文档视界 最新最全的文档下载
当前位置:文档视界 › 几何综合(适用于选修课)(答案部分)

几何综合(适用于选修课)(答案部分)

几何综合(适用于选修课)(答案部分)
几何综合(适用于选修课)(答案部分)

1.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.

(1)如图1,直接写出∠ABD的大小(用含α的式子表示);

(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;

(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.

【分析】(1)求出∠ABC的度数,即可求出答案;

(2)连接AD,CD,ED,根据旋转性质得出BC=BD,∠DBC=60°,求出∠ABD=

∠EBC=30°﹣α,且△BCD为等边三角形,证△ABD≌△ACD,推出∠BAD=∠

CAD=∠BAC=α,求出∠BEC=α=∠BAD,证△ABD≌△EBC,推出AB=BE即可;(3)求出∠DCE=90°,△DEC为等腰直角三角形,推出DC=CE=BC,求出∠EBC=15°,得出方程30°﹣α=15°,求出即可.

【解答】(1)解:∵AB=AC,∠A=α,

∴∠ABC=∠ACB,∠ABC+∠ACB=180°﹣∠A,

∴∠ABC=∠ACB=(180°﹣∠A)=90°﹣α,

∵∠ABD=∠ABC﹣∠DBC,∠DBC=60°,

即∠ABD=30°﹣α;

(2)△ABE是等边三角形,

证明:连接AD,CD,ED,

∵线段BC绕B逆时针旋转60°得到线段BD,

则BC=BD,∠DBC=60°,

∵∠ABE=60°,

∴∠ABD=60°﹣∠DBE=∠EBC=30°﹣α,且△BCD为等边三角形,在△ABD与△ACD中

∴△ABD≌△ACD(SSS),

∴∠BAD=∠CAD=∠BAC=α,

∵∠BCE=150°,

∴∠BEC=180°﹣(30°﹣α)﹣150°=α=∠BAD,

在△ABD和△EBC中

∴△ABD≌△EBC(AAS),

∴AB=BE,

∴△ABE是等边三角形;

(3)解:∵∠BCD=60°,∠BCE=150°,

∴∠DCE=150°﹣60°=90°,

∵∠DEC=45°,

∴△DEC为等腰直角三角形,

∴DC=CE=BC,

∵∠BCE=150°,

∴∠EBC=(180°﹣150°)=15°,

∵∠EBC=30°﹣α=15°,

∴α=30°.

【点评】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰直角三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.

2.设△ABC中,∠BAC=60°,∠ATC=∠BTC=∠BTA=120°,点M是BC的中点.求证:TA+TB+TC=2AM.

【分析】延长AM到K,使得MK=AM,连接BK,将△ATC绕点A逆时针旋转60°得到△AFE,连接TF.首先证明B、T、F、E共线,BE=BT+AT+TC,再证明△ABK ≌△BAE,可得BE=AK=2AM,延长即可解决问题.

【解答】证明:延长AM到K,使得MK=AM,连接BK,将△ATC绕点A逆时针旋转60°得到△AFE,连接TF.

∵AT=AF,∠TAF=60°,

∴△ATF是等边三角形,

∴TA=TF,∠ATF=∠AFT=60°,

∵∠ATB=∠ATC=∠AFE=120°,

∴∠ATB+∠ATF=180°,∠AFT+∠AFE=180°,

∴B、T、F、E共线,

∴BE=BT+TF+EF=BT+AT+TC,

∵∠BAC=60°,

∴∠BAE=120°,

∵AM=MK,BM=MC,

∴四边形ABKC是平行四边形,

∴AC∥BK,

∴∠ABK+∠BAC=180°,

∴∠ABK=∠BAE=120°,

∵AB=BA,BK=AC=AE,

∴△ABK≌△BAE,

∴BE=AK=2AM,

∴TA+TB+TC=2AM.

【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会中线延长一倍构造全等三角形,题目有一定的难度.

4.等腰△ABC中,AB=AC,△ABD、△ACE都是等边三角形,直线BD、CE交于点O,直线AO、BC交于点F.

(1)如图1,当点D在AB左侧,点E在AC右侧时,∠AFC=90°(不用证明)(2)如图2,当点D在AB右侧,点E在AC左侧时,求证:∠AFC=90°

(3)如图3,当点D在AB左侧,点E在AC左侧时,求∠AFC的度数.

【分析】(1)由图形即可得出结论;

(2)根据等腰三角形及等边三角形的性质可得出∠OBC=∠OCB,进而可得出点O在线段BC的垂直平分线上,结合点A在在线段BC的垂直平分线上可得出AO ⊥BC,此题得证;

(3)连接BE,同(2)可得出AO⊥BE,设∠AEAO=α,则∠BAO=α,∠BAC=60°﹣2α,根据等腰三角形的性质结合三角形内角和定理可求出∠ABC=60°+α,再利用外角的性质可求出∠AFB=60°.

【解答】解:(1)观察图形,可得出:∠AFC=90°.

故答案为:90°

(2)证明:∵△ABD、△ACE都是等边三角形,

∴∠ABO=∠ACO=60°.

∵AB=AC,

∴∠ABC=∠ACB,点A在线段BC的垂直平分线上,

∵∠ABC=∠ABD+∠OBC,∠ACB=∠ACO+∠OCB,

∴∠OBC=∠OCB,

∴点O在线段BC的垂直平分线上,

∴AO⊥BC,

∴∠AFC=90°.

证毕.

(3)在图3中连接BE,则AO⊥BE(证明过程同(2)).

设∠AEAO=α,则∠BAO=α,∠BAC=60°﹣2α.

∵∠ABC=∠ACB,∠ABC+∠ACB+∠BAC=180°,

∴∠ABC==60°+α,

∴∠AFB=∠ABC﹣∠BAO=60°.

【点评】本题考查了等腰(等边)三角形的性质、三角形内角和定理以及三角形外角的性质,解题的关键是:(1)观察图形找出∠AFC=90°;(2)通过角的计算找出∠OBC=∠OCB;(3)利用外角的性质求出∠AFB=60°.

5.在△ABC中,AB≠AC,分别以AB,AC为边作等腰△ABD和△ACE,AD=AB,AC=AE,且∠ACB=∠BAD=∠CAE=α,连接DE,交CA延长线于点M,求证:M为DE中点.

【分析】延长AM到F使AF=BC,连接DF,过E作EG∥DF交CM于G,根据三角形的内角和和平角的定义得到∠ABC=∠DAF=180°﹣∠BAC,推出△ADF≌△ABC,根据全等三角形的性质得到DF=AC,∠F=∠ACB=α,根据平行线的性质得到∠AGE=∠F=α,于是得到∠CAE=∠AGE,求得AE=EG,等量代换得到DF=EG,证得△DFM≌△GEM,根据全等三角形的性质即可得到结论.

【解答】证明:延长AM到F使AF=BC,连接DF,过E作EG∥DF交CM于G,∵∠DAB=∠ACB=α,

∵∠ABC=∠DAF=180°﹣∠BAC,

在△ADF与△ABC中,

∴△ADF≌△ABC,

∴DF=AC,∠F=∠ACB=α,

∵EG∥DF,

∴∠AGE=∠F=α,

∴∠CAE=∠AGE,

∴AE=EG,

∴DF=EG,

在△DFM与△EMG中,

∴△DFM≌△GEM,

∴DM=EM,

∴M为DE中点.

【点评】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.

6.已知:在△ABC中,AB=2BC,∠ABC=60°

(1)如图1,求证:∠BAC=30°;

(2)分别以AB、AC为边,在△ABC外作等边三角形ABD和等边三角形ACE,联结DE,交AB于点F如图2.求证:DF=EF.

【分析】(1)如图1,取AB中点D,连结CD,则AB=2BD.易证△BCD为等边三角形,则根据等边三角形的性质推知:CD=BD,∠BDC=60°;所以由等腰三角形的性质和三角形外角定理得到∠BDC=∠A+∠ACD=2∠A=60°,即∠BAC=30°;(2)如图2,作DG∥AE,交AB于点G,由等边三角形的∠EAC=60°,加上已知的∠CAB=30°得到∠FAE=90°,然后根据两直线平行内错角相等得到∠DGF=90°,再根据∠ACB=90°,∠CAB=30°,利用三角形的内角和定理得到∠ABC=60°,由等边三角形的性质也得到∠DBG=60°,从而得到两角的相等,再由DB=AB,利用“AAS”证得△DGB≌△ACB,根据全等三角形的对应边相等得到DG=AC,再由△AEC为等边三角形得到AE=AC,等量代换可得DG=AE,加上一对对顶角的相等和一对直角的相等根据“AAS”证得△DGF≌△EAF,最后根据全等三角形的对应边相等即可得证.

【解答】(1)证明:如图1,取AB中点D,连结CD,则AB=2BD.

∵AB=2BC,

∴BD=BC.

又∵∠ABC=60°,

∴△BCD为等边三角形,

∴CD=BD,∠BDC=60°,

∴AD=CD,

∴∠A=∠ACD,

又∵∠BDC=∠A+∠ACD=2∠A=60°,

∴∠BAC=30°;

(2)证明:如图2,作DG∥AE,交AB于点G,

由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,

∴∠DGF=∠FAE=90°,

又∵∠ACB=90°,∠CAB=30°,

∴∠ABC=60°,

又∵△ABD为等边三角形,∠DBG=60°,DB=AB,

∴∠DBG=∠ABC=60°,

在△DGB和△ACB中,,

∴△DGB≌△ACB(AAS),

∴DG=AC,

又∵△AEC为等边三角形,∴AE=AC,

∴DG=AE,

在△DGF和△EAF中,,

∴△DGF≌△EAF(AAS),

∴DF=EF.

【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等边三角形的性质,其中全等三角形的判定方法为:SSS;SAS;ASA;AAS;HL(直角三角形判定全等的方法),常常利用三角形的全等来解决线段或角相等的问题,在证明三角形全等时,要注意公共角及公共边,对顶角相等等隐含条件的运用.第二问作出辅助线构造全等三角形是本问的突破点.

7.已知3x+2?5x+2=153x﹣4,求(x﹣1)2﹣3x(x﹣2)﹣4的值.

【分析】首先由3x+2?5x+2=153x﹣4,可得3x+2?5x+2=(15)x+2=153x﹣4,即可得方程x+2=3x ﹣4,解此方程即可求得x的值,然后化简(x﹣1)2﹣3x(x﹣2)﹣4,再将x=3代入,即可求得答案.

【解答】解:∵3x+2?5x+2=(15)x+2=153x﹣4,

∴x+2=3x﹣4,

解得:x=3,

∴(x﹣1)2﹣3x(x﹣2)﹣4

=x2﹣2x+1﹣3x2+6x﹣4

=﹣2x2+4x﹣3

=﹣2×9+4×3﹣3

=﹣9.

【点评】此题考查了积的乘方的性质与化简求值问题.此题难度适中,注意由3x+2?5x+2=153x﹣4,得到方程x+2=3x﹣4是解此题的关键.

8.已知5a=2b=10,求+的值.

【分析】想办法证明ab=a+b即可.

【解答】解:∵5a=2b=10,

∴(5a)b=10b,(2b)a=10a,

∴5ab=10b,2ab=10a,

∴5ab?2ab=10b?10a,

∴10ab=10a+b,

∴ab=a+b,

∴+==1,

【点评】本题考查幂的乘方与积的乘方等知识,解题的关键是灵活运用所学知识解决问题,属于中档题目.

9.已知2a=m,32b=n,a,b为正整数,求23a+10b的值.

【分析】根据幂的乘方和积的乘方、同底数幂的乘法等运算法则求解.

【解答】解:23a+10b=(2a)3(2b)10

=(2a)3(32b)2

=m3n2.

【点评】本题考查了幂的乘方和积的乘方和同底数幂的乘法,掌握运算法则是解答本题的关键.

10.(1)已知a m=2,a n=3,求a3m+2n的值;

(2)已知x3=m,x5=n,试用含m,n的代数式表示x14.

【分析】(1)由a3m+2n=a3m?a2n=(a m)3?(a n)2,即可求得答案;

(2)由x14=(x3)3?x5,即可求得答案.

【解答】解:(1)∵a m=2,a n=3,

∴a3m+2n=a3m?a2n=(a m)3?(a n)2=23×32=72;

(2)∵x3=m,x5=n,

∴x14=(x3)3?x5=m3n.

【点评】此题考查了同底数幂的乘法与幂的乘方.此题难度适中,注意掌握公式的逆运算是关键.

中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数)

2019-2020年中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数) 类型一以几何图形为背景的综合题 【例1】(xx·苏州一模)如图1①,四边形ABCD中,AD∥BC,DC⊥BC,AD =6 cm,DC=8 cm,BC=12 cm.动点M在CB上运动,从C点出发到B点,速度每秒2 cm;动点N在BA上运动,从B点出发到A点,速度每秒1 cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒). (1)求线段AB的长. (2)当t为何值时,MN∥CD? (3)设三角形DMN的面积为S,求S与t之间的函数关系式. (4)如图1②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由. 图1

【例2】(xx·吉林)如图2,在等腰直角三角形ABC中,∠BAC=90°,AC=8 2 cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以 2 cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2) 图2 备用图 (1)当点M落在AB上时,x=____________; (2)当点M落在AD上时,x=____________; (3)求y关于x的函数解析式,并写出自变量x的取值范围.

1.(xx·宁夏)如图3,在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC 向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒 (0<x≤3),解答下列问题: (1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值; 图3 (2)是否存在x的值,使得QP⊥DP?试说明理由. 2.(xx·梅州)如图4,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M 从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN. 图4 (1)若BM=BN,求t的值; (2)若△MBN与△ABC相似,求t的值; (3)当t为何值时,四边形ACNM的面积最小?并求出最小值.

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

专题九几何综合体、代数和几何综合题(含问题详解)

2012年中考第二轮专题复习九:几何综合体、代数和几何综 合题 1(2011省)如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG. (1)求证:①DE=DG;②DE⊥DG (2)尺规作图:以线段DE,DG为边作出正方形DEFG (要求:只保留作图痕迹,不写作法和证明); (3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的 特殊四边形,并证明你的猜想: (4)当时,请直接写出的值. 考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定;作图—复杂作图。分析:(1)由已知证明DE、DG所在的三角形全等,再通过等量代换证明DE⊥DG; (2)根据正方形的性质分别以点G、E为圆心以DG为半径画弧交点F,得到正方形DEFG;(3)由已知首先证四边形CKGD是平行四边形,然后证明四边形CEFK为平行四边形; (4)由已知表示出的值. 解答:(1)证明:∵四边形ABCD是正方形, ∴DC=DA,∠DCE=∠DAG=90°. 又∵CE=AG, ∴△DCE≌△GDA, ∴DE=DG, ∠EDC=∠GDA, 又∵∠ADE+∠EDC=90°, ∴∠ADE+∠GDA=90°, ∴DE⊥DG. (2)如图. (3)四边形CEFK为平行四边形. 证明:设CK、DE相交于M点, ∵四边形ABCD和四边形DEFG都是正方形, ∴AB∥CD,AB=CD,EF=DG,EF∥DG, ∵BK=AG, ∴KG=AB=CD, ∴四边形CKGD是平行四边形,

∴CK=DG=EF,CK∥DG, ∴∠KME=∠GDE=∠DEF=90°, ∴∠KME+∠DEF=180°, ∴CK∥EF, ∴四边形CEFK为平行四边形. (4)=. 点评:此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂 2(2011建设兵团)如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动. (1)求AB的长; (2)设BP=x,问当x为何值时△PCQ的面积最大, 并求出最大值; (3)探究:在AB边上是否存在点M,使得四边形PCQM为 菱形?请说明理由. 考点:等腰梯形的性质;二次函数的最值;菱形的性质;解直角三角形。 分析:(1)作AE⊥BC,根据题意可知BE的长度,然后,根据∠B的正弦值,即可推出AB 的长度; (2)作QF⊥BC,根据题意推出BP=CQ,推出CP关于x的表达式,然后,根据∠C的正弦值推出高QF关于x的表达式,即可推出面积关于x的二次函数式,最后根据二次函数的最值即可推出x的值; (3)首先假设存在M点,然后根据菱形的性质推出,∠B=∠APB=∠BAP=45°,这是不符合三角形角和定理的,所以假设是错误的,故AB上不存在M点. 解答:解:(1)作AE⊥BC, ∵等腰梯形ABCD中,AD=4,BC=9, ∴BE=(BC﹣AD)÷2=2.5, ∵∠B=45°, ∴AB=, (2)作QF⊥BC, ∵等腰梯形ABCD, ∴∠B=∠C=45°, ∵点P和点Q的运动速度、运动时间相同,BP=x, ∴BP=CQ=x, ∵BC=9, ∴CP=9﹣x,QF=, 设△PQC的面积为y,

代数几何综合题含答案

代数几何综合题 代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。 例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作P C P B ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 解:(1) P C P B B O P O ⊥⊥, ∴∠+∠=?∠+∠ ∴∠=∠C P A O P B P B O O P B C P A P B O 90, A (2,0),C (2,y )在直线a 上 ∴∠=∠=? B O P P A C 90 ∴??B O PP A C ~ ∴ =P O A C B O P A ,∴=+||||||x y x 2 2 , x y x y x <<∴= -002 2,,∴=-+y x x 122 (2) x <0,∴x 的最大整数值为-1 , 当x =-1时,y =- 32,∴=CA 3 2

B O a B O Q C A Q O Q A Q B O C A //~,,∴∴=?? 设Q 点坐标为()m ,0,则A Q m =-2 ∴-=∴=m m m 2232 8 7 , ∴Q 点坐标为()8 7 0, 说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。关键是搞清楚用坐标表示的数与线段的长度的关系。 练习 1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ;(3分) (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。(4分) B

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分

初三数学代数几何综合题

代数几何综合题 【题型特征】代数、几何知识相结合的综合题是以几何知识为主体,以代数知识为工具(背景),来确定图形的形状、位置、大小(坐标)的问题.解答时往往需要从代数几何的结合点或在几何图形中寻找各元素之间的数量关系或在代数条件中探讨各个量的几何模型,进行数与形之间的互相转化,使问题得到解决. 为了讲解方便,我们将代数几何综合题按题目叙述的背景分为:坐标系、函数为背景的代数几何综合题和以几何图形为背景的代数几何综合题. 【解题策略】几何图形为背景的代数几何综合题,建立函数表达式的常见思路是:利用图形的面积公式建立函数表达式;或利用勾股定理或解直角三角形知识建立函数表达式;或利用相似三角形的线段成比例建立函数表达式. 类型一坐标系、函数为背景 典例1(2015·湖南怀化)如图(1),在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y. (1)求y与x之间的函数表达式; (2)当x=3秒时,射线OC平行移动到O'C',与OA相交于点G,如图(2),求经过G,O,B三点的抛物线的表达式; (3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由. (1)

(2) 【全解】 (1)∵AB=OB,∠ABO=90°, ∴△ABO是等腰直角三角形. ∴∠AOB=45°. ∵∠yOC=45°, ∴∠AOC=(90°-45°)+45°=90°. ∴AO⊥CO. ∵C'O'是CO平移得到, ∴AO⊥C'O'. ∴△OO'G是等腰直角三角形. ∵射线OC的速度是每秒2个单位长度, ∴OO'=2x. ∴其以OO'为底边的高为x. ∴点G的坐标为(3,3). 设抛物线表达式为y=ax2+bx,

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

折叠几何综合专题---16道题目(含答案)

01如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG. (1)求证:四边形EFDG是菱形; (2)探究线段EG,GF,AF之间的数量关系,并说明理由; (3)若AG=6,EG=25,求BE的长.

(1)证明:由折叠性质可得,EF =FD ,∠AEF =∠ADF =90°,∠ EFA =∠DFA ,EG =GD ,∵EG ∥DC ,∴∠DFA =∠EGF , ∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形; (2)解:EG 2 =1 2 GF ·AF .理由如下: 如解图,连接ED ,交AF 于点H , ∵四边形EFDG 是菱形, ∴DE ⊥AF ,FH =GH =12GF ,EH =DH =1 2 DE , ∵∠FEH =90°-∠EFA =∠FAE ,∠FHE =∠AEF =90°, ∴Rt △FEH ∽Rt △FAE ,∴EF AF =FH EF ,即EF 2=FH ·AF , 又∵FH =12GF ,EG =EF ,∴EG 2 =12 GF ·AF ; (3)解:∵AG =6,EG =25,EG 2 =12AF ·GF ,∴(25)2 =12 (6+GF )·GF , 解得GF =4或GF =-10(舍),∴GF =4,∴AF =10. ∵DF =EG =25,∴AD =BC =AF 2-DF 2=45, DE =2EH =2 EG 2 -(1 2 GF )2=8,

∵∠CDE+∠DFA=90°,∠DAF+∠DFA=90°,∴∠CDE=∠DAF,∵∠DCE=∠ADF=90°, ∴Rt△DCE∽Rt△ADF,∴EC DF = DE AF ,即 EC 25 = 8 10 , ∴EC=85 5 ,∴BE=BC-EC= 125 5 . 02如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F,若DE=4,BD=8. (1)求证:AF=EF; (2)求证:BF平分∠ABD.

小学数学常用解题技巧(解几何题技巧)

小学数学常用解题技巧:解几何题技巧 解几何题技巧 1.等分图形 【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。 例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。已知左图(图4.11)中正方形面积为72平方厘米,求右图( 4.12)中正方形的面积。 由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角 形有什么样的关系。等分后的情况见图 4.13和图 4.14。 积是 图4.12的正方形面积是 【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整 体上去观察,往往也能使问题获得解决。 例如图 4.15,在正方形ABCD中,画有甲、乙、丙三个小正方形。问:乙、丙面积之和与甲相比,哪一个大些? 大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。如图 4.16,经过等分,正方形甲的面积等于△ABC面积的一半;正方形丙的面积等于△EDF的一半,正方形乙的面积等于梯形ACFE面积的一半。这样,一个大正方形ABCD,就划分成了三个局部:等腰直角△ABC;等腰梯形ACFE;等腰直角△EDF。其中甲、乙、丙的面积分别为各自所在图形的一半,而△EDF的面积加梯形ACFE的面积等于△ADC的面积,即等于△ABC的面积。所以,乙、丙面积之和等于甲的面积。

2.平移变换 【平移线段】有些几何问题,通过线段的上、下、左、右平移以后,能使问题很快地得到正确的解答。 例如,下面的两个图形(图 4.17和图4.18)的周长是否相等? 单凭眼睛观察,似乎图 4.18的周长比图 4.17的要长一些。但把有关线段平移以后,图 4.18就变成了图 4.19,其中的线段,有的上移,有的左移,有的右移,它可移成一个正方形。于是,不难发现两图周长是相等的。 【平移空白或阴影部分】有些求阴影部分或空白部分面积的几何题,采用平移空白部分或平移阴影部分的办法, 往往能化难为易,很快使问题求得解答。例如,计算图 4.20中阴影部分的面积。 圆面积”,然后相加,得整个阴影部分的面积。这显然是很费时费力的。但认真观察一下就会发现,图 4.20左半左上部的空白部分,与右半左上部的阴影部分大小一样,只需将右半左上部的阴影部分,平移到左半左上部的空白部分,所 有的阴影部分便构成一个正方形了(如图 4.21)。所以,阴影部分的面积很快就可求得为5×5=25。 又如,一块长30米,宽24米的草地,中间有两条宽2米的走道,把草地分为四块,求草地的面积(如图 4.22)。 这只要把丙向甲平移靠拢,把丁向乙平移靠拢,题目也就很快能解答出来了。(具体解法略) 3.旋转变换 【旋转成定角】例如下面的题目: “在图 4.23中,半径为8厘米的圆的内外各有一个正方形,圆内正方形顶点都在圆周上,圆外正方形四条边与圆 都只有一个接触点。问:“大正方形的面积比小正方形的面积大多少?”

中考数学代数几何综合题2

中考数学代数几何综合题2 Ⅰ、综合问题精讲: 代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式显现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题. Ⅱ、典型例题剖析 【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BF AD =,EM 切⊙O 于M 。 ⑴ △ADC∽△EBA ;⑵ AC2=1 2 BC·CE; ⑶假如AB =2,EM =3,求cot∠CAD 的值。 解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB ⑵ 过A 作AH⊥BC 于H(如图) ∵A 是BDC 中点,∴HC=HB =1 2 BC , ∵∠CAE=900,∴AC 2 =CH·CE=12 BC·CE ⑶∵A 是BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2 =12 BC·CE,BC·CE=8 ② ①+②得:EC(EB +BC)=17,∴EC 2 =17 ∵EC 2 =AC 2 +AE 2 ,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC =AE AC =13 2 点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的专门突出.如,将∠CAD 转化为∠AEC 就专门关键. 【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分 别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内 作等腰直角△ABC ,∠BAC=90○ 。过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

中考数学专题复习教学案几何综合题

几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD ⊥BC . ⊿ABC 中,AB =AC , ∴ ∠B =∠C ,∠BAD =∠DAC . 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).

中考数学几何型综合题解题技巧及分类训练(一)

中考数学几何型综合题 解题技巧和题型训练(一)几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识。主要研究图形中的数量关系、位置关系、几何计算以及图形的运动和变化等规律。大体可以分为几何综合计算和几何综合论证两类。在近几年的考题中,常以阅读探究性问题、图形变化间题、操作探究问题等形式出现。这类题涉及知识点比较多,题设和结论比较隐蔽、常常需要添加辅助线解答。 解中考几何型综合题技能: 解答几何综合题,关键是要抓住基本图形(相似模型、全等模型等),在复杂的几何图形中辨认、分解岀基本几何图形、或者添加辅助线构造基本图形。需要注意以下几点: 1、注意题目的直观提示,比如我们可以通过测量观察判断线段的数量和位置关系,一些比较隐蔽的数量关系,我们可以通过图形变化的特殊情况寻找关系。 2、注意分析题目的隐含条件,比如看到中点,你就要想想我们初中数学与中点相关的那四种情况,加以分析。简单的说,就是看到什么样的条件要有联想。 解中考几何型综合题类型和技巧: 1、阅读探究型问题 阅读探究型问题一般篇幅较长,解题时要读懂题意,对材料中给出的解题思路提栋解题思维,再理解的基础上分析问题与阅读材料的相关点,用模仿、类比或转化的方法解决问题

2、图形变化问题 图形变化问题的探究往往涉及到作图(这个不难),关键是把我图形运动、变化过程中始终不变的几何量或性质,对于变化的量要分析它的运动状态,注意是否需要分类讨论,分析变化量与不变量之间可能有什么关系,如何建立这种关系。 3、操作探究问题 在操作过程中提炼信息,分析操作步骤与目的,在特例解决的过程中提炼思维,并类比发散解决一般性结论,并借助图形变化帮助我们更有效地找到解题思路。

代数几何综合题(含答案)

代数几何综合题 x<0,连 1、如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)() ⊥交过点A的直线a于点C(2,y) 结BP,过P点作PC PB (1)求y与x之间的函数关系式; (2)当x取最大整数时,求BC与PA的交点Q的坐标。 2.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,⊙O的直径BD为6,连结CD、AO. (1)求证:CD∥AO; (2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)若AO+CD=11,求AB的长. B

3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2 +2x+m-3=O 的两根,且x 1<0

1、已知抛物线)0(22 >--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 2、如图,抛物线)0(2≠++=a c bx ax y 与x 轴、y 轴分别相交于 A (-1,0)、 B (3,0)、 C (0,3)三点,其顶点为 D . (1)求:经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积; (3)试判断△BCD 与△COA 是否相似若相似写出证明过程;若不相似,请说明理由. A B D C o x y

立体几何大题训练及答案

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形, (1)线段的中点为,线段的中点为, 求证:; (2)求直线与平面所成角的正切值. 解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC ∴ PMN EBC ∴//PM BCE 平面FE ⊥EBC FCE ∴∠ ⊥//AB DE (1)求证:AO ⊥平面CDE ; (2)求直线BD 与平面CBE 所成角的正弦值 3、如图,在△ABC 中,?=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于 E ,AC P F //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面 ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A '; (2)若PB AP 2=,求二面角E PC A --'的平面角的正切值. 解:(1)因为PE FC //,?FC 平面PE A ',所以//FC 平面PE A '. 因为平面⊥PE A '平面PEC ,且PE E A ⊥',所以⊥E A '平面ABC . …2分 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '. …6分 (2)因为a BC AC 3==,BP AP 2=, 所以a CE =,a A E 2=',a PE 2=,a PC 5=. …8分 A B C D E F M . . C B F P A F C ' B ' A E

几何综合(习题)

几何综合(习题) ? 例题示范 例:如图,在四边形ABCD 中,AB =2,BC =CD =B =90°, ∠C =120°,则AD 的长为_______. D C B A 解:如图,连接AC . D C B A 在Rt △ABC 中,∵∠B =90°,AB =2,BC =∴tan ∠ACB = 3 AB BC = ∴∠ACB =30° ∴AC =2AB =4 ∵∠BCD =120° ∴∠ACD =∠BCD -∠ACB =90° 在Rt △ADC 中,AC =4,CD =∴AD = ? 巩固练习 C D B A

1. 如图,在△ABC 中,AB =15 m ,AC =12 m ,AD 是∠BAC 的外角平分线,DE ∥ AB 交AC 的延长线于点E ,那么CE =________. 2. 在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所 示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为________. D B A 3. 如图,矩形EFGD 的边EF 在△ABC 的BC 边上,顶点D ,G 分别在边AB ,AC 上.已知AB =AC=5,BC=6,设BE =x ,EFGD S y 矩形,则y 关于x 的函数关系式为________________. (要求写出x 的取值范围) G F E D C B A N M G F E D C B A 第3题图 第4题图 4. 如图,在△ABC 中有一正方形DEFG ,其中D 在AC 上,E ,F 在AB 上,直线 AG 分别交DE ,BC 于M ,N 两点.若∠B =90°,AB =4,BC =3,EF =1,则BN 的长度为( ) A .43 B .32 C .85 D .127 5. 如图,在△ABC 中,AB =BC =10,AC =12,BO ⊥AC ,垂足为O ,过点A 作射线 AE ∥BC ,点P 是边BC 上任意一点,连接PO 并延长与射线AE 相交于点Q ,设B ,P 两点之间的距离为x ,过点Q 作直线BC 的垂线,垂足为R .小明同学思考后给出了下面五条结论:①△AOB ≌△COB ; ②当0<x <10时,△AOQ ≌△COP ;

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

相关文档
相关文档 最新文档