的影响 WPU 外观稳定性 黏度 /mPa.s 吸水 率 /% 剥离强度 /(N/25cm) (A)未加NMP (B)以加NMP 乳白色 蛋黄半透 明 6个月后 分层 6个月不 分层 674 781 10.3 9.4 75 101 DMPA为固体粉末状,在非水溶剂中的溶解度很小,微溶于乙酸乙酯。若采用直接加入法,易造成与反应物的混溶性不好、制得的品性能不稳定,所以本实验采用溶液加入法,即将DMPA溶于NMP。NMP由于具有微溶于水、挥发度低、沸点高、热稳定性及化学稳定性均佳等特点,在水性聚氨酯乳液的合成过程中适量加入NMP,不仅可以使二羟甲基丙酸溶解使其在均相体系中进行反应,而且NMP沸点较高,脱除乙酸乙酯后大部分仍能残留于聚氨酯乳液中。由于乳液中残留有NMP,在乳液干燥阶段可以改善流延有利于成膜。为了考察NMP 对乳液性能的影响,作者根据P3(表1)的配料采用以下途径加料:(A)未加NMP,(B)已加NMP(即样品P3),合成了两种水性聚氨酯胶粘剂并比较其性能。实验发现,与未加NMP合成的乳液相比,已加入NMP合成的聚氨酯乳液的黏度有所增大,胶膜的吸水率降低,胶膜的剥离强度提高(见表2.2),测试结果与项尚林等[12]报道的一致。

另外, NMP 类似表面活性剂,更多的排列分布在颗粒表面,这种排列在一定程度上提高了乳液的稳定性。 表2. 水性聚氨酯胶粘剂组分及配方 样品 编号[PD ] PE G 组分 DMPA (摩尔 数) BDO TELA TEA DMPA /(mg/kg) 硬段含 量 % P1 P2 P3 P4 P5 0.105 0.04 0.020 0.025 0.030 0.035 0.040 0.040 0.035 0.030 0.01 0.025 0.020 0.016 0.020 0.024 0.028 0.032 3.8 4.8 5.7 6.7 7.6 42 .5 42 .7 42 .9 43 .1 43 .3 1)样品的固含量pH分别为40~60mg/kg,7~9; 2)中和度为80%即以-COOH(mol)含量的80%计 3.2 结论 采用PEG-1000、IPDI、BDO和DMPA等为主要原料,通过优化实

2020-浅谈化学与生活的联系

浅谈化学与生活的联系 一、化学与食品 生活离不开化学,食品更是如此。随着人们生活水平的提高,生活节奏的加快,越来越多的人对饮食提出了更新、更高的要求,他们想让食品更方便、更多样、更有风味、更有营养、更加的高级,而为了满足这些要求,仅仅利用我们的天然资源显然是远远不够的(一)食品添加剂 食品添加剂,是指为改善食品品质和色、香、味以及防腐和加工工艺的需要而加入食品中的化学合成或是天然物质。食品添加剂是一种非营养物质,添加剂的种类按其来源可分为天然食品添加剂与化学合成食品添加剂两大类。天然食品添加剂是利用动植物或微生物的代谢产物等为原料,经提取所得的天然物质。化学合成食品添加剂是通过化学手段,使元素或化合物发生氧化、还原、缩合、聚合等合成反应所得到的物质。目前使用的大多属于化学合成的食品添加剂。可以说没有食品添加剂,就得不到目前各种各样的食品。 目前我国食品添加剂有23个类别,2000多个品种,包括酸度调节剂、抗结剂、消泡剂、抗氧化剂、漂白剂、膨松剂、着色剂、护色剂、酶制剂、增味剂、营养强化剂、防腐剂、甜味剂、增稠剂、香料等。防腐剂可以防止由微生物引起的食品腐败变质,延长食品的保存期,同时还具有防止由微生物污染引起的食物中毒作用。抗氧化剂

可阻止或推迟食品的氧化变质,以提供食品的稳定性和耐藏性,同时也可防止可能有害的油脂自动氧化物质的形成。此外,还可用来防止食品,特别是水果、蔬菜的酶促褐变与非酶褐变。这些对食品的保藏都是具有一定意义的。甜味剂是指赋予食品甜味的食品添加剂。按来源可分为:(1)天然甜味剂,又分为糖醇类和非糖类。其中①糖醇类有:木糖醇、山梨糖醇、甘露糖醇、乳糖醇、麦芽糖醇、异麦芽糖醇、赤鲜糖醇;②非糖类包括:甜菊糖甙、甘草、奇异果素、罗汉果素、索马甜。(2)人工合成甜味剂其中磺胺类有:糖精、环己基氨基磺酸钠、乙酰磺胺酸钾。二肽类有:天门冬酰苯丙酸甲酯(又阿斯巴甜)、1-a-天冬氨酰-N-(2,2,4,4-四甲基-3-硫化三亚甲基)-D-丙氨酰胺(又称阿力甜)。蔗糖的衍生物有:三氯蔗糖、异麦芽酮糖醇(又称帕拉金糖)、新糖(果糖低聚糖)。 (二)调味品 调味品,是指能增加菜肴的色、香、味,促进食欲,有益于人体健康的辅助食品。包括咸味剂、酸味剂、甜味剂、鲜味剂和辛香剂等。 化学成份 1、咸味 咸味是化合物中,中性盐所体现的味道,如氯化钠,氯化钾、氯化铵等都有咸味,但同时又有其他异味。各种盐的呈味程度和化合物的分子量有关,分子量越大,苦味等异味越重。 2、甜味

表面活性剂知识总结

1、浊点(Cloud point),非离子表面活性剂的一个特性常数,其受表面活性剂分子结构和共存物质的影响。表面活性剂的水溶液,随着温度的升高会出现浑浊现象,表面活性剂由完全溶解转变为部分溶解,其转变时的温度即为浊点温度。浊点(CP) 是非离子表面活性剂(NS) 均匀胶束溶液发生相分离的温度,是其非常重要的物理参数。 2、根据中华人民共和国国家标准,每100 克样品中环氧乙烷基中氧的含量称为环氧值。 3、红外光谱是物质定性的重要方法之一。其在化学领域中主要用于分子结构的基团表征,除具有高度的特征性,还有分析时间短、需要的试样量少、不破坏试样、测定方便等优点。它的解析能够提供许多关于官能团的信息,可以帮助确定部分乃至全部分子类型及结构。 4、质谱分析是将样品转化为运动的带电气态离子,与磁场中按质荷比(m/z)大小分离并记录的分析方法。质谱分析法是近代发展起来的快速、微量、精确测定相对分子质量的方法。但是,质谱分析法对样品有一定的要求。其对盐的耐受能力较低,包括大分子盐(低聚合物)、小分子盐(有机盐、无机盐)等。盐类由于在电喷雾系统中有强烈的竞争性离子化作用,导致较强的离子抑制效应,使得待测物的灵敏度明显降低。其次,盐类的存在将产生一系列的离子加合峰,使谱图的解析复杂化。此外,太多的盐类容易腐蚀和污染质谱系统硬件,需要及时清洗,严重时甚至导致硬件损坏。 5、氢原子具有磁性,如电磁波照射氢原子核,它能通过共振吸收电磁波能量,发生跃迁。用核磁共振仪可以记录到有关信号,氢原子在分子中的化学环境不同,而显示出不同的吸收峰,峰与峰之间的差距被称作化学位移。利用化学位移,峰面积和积分值等信息,进而推测其在碳骨架上的位置。在核磁共振氢谱图中,特征峰的数目反映了有机分子中氢原子在化学环境的种类;不同特征峰的强度比及特征峰的高度比反映了不同化学环境下氢原子的数目比。 6、正交实验法就是利用排列整齐的表-正交表来对试验进行整体设计、综合比较、统计分析,实现通过少数的实验次数找到较好的生产条件,以达到最高生产工艺效果,这种试验设计法是从大量的试验点中挑选适量的具有代表性的点,利用已经造好的表格—正交表来安排试验并进行数据分析的方法。正交表能够在因素变化范围内均衡抽样,使每次试验都具有较强的代表性,由于正交表具备均衡分散的特点,保证了全面实验的某些要求,这些试验往往能够较好或更好的达到实验的目的。正交实验设计包括两部分内容:第一,是怎样安排实验;第二,是怎样分析实验结果。 7、在液体内部,每个分子在各方向都受到邻近分子的吸引力(也包括排斥力),因此,液体内部分子受到的分子力合力为零。然而,在液体与气体相接触的表面层上的液体分子在各个方向受到的引力是不均衡的,造成表面层中的分子受到指向液体内部的吸引力,因此,液体会有缩小液面面积的趋势,在宏观上的表现即为表面张力现象。 8、表面活性剂的c.m.c值越小,则表明应用时,该表面活性剂的用量就可以减少,效率越高。 9、泡沫性能是考察表面活性剂的另一个重要特性,其研究涉及许多因素,在实际应用中多数是用泡沫的发泡性(起泡的难易程度)和稳泡性(泡沫破裂的难易性)作为泡沫性能的2 个重要指标 10、泡沫性能的传统评价方法主要有气流法和搅动法,近年来研究人员以上述方法为基础,结合先进仪器,发展了更多精度高、测试准的评价方法:光学法、电导率法、高能粒子法。(Waring-Blender搅拌法:用量筒量取待测的表面活性剂溶液加入搅拌机中,以恒定速度搅拌60 s 后停止,记录产生的泡沫体积V用于衡量溶液的起泡能力。随着时间的推移,液体不断从泡沫中析出,泡沫体积减少。记录下泡沫中排出50mL 液体所需要的时间τ(s)用于衡量泡沫的稳定性。此方法操作方便,重现性好,能较准确地反映出溶液的起泡能力和泡沫稳定性。)

水性聚氨酯的合成

闫福安,陈俊 (武汉工程大学化工与制药学院,武汉430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 0引言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5kg,西欧约4.5kg,而我国的消费水平还很低,年人均不足0.5kg。溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 1水性聚氨酯的合成单体 1.1多异氰酸酯(polyisocynate) 多异氰酸酯可以根据异氰酸酯基与碳原子连接的部位特点,可分为四大类:芳香族多异氰酸酯(如甲苯二异氰酸酯,TDI)、脂肪族多异氰酸酯(六亚甲基二异氰酸酯,HDI)、芳脂族多异氰酸酯(即在芳基和多个异氰酸酯基之间嵌有脂肪烃基-常为多亚甲基,如苯二亚甲基二异氰酸酯,XDI)和脂环族多异氰酸酯(即在环烷烃上带有多个异氰酸酯基,如异佛尔酮二异氰酸酯,IPDI。芳香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化,属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI常用于室内涂层用树脂;脂肪族多异氰酸酯耐候性好,不黄变,其应用不断扩大,欧美发达国家已经成为主流的多异氰酸酯单体;芳脂族和脂环族多异氰酸酯接近脂肪族多异氰酸酯,也属于“不黄变性多异氰酸酯”。水性聚氨酯合成用的多异氰酸酯主要有TDI、IPDI、HDI、TMXDI(四甲基苯二亚甲基二异氰酸酯)。TMXDI可直接用于水性体系,或用于零VOC水性聚氨酯的合成。

电导法测定水溶性表面活性剂的临界胶束浓度

实验十七电导法测定水溶性表面活性剂的临界胶束浓度 一、目的要求 1.用电导法测定十二烷基硫酸钠的临界胶束浓度 2.了解表面活性剂的特性及胶束形成原理 3.掌握电导仪的使用方法 二、基本原理 表面活性物质在水中形成胶束所需的最低浓度称为临界胶束浓度,以CMC表示。在CMC点上,由于溶液的结构改变导致其物理及化学性质(如表面张力、电导、渗透压、浊度、光学性质等)同浓度的关系曲线出现 明显的转折,如图1所示。这个现象是测 定CMC的实验依据,也是表面活性剂的 一个重要特征。 表面活性剂成为溶液中的稳定分子可 能采取的两种途径:1、是把亲水基留在 水中,亲油基伸向油相或空气;2、是让 表面活性剂的亲油基团相互靠在一起,以 减少亲油基与水的接触面积。前者就是表 面活性剂分子吸附在界面上,其结果是降低界面张力,形成定向排列的单分子膜,后者就形成了胶束。由于胶束的亲水基方向朝外,与水分子相互吸引,使表面活性剂能稳定地溶于水中。 在溶液中对电导有贡献的主要是带长链烷基的表面活性剂离子和相应的反离子,而胶束的贡献则极为微小。从离子贡献大小来考虑,反离子大于表面活性剂离子。当溶液浓度达CMC时,由于表面活性剂离子缔合成胶束,反离子固定于胶束的表面,它们对电导的贡献明显下降,同时由于胶束的电荷被反离子部分中和,这种电荷量小,体积大的胶束对电导的贡献非常小,所以电导急剧下降。 对于离子型表面活性剂溶液,当溶液浓度很稀时,电导的变化规律也和强电解质一样;但当溶液浓度达到临界胶束浓度时,随着胶束的生成,电导率发生改变,摩尔电导急剧下降,

这就是电导法测定CMC的依据。 本实验利用电导仪测定不同浓度的十二烷基硫酸钠水溶液的电导值(或摩尔电导率),并作电导值(或摩尔电导率)与浓度的关系图,从图中的转折点即可求得临界胶束浓度。 三、实验步骤 1.调节恒温水浴温度至25℃ 2.吸取10ml的0.02 mol〃dm-3十二烷基硫酸钠溶液于100ml烧杯中,依次移入恒温后的电导水2ml、3ml、5ml、5ml、5ml、5ml、10ml、10ml、10ml、20ml,搅拌,分别测其电导率。 每个溶液的电导读数三次,取平均值。 3.列表记录各溶液对应的电导,并换算成电导率或摩尔电导率。 四、数据记录与处理 表一:环境条件 表二:实验数据记录 T=25℃ 由上表作出电导值(或摩尔电导率)与浓度的关系图如下:

催化剂及其基本特征

1、催化剂及其基本特征 催化剂是一种物质,它能够改变化学反应的速率,而不改变该反应的标准Gibbs自由焓变化;此过程称为催化作用,涉及催化剂的反应称为催化反应。 催化剂的基本特征 催化剂只能实现热力学可行的反应,不能实现热力学不可能的反应; 催化剂只能改变化学反应的速度,不能改变化学平衡的位置; 催化剂能降低反应的活化能,改变反应的历程; 催化剂对反应具有选择性。 2、催化剂的组成 主催化剂:催化剂的主要活性组分,起催化作用的根本性物质,如合成氨催化剂的铁,催化剂中若没有活性组分存在,那么就不可能有催化作用。 助催化剂:催化剂中具有提高活性组分的催化活性和选择性的组分,以及改善催化剂的耐热性、抗毒性,提高催化剂机械强度和寿命的组分。 催化剂载体:主要是负载催化活性组分的作用,还具有提高催化剂比表面积、提供适宜的孔结构、改善活性组分的分散性、提高催化剂机械强度、提高催化剂稳定性等多种作用 3、催化剂的稳定性 指催化剂的活性和选择性随反应时间的变化,催化剂的性能稳定性情况,通常以寿命表示。催化剂在反应条件下操作,稳定一定活性和选择性水平的时间称为单程寿命;每次性能下降后,经再生又恢复到许可水平的累计时间称为总寿命。催化剂稳定性包括热稳定性,抗毒稳定性,机械稳定性三个方面。 4、物理吸附与化学吸附的主要区别 物理吸附: 指气体物质(分子、离子、原子或聚集体)与表面的物理作用(如色散力、诱导偶极吸引力)而发生的吸附,其吸附剂与吸附质之间主要是分子间力(也称“van der Waals”力)。 化学吸附: 指在气固界面上,气体分子或原子由化学键力(如静电、共价键力)而发生的吸附,因此化学吸附作用力强,涉及到吸附质分子和固体间化学键的形成、电子重排等。5、何谓B酸和L酸,及其简便的鉴定方法 能够给出质子的都是酸,能够接受质子的都是碱,Br?nsted定义的酸碱称为B酸(B碱),又叫质子酸碱。 能够接受电子对的都是酸,能够给出电子对的都是碱,所以Lewis定义的酸碱称为L酸(L碱),又叫非质子酸碱。 固体酸的类型有B酸和L酸两种,对固体酸类型最有效的区分方法是红外光谱法,它是通过研究NH3或吡啶在固体酸表面上吸附的红外光谱来区分B酸和L酸的。固体酸吸附吡啶的红外吸收谱带见表所示,通过这些谱带很容易的确定固体酸表面的B酸和L酸。 6、如何利用红外光谱法鉴定B酸和L酸 7、如何利用碱滴定法测定固体酸的酸量 就是把固体酸催化剂粉末悬浮于苯溶液中,其中加入指示剂,用正丁胺进行滴定,使用不同pKa值的各种指示剂,就可通过胺滴定来测定各种酸强度的酸量,这样测得的酸量为B酸和L酸的总和。对于有颜色的样品,可用分光光度计法或掺入已知酸强度的白色固体予以稀释,也可用胺量热滴定法来测定有色或黑色固体酸样品的酸量。 8、如何利用CO2吸附法测定固体碱的碱量 就是在TPD装置上将预先吸附了CO2的固体碱在等速升温,并通入稳定流速的载气条件下,检测一定温度下脱附出的酸性气体,得到TPD曲线。这种曲线的形状、大小及出现最高峰的温度值,都与固体碱的表面碱性有关,从而确定碱量。 9、简述固体酸催化剂的催化作用机理。 固体酸、碱催化剂,如硅铝胶、分子筛、MgO-SiO2等在烃类转化,包括裂解、异构化、烷基化、聚合反应中都有极好的活性。现普遍认为,固体酸催化反应与均相酸催化反应一样,都是按正碳离子机理进行的,与此相对应,烃类在固体碱催化剂作用下,反应按负碳离子机理进行的。所谓正碳离子和负碳离子相理,简单地说就在反应中,通过反应分子的质子化生成碳正离子,或从反应分子除去一个质子生成负碳离子,从而使反应分子得以活化的过程,并且是反应的控制步骤。 10、催化裂化反应有哪些规律 (1)新生成的伯正碳离子极不稳定,并迅速转化为仲正碳离子,然后再β处断裂,反应继续下去,直至成为不能再断裂

浅谈机动车尾气污染的监测与防治

浅谈机动车尾气污染的监测与防治 发表时间:2018-09-21T14:15:53.567Z 来源:《科技新时代》2018年7期作者:刘晓云陈旭英 [导读] 分析了机动车尾气污染的危害及主要监测技术,并从技术和政策两方面探讨了机动车尾气污染的防治措施。 (招远市环境保护局山东招远 265400) 摘要:分析了机动车尾气污染的危害及主要监测技术,并从技术和政策两方面探讨了机动车尾气污染的防治措施。 关键词:机动车尾气污染监测防治 1、前言 近年来,随着我国汽车保有量的迅速增加,汽车尾气污染也越来越受到关注。据统计,在我国大城市大气污染中,汽车排放的CO分担率占63%,NOx占22%,HC占73%,我国大气污染已由工业废物、煤炭烟气型向机动车尾气排放型转变[1]。因此,采取有效措施控制汽车尾气污染刻不容缓。 2、汽车尾气对人体健康的危害 汽车尾气中的主要污染物包括烟尘、二氧化硫、一氧化碳、氮氧化物、可挥发性烃类,颗粒物等。其中,汽车排放的一氧化碳无色无味,进入血液后与血红蛋白结合,降低血液的输血能力,使心脏、头脑等重要器官严重缺氧,严重时导致中毒甚至死亡。氮氧化物影响人的呼吸系统,造成支气管炎,吸入肺内会造成肺气肿。汽油中随着废气排放的铅在血液中积累影响肾和神经系统,造成迟钝和行为错乱,研究表明儿童对铅尤为敏感。特别是碳氢化合物和氮氧化物在阳光照射下,会生成臭氧和浅蓝色的光化学烟雾,形成二次污染,不但降低大气能见度,而且对人体健康造成严重危害。1995年洛衫矶出现“光化学烟雾事件”,成千上万人得红眼病,呼吸系统疾病迅速上升,65岁以上老人几天内死亡4000多人[机动车环保网,I/M检测维护制度简介,20080131]。 3、汽车尾气遥测技术 遥测技术起源于美国,1988年美国丹佛大学利用非扩散红外线检测技术(NDIR)开发出能同时检测CO、CO2和HC的遥测设备,又于20世纪90年代利用非扩散紫外线检测技术(NDUV)进行了NOx测量方法的开发,我国也于2005年开发了具有自主知识产权的尾气遥测设备,并投入商业化生产[2]。以下主要对我国机动车尾气监测研究现状进行总结: 利用分子红外光波段的吸收光谱特性, 丁蕾等研制了开路式机动车尾气非分光红外遥测技术与系统,通过采用单个红外探测器同时完成CO、CO2和背景的测量。该技术采用光斩波器与锁相放大器组合完成微弱信号的检测以及采用接收和发射一体系统结构, 不需要抽取样品,实现了汽车行使过程中排放的尾气污染物的完全非接触在线自动监测,避免了由于采样带来的不准确性,可真实反映汽车在行使过程中尾气的排放情况[3]。王铁栋等采用1.5微米波段的半导体激光器作为光源的系统,通过调制光谱二次谐波检测技术测量CO、CO2[4],利用可调谐二极管激光吸收光谱技术及其计算机自动识别技术的机动车尾气遥测系统可以在不影响车辆正常行驶的条件下,在道边对机动车尾气成份中的 CO,CO2进行实时遥测。实验表明,基于该技术的尾气遥测系统可以迅速、方便地获得大量机动车的实时尾气排放数据和车辆信息,从而快速筛选出那些高排放的车辆[5] [6]。 王铁栋等研究表明,NO和HC在200~250nm的紫外波段吸收非常强,可使用紫外差分技术对机动车尾气进行遥测,响应时间短[4]。魏杰等设计建造了一台可以对管道废气中主要是芳香类有机污染物进行多组分、实时检测的小型化的可移动激光质谱装置,小型 KrF准分子激光器 (248nm) ,可以对机动车尾气中芳香类物质进行多组分实时测量[7]。激光质谱法是探测环境污染的新方法,它具有高灵敏度、高选择性、多组分和快速实时的特点,可移动激光质谱仪主要用于对机动车尾气中芳香类有机污染物实现多组分、高灵敏度、快速、现场在线测量[8]。 4、机动车尾气污染的防治措施 机动车污染防治工作应通过政策和技术等多种手段,最大限度控制污染上升势头。其中,技术措施包括改进汽车发动机的结构,在汽车发动机内部进行尾气净化处理;改进汽车燃料,采用乙醇汽油、无铅汽油等。当然最根本的手段还是改变汽车的动力,研制和推广电动汽车、太阳能汽车等等。政策措施主要从机动车的生产、使用、报废等整个过程中的污染。政策措施主要从机动车生产、使用及报废等多个环节加强监管,制定措施,控制机动车尾气污染。 4.1 机动车尾气污染防治技术措施 汽车尾气净化催化剂是控制汽车尾气排放,减少污染的最有效手段。按照我国总体规划,到2010年我国汽车尾气排放控制与国际接轨,达到国际水平。 尾气净化催化剂的发展已经经历了四个阶段,目前已开发出第四代尾气用催化剂。1974年,汽车排放只要求控制(CO)和未燃物(HC)的排放,大部分汽车安装Pt、Pd氧化型催化剂。随着NOx排放法规的出台,20世纪70年代末出现了Pt-Rh双金属催化剂,可同时净化HC、CO和NOx,故称三效催化剂。20世纪90年代,出现了第三代低温起燃和耐高温的三效催化剂。第四代尾气净化催化剂则是用价格相对低廉的钯部分或全部代替价格昂贵且资源储量日趋减少的铂或铑[9]。万李等利用活性碳纤维对机动车冷启动阶段产生的高浓度污染物进行吸附及催化,其低温吸附与催化性能对NO和CO具有转化作用。 此外,对机动车发动机内部进行调试,如调整喷油泵的供油量、降低发动机功率,使雾化燃料能够完全燃烧;改善喷油器质量,控制燃烧条件,使燃料燃烧完全;减小喷油提前角,降低发动机工作的最高温度等。发动机内部的清洁燃烧及机动车燃油的改用[10]等也可以有效改善尾气污染。 4.2 机动车尾气污染防治的政策措施 首先,从源头抓起,削除产生污染的源头。从生产和管理环节入手,禁止销售和使用不合格机动车。第二, 建立I/M制度,使车辆污染物

相关文档
相关文档 最新文档