文档视界 最新最全的文档下载
当前位置:文档视界 › 选修3-5第十六章动量守恒定律章末复习

选修3-5第十六章动量守恒定律章末复习

选修3-5第十六章动量守恒定律章末复习
选修3-5第十六章动量守恒定律章末复习

2018年高二物理(人教版)选修3-5第十六章动量守恒定律章末复

一、单选题(本大题共10小题,共40.0分)

1.质量相同的两方形木块A、B紧靠一起放在光滑水平面上,一子弹先后水平穿透两木块后射出,若木

块对子弹的阻力恒定不变,且子弹射穿两木块的时间相同,则子弹射穿木块时A、B木块的速度之比()

A. 1:1

B. 1:2

C. 1:3

D. 1:

2.物体的动量变化量的大小为5kg?m/s,这说明()

A. 物体的动量在减小

B. 物体的动量在增大

C. 物体的动量大小一定变化

D. 物体的动量大小可能不变

3.如图所示,小明在演示惯性现象时,将一杯水放在桌边,杯下压一张纸

条。若缓慢拉动纸条,发现杯子会出现滑落;当他快速拉动纸条时,发

现杯子并没有滑落。对于这个实验,下列说法正确的是()

A. 缓慢拉动纸条时,摩擦力对杯子的冲量较小

B. 快速拉动纸条时,摩擦力对杯子的冲量较大

C. 为使杯子不滑落,杯子与纸条的动摩擦因数尽量大一些

D. 为使杯子不滑落,杯子与桌面的动摩擦因数尽量大一些

4.蹦床是一项运动员利用从蹦床反弹中表现杂技技巧的竞技运动,一质量为50kg的运动员从1.8m高

出自由下落到蹦床上,若从运动员接触蹦床到运动员陷至最低点经历了0.2s,则这段时间内蹦床对运动员的冲量大小为(取g=10m/s2,不计空气阻力)()

A. 400N?s

B. 300N?s

C. 200N?s

D. 100N?s

5.下面关于物体动量和冲量的说法不正确的是( )

A. 物体所受合外力冲量越大,它的动量也越大

B. 物体所受合外力冲量不为零,它的动量一定要改变

C. 物体动量增量的方向,就是它所受冲量的方向

D. 物体所受合外力越大,它的动量变化就越快

6.在水平地而的某点斜向上成60°抛出一物体,在物体速度方向刚变为水平方向时,在极短时间内炸

裂成a、b两块。已知物体离开地而的速率为2ν0,a块的速度方向与刚炸裂时物块的方向相同。在不计空气阻力的情况下,则()

A. b的速度方向一定与炸裂时物块的方向相反

B. a、b均做平抛运动,且一定同时到达地面

C. a的平抛初速一定大于ν0,b的平抛初速一定小于ν0

D. 炸裂过程中,a、b中受到的爆炸力的冲量一定相同

7.在光滑水平地面上有两个完全相同的弹性小球a、b,质量均为m,现b球静止,a球向b球运动,发

生弹性正碰。当碰撞过程中达到最大弹性势能E p时,a球的速度等于

A. B. C. D.

8.如图所示,平板小车静止在光滑的水平面上,车的左端固定一个轻质弹簧,物块将

弹簧压缩后用细绳系在物块和小车上,物块与弹簧并不栓接,当小车固定时,剪断

细绳,物块滑到小车C点恰好静止,BC=CD,如果小车不固定,剪断细绳,则

()

A. 滑到BC间停住

B. 还是滑到C点停住

C. 滑到CD间停住

D. 会冲出D点落到车外

9.在如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水

平方向射入木块后留在其中,将弹簧压缩到最短.若将子弹、木块和弹簧

合在一起作为系统,则此系统在从子弹开始射入到弹簧被压缩至最短的整

个过程中()

A. 动量守恒,机械能守恒

B. 动量守恒,机械能不守恒

C. 动量不守恒,机械能不守恒

D. 动量不守恒,机械能守恒

10.将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直

向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是()

A. v0

B. v0

C. v0

D. v0

二、多选题(本大题共5小题,共20.0分)

11.如图所示,在光滑水平面上,一个质量为m、速度大小为v的A球与质量为2m、静止的B球碰撞

后,A球的速度方向与碰撞前相反。则碰撞后B球的速度大小可能是

A. 0.40 v

B. 0.55 v

C. 0.60 v

D. 0.70 v

12.如图所示,质量M=2kg的半圆形槽物体A放在光滑水平地面上,槽内表面光

滑,其半径r=0.6m。现有一个质量m=1kg的小物块B在物体A的槽右端口

获得瞬时竖直向下的冲量I=2N?S,此后物体A和物块B相互作用,使物体A

在地面上运动,则()

A. 在A、B间存在相互作用的过程中,物体A和物块B组成的系统机械能守恒

B. 在A、B间存在相互作用的过程中,物体A和物块B组成的系统动量守恒

C. 物块B从槽口右端运动到左端时,物体A向右运动的位移是0.4m

D. 物块B最终可从槽口左端竖直冲出,到达的最高点距槽口的高度为0.2m

13.如图所示,竖直放置的半圆形轨道与水平轨道平滑连接,不计一切摩

擦.圆心O点正下方放置为2m的小球A,质量为m的小球B以初速度v0向

左运动,与小球A发生弹性碰撞.碰后小球A在半圆形轨道运动时不脱离

轨道,则小球B的初速度v0可能为()

A. 2

B.

C. 2

D.

14.放在光滑水平面上的甲、乙两小车中间夹了一压缩轻质弹簧,但不

连接,用两手分别控制小车处于静止状态,下面说法中正确的是

()

A. 两手同时放开后,两车的总动量为零

B. 先放开右手,后放开左手,两车的总动量向右

C. 先放开左手,后放开右手,两车的总动量向右

D. 两手同时放开,两车总动量守恒;两手放开有先后,两车总动量不守恒

15.质量分别为和的两个物体碰撞前后的图象如图所示,以下说法正确的

A. 碰撞前两物体动量相同

B. 等于

C. 碰撞后两物体一起做匀速直线运动

D. 碰撞前两物体动量大小相等、方向相反

三、实验题探究题(本大题共1小题,共10.0分)

16.某实验小组用如图所示的实验装置验证动量守恒定律,即研究两个小球在水平轨道上碰撞前后的动

量关系。

装置图中O点为小球抛出点在地面上的垂直投影,实验时先将入射小球m1,多次从斜轨道上的P位置由静止释放,找到其落地点的平均位置Q,测量水平射程OQ.接着将被碰小球置于水平轨道,再将人射小球m1从斜轨道上P位置由静止释放,与小球m2相碰,并重复多次,分别找到两球相碰后落地点的平均位置。

(1)要达成本实验目的,以下哪些物理量还需要测量______(填选项前的字母)。

A.两个小球的质量m1、m2

B.小球m1开始释放时距水平导轨的高度h

C.抛出点距地面的高度H

D.两个小球相碰之后平抛的水平射程OM、ON

(2)实验中,在确定小球落地点的平均位置时,通常采用的做法是______,其目的是减小实验中的______(填“系统误差”或“偶然误差)。

(3)若两球相碰前后动量守恒,其表达式为______;若碰撞是弹性碰撞,那么还应满足的表达式为______。(两空均用所测量的量表示)

四、计算题(本大题共3小题,共30.0分)

17.将质量为m=1kg的小球,从距水平地面高h=5m处,以v0=10m/s的水平速度抛出,不计空气阻力,g

取10m/s2.求:

(1)抛出后0.4s内重力对小球的冲量;

(2)平抛运动过程中小球动量的增量△p;

(3)小球落地时的动量p′.

18.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R=0.1 m,半圆形轨道的

底端放置一个质量为m=0.1 kg的小球B,水平面上有一个质量为M=0.3 kg的小球A以初速度v0=4.0 m/ s开始向着木块B滑动,经过时间t=0.80 s与B发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数μ=0.25,求:

(1)两小球碰前A的速度;

(2)球碰撞后B,C的速度大小;(3)小球B运动到最高点C时对轨道的压力;

19.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原

来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:

(1)小物块Q离开平板车时速度为多大?

(2)平板车P的长度为多少?

(3)小物块Q落地时距小球的水平距离为多少?

答案和解析

【答案】

1. C

2. D

3. D

4. A

5. A

6. B

7. C

8. B9. C10. D11. BC12. ACD13. BC14. ABD

15. BD

16. AD;用圆规画一个尽可能小的圆,把所有落点圈在里面,圆心即平均位置;偶然误差;m1?OQ=m1?OM+m2?ON;m1?OQ2=m1?OM2+m2?ON2

17. 解:(1)重力是恒力,0.4 s内重力对小球的冲量为:

I=mgt=1×10×0.4 N?s=4 N?s

方向竖直向下.

(2)由于平抛运动的竖直分运动为自由落体运动,故有:h=gt2,

落地时间为:t=s.

小球飞行过程中只受重力作用,所以合外力的冲量为:

I′=mgt=1×10×1 N?s=10 N?s,方向竖直向下.

由动量定理得:△p=I′=10 N?s,方向竖直向下.

(3)小球落地时竖直分速度为:v y=gt=10×1=10 m/s.

由速度合成知,落地速度为:v=m/s,

所以小球落地时的动量大小为:p′=mv=10kg?m/s.

与水平方向之间的夹角:tanθ=

所以:θ=45°

答:(1)抛出后0.4s内重力对小球的冲量是4 N?s,方向竖直向下;

(2)平抛运动过程中小球动量的增量△p是10 N?s,方向竖直向下;

(3)小球落地时的动量p′是10N?s,与水平方向之间的夹角是45°.

18. 解:(1)碰前对A由动量定理有:-μMgt=Mv A-Mv0

解得:v A=2m/s

(2)对A、B:碰撞前后动量守恒:Mv A=Mv A′+mv B

碰撞前后动能保持不变:Mv A2=Mv A′2+mv B2

由以上各式解得:v A′=1m/s v B=3 m/s

(3)又因为B球在轨道上机械能守恒:mv B′2+2mgR=mv B2

解得:v c=m/s

在最高点C对小球B有:mg+F N=m

解得:F N=4N

由牛顿第三定律知:小球对轨道的压力的大小为4N,方向竖直向上.

19. 解:(1)小球由静止摆到最低点的过程中,有

mgR(1-cos60°)=

解得,小物块到达最低点与Q碰撞之前瞬间的速度是:

小球与物块Q相撞时,没有能量损失,动量守恒,机械能守恒,则有

mv0=mv1+mv Q

=+,

解得,v1=0,v Q=v0=

二者交换速度,即小球静止下来,Q在平板车上滑行的过程中,系统的动量守恒,则有

mv Q=Mv+m?2v

解得,v==

小物块Q离开平板车时,速度为2v=

(2)由能的转化和守恒定律,知

fL=--

又f=μmg

解得,平板车P的长度为L=

(3)小物块Q在平板车上滑行过程中,对地位移为s,则

-μmgs=-

解得,s=

小物块Q离开平板车做平抛运动,平抛时间为t=

水平距离x=2vt=

故Q落地点距小球的水平距离为s+x=+.

答:

(1)小物块Q离开平板车时速度为;

(2)平板车P的长度为为;

(3)小物块Q落地时距小球的水平距离为+.

【解析】

1. 解:水平面光滑,子弹射穿木块过程中,子弹受到的合外力为子弹的冲击力,设子弹的作用力为f,对子弹与木块组成的系统,由动量定理得:

对A、B:ft=(m+m)v A,

对B:ft=mv B-mv A,

解得:v A:v B=1:3,故C正确;

故选:C.

木块是水平方向只受到子弹的作用力,分别以两个木块组成的整体和B木块为研究对象,应用动量定理求出子弹的速度之比.

本题应用动量定理求木块的速度之比,分析清楚运动过程,应用动量定理即可正确解题.

2. 解:物体的动量变化量的大小为5kg?m/s,动量是矢量,动量变化的方向与初动量可能同向、可能反向、也可能不在同一条直线上,故物体的动量的大小可能增加、可能减小,也可能不变.故D正确,A、B、C错误.

故选:D.

动量是矢量,只要动量的方向发生变化,则动量就发生变化.

解决本题的关键知道动量是矢量,有大小、有方向,而矢量变化遵循平行四边形定则.

3. 解:AB、纸带对杯子的摩擦力一定,缓慢拉动纸条时,抽出的过程中时间长,则摩擦力对杯子的冲量较大;快速拉动纸条时,抽出的过程中时间短,则摩擦力对杯子的冲量较小,故AB错误;

CD、为使杯子不滑落,杯子与桌面的动摩擦因数尽量大一些,这样杯子在桌面上运动的加速度大,位移短,故C错误、D正确。

故选:D。

在抽动纸条时,杯子受到的摩擦力相等,但由于抽拉的时间不动使杯子受到的冲量不同;

根据牛顿第二定律分析加速度大小、位移大小。

本题主要是考查动量定理,利用动量定理解答问题时,要注意分析运动过程中物体的受力情况,知道合外力的冲量才等于动量的变化。

4. 解:设运动员的质量为m,他刚落到蹦床瞬间的速度为v,运动员自由下落的过程,只受重力作用,

故机械能守恒,即:,解得:;

选取小球接触蹦床的过程为研究过程,取向上为正方向。设蹦床对运动员的平均作用力为,

由动量定理得:;

蹦床对运动员的冲量大小为;

结合以上两个式子可得:.故A正确、BCD错误。

故选:A。

根据机械能守恒求出小球落到蹦床瞬间的速度;到最低点时,小球的速度和动量均为零,运用动量定理可求得软蹦床对运动员的冲量大小。

本题题型是用动量定理求解一个缓冲过程平均作用力的冲量问题,一定要注意选取合适的研究过程和正方向的选取;本题也可选小球从开始下落到最低点全过程来解答。

5. 【分析】

根据动量定理知,合外力的冲量等于物体动量的变化量,即Ft=△P,继而分析判断合外力的冲量与动量、动量变化的关系;

由,判断合外力与动量变化率的关系。

本题考查动量定理应用专题,涉及知识点是动量定理的应用。

【解答】

AB.由Ft=△P知,Ft≠0,△P≠0,故物体所受合外力冲量不为零时,它的动量一定要改变;Ft越大,△P越大,但动量不一定大,它还与初态动量有关,故A错误,B正确;

C.冲量不仅与△P大小相等,而且方向相同,故C正确;

D.由知,物体所受合外力越大,动量的变化率越大,即动量变化就越快,故D正确。

本题选不正确的,故选A。

6. 【分析】当物体的速度沿水平方向炸裂成a、b两块时,质量较大的a的速度方向仍沿原来的方向,根据动量守恒定律判断可知b运动方向一定沿水平方向,a、b均做平抛运动,高度相同,运动时间相同,同时到达地面.在炸裂过程中,a、b间相互作用力大小相等,作用时间相等,冲量大小一定相等。本题是动量守恒定律的应用,基础题.系统动量守恒,不仅作用前后总动量的大小保持不变,总动量的方向也保持不变,解题时要抓住这一点。

A.在炸裂过程中,由于重力远小于内力,系统的动量守恒,炸裂前物体的速度沿水平方向,炸裂后a的速度沿原来的水平方向,根据动量守恒定律判断出来b的速度一定沿水平方向,但是否与原速度方向相反,取决于a的动量与物体原来动量的大小关系,故A错误;

B.a、b都做平抛运动,飞行时间相同,故B正确;

C.a、b都做平抛运动,a的平抛初速一定大于ν0,b的平抛初速不一定小于ν0,故C错误;

D.在炸裂过程中,a,b受到爆炸力大小相等,作用时间相同,则爆炸力的冲量大小一定相等,方向相反,故D错误。

故选B。

7. 【分析】

两球压缩最紧时,两球速度相等.根据碰撞过程中动量守恒,以及总机械能守恒求出碰前A球的速度;解题的关键是应用动量守恒定律和机械能守恒定律的结合解决碰撞问题。

【解答】

设碰撞前A球的速度为v,当两球压缩最紧时,速度相等,根据动量守恒得,mv=2mv′,则,在碰撞过程中总机械能守恒,有,得;故C正确;ABD错误。

故C正确。

8. 解:小车固定不动时,物块在小车上滑动,物块与车的相对位移为:BC,

克服摩擦力做功,使系统的机械能减少,由能量守恒定律可知,克服摩擦力做功等于弹簧的弹性势能,E P=μmgBC;

小车不固定时,系统动量守恒,由于系统初状态动量为零,由动量守恒定律可知,系统末状态动量也为零,

最终物块静止在小车上,系统克服摩擦力做功,由能量守恒定律可知:E P=μmgx,已知:E P=μmgBC,则x=BC,物块仍然停在C点;

故选:B.

物块克服摩擦力做功使系统的机械能减少,小车不固定时系统动量守恒,应用动量守恒定律与能量守恒定律分析判断物块停止的位置.

物块在小车上滑动时克服摩擦力做功使系统机械能减少,应用动量守恒定律与能量守恒定律可以求出物块相对于小车的位移大小,然后确定小车的位置.

9. 【分析】

当系统所受合外力为零时,系统动量守恒;当只有重力或只有弹力做功时,系统机械能守恒.

解题的关键是根据动量守恒与机械能守恒的条件分析问题。

【解答】

在木块与子弹一起向左运动压缩弹簧的过程中,木块、子弹、弹簧所组成的系统所受合外力不为零,则系统动量不守恒;在子弹击中木块的过程中,要克服摩擦力做功,系统的部分机械能转化为内能,系统机械能不守恒;因此子弹、木块和弹簧所组成的系统,在从子弹开始射入木块到弹簧压缩至最短的整个过程中,动量不守恒、机械能不守恒。故ABD错误;故C正确。

故选C。

10. 解:取向上为正方向,由动量守恒定律得:

0=(M-m)v-mv0

则火箭速度v=

以火箭为研究对象,由动量守恒定律可以求出火箭的速度.

在发射火箭过程中,系统动量守恒,由动量守恒定律即可正确解题.

11. 【分析】

首先从水平面光滑上判断AB两球碰撞过程中动量守恒,由于A球被反弹,所以可以判断出B球的速度会大于0.5v;在两球碰撞的过程中,有可能会存在能量的损失,由碰撞前后的动能求出B球的速度同时会

小于等于,由两个速度的范围求出最终的结果。

解决本题要注意临界状态的判断,有两个临界状态,其一是AB两球碰撞后A静止,由此求出速度的范围之一;第二个临界状态时能量恰好没有损失时,有能量的关系求出速度的另一个范围,所以解决一些物理问题时,寻找临界状态是解决问题的突破口。

【解答】

AB两球在水平方向上合外力为零,A球和B球碰撞的过程中动量守恒,设AB两球碰撞后的速度分别为v1、v2,

选A原来的运动方向为正方向,由动量守恒定律有:

mv=-mv1+2mv2,…①

假设碰后A球静止,即v1=0,可得:v2=0.5v

由题意知球A被反弹,所以球B的速度:v2>0.5v,…②

AB两球碰撞过程能量可能有损失,由能量关系有,…③

①③两式联立得:,…④

由②④两式可得:,

符合条件的有0.55v和0.6v,所以BC正确。

故选BC。

12. 解:A、在A、B间存在相互作用的过程中,物体A和物块B组成的系统只有重力做功,系统的机械能守恒,故A正确。

B、在A、B间存在相互作用的过程中,物块B有向心加速度,有竖直方向的分加速度,所以物体A和物块B组成的系统合外力不为零,动量不守恒,故B错误。

C、设物块B从槽口右端运动到左端时,物体A向右运动的位移是x。取水平向左为正方向,

根据水平方向动量守恒得:m-M=0,解得x =0.4m,故C正确。

D、对B,由动量定理得I=mv0,得v0=2m/s。设B到达左侧最高点时与A的共同速度为v,到达的最高点距槽口的高度为h。

根据水平动量守恒得 0=(M+m)v,得v =0

对系统,由机械能守恒得:mgh=,得h =0.2m,故D正确。

故选:ACD。

对照机械能守恒的条件:只有重力做功,分析机械能是否守恒。根据动量守恒的条件:合外力为零,分析动量是否守恒。由水平方向动量守恒求物体A向右运动的位移。根据水平动量守恒和机械能守恒求B 到达的最高点距槽口的高度。

解决本题时要抓住系统的总动量不守恒,只是水平方向动量守恒,是分方向动量守恒的类型。分析时要知道B到达左侧最高点时与A的速度相同。

13. 解:A与B碰撞的过程为弹性碰撞,则碰撞的过程中动量守恒,设B的初速度方向为正方向,设碰撞后B与A的速度分别为v1和v2,则:

mv0=mv1+2mv2

由动能守恒得:

联立得:①

1.恰好能通过最高点,说明小球到达最高点时小球的重力提供向心力,是在最高点的速度为v min,由牛顿第二定律得:

A在碰撞后到达最高点的过程中机械能守恒,得:

联立①②③得:,可知若小球B经过最高点,则需要:

2.小球不能到达最高点,则小球不脱离轨道时,恰好到达与O等高处,由机械能守恒定律得:

联立①④得:

可知若小球不脱离轨道时,需满足:

由以上的分析可知,若小球不脱离轨道时,需满足:或,故AD错误,BC正确.

故选:BC

小球A的运动可能有两种情况:1.恰好能通过最高点,说明小球到达最高点时小球的重力提供向心力,由牛顿第二定律求出小球到达最高点点的速度,由机械能守恒定律可以求出碰撞后小球A的速度.由碰撞过程中动量守恒及能量守恒定律可以求出小球B的初速度;

2.小球不能到达最高点,则小球不脱离轨道时,恰好到达与O等高处,由机械能守恒定律可以求出碰撞后小球A的速度.由碰撞过程中动量守恒及能量守恒定律可以求出小球B的初速度.

熟练应用牛顿第二定律、机械能守恒定律、动量守恒定律即可正确解题,注意小球A的运动过程中不脱离轨道可能有两种情况,难度适中.

14. 解:A、当两手同时放开时,系统的合外力为零,所以系统的动量守恒,又因为开始时总动量为零,故系统总动量始终为零,故A正确;

B、先放开右手,右边的小车就向右运动,当再放开左手后,系统所受合外力为零,此后系统的动量守恒,且总动量方向向右,故B正确;

C、先放开左手,左边的小车就向左运动,当再放开右手后,系统所受合外力为零,故系统的动量守恒,且开始时总动量方向向左,故C错误;

D、当两手同时放开时,系统的合外力为零,所以系统的动量守恒;两手放开有先后时,放开一手再放开另一手的过程中系统所受合外力不为零,系统动量不守恒,故D正确;

故选:ABD.

当两手同时放开时,系统的合外力为零,所以系统的动量守恒,先放开左手,左边的小车就向左运动,当再放开右手后,系统所受合外力为零,故系统的动量守恒,且开始时总动量方向向左,放开右手后总动量方向也向左.

本题关键要掌握动量守恒的条件,系统所受合外力为零时,系统动量守恒,知道系统初状态时动量的方向.

15. 【分析】

位移时间图象的斜率等于速度,由斜率求出碰撞前后两个物体的速度,由图看出,碰后两个物体速度均为零,根据动量守恒定律分析碰撞前两物体动量有关系。

《推荐》微学霸——碰撞与动量守恒定律第八部分人船模型小车模型Word版含解析

第八部分人船模型小车模型人船模型 人船模型是两个物体均处于静止,当两个物体存在相互作用而不受外力作用时,系统动量守恒。将速度与质量的关系推广到位移与质量,做这类题目,首先要画好示意图,要注意两个物体相对于地面的移动方向和两个物体位移大小之间的关系; 人船问题的适用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的总动量为零,利用平均动量守恒表达式解答。 小车模型 动量守恒定律在小车介质上的应用,求解时注意:(1)初末动量的方向及大小;(2)小车的受力情况分析,是否满足某一方向合外力为零;(3)结合能量规律和动量守恒定律列方程求解。 人船模型 【典例1】静止在水面上的船长为L、质量为M,一个质量为m的人站在船头,当此人由船头走到船尾时,不计水的阻力,船移动的距离是 A.B.C.D. 【答案】B 【解析】对于人船整体来说动量守恒,设船移动距离为s,人移动的距离为L-s,作用时间为t,根据动量守恒条件可知:,解得,故选B。 【名师点睛】本题考查相互作用的系统的动量守恒,体现任一时刻总动量都为零,这类问题的特点:两物体同时运动,同时停止。 【典例2】气球质量200 kg载有质量为50 kg的人,静止在空中距地面20 m高的地方,气球下悬一质量不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为安全到达地面,则这根绳至少多长? 【答案】25 m 【解析】人与气球组成的系统动量守恒,设人的速度v1,气球的速度v2,设运动时间为t,以人与气球组成的系统为研究对象,以向下为正方向 由动量守恒得:,则

代入数据得 气球和人运动的路程之和为绳子的长度,则绳子长度,即绳子至少长25 m长 【名师点睛】本题人船模型的变形。 小车模型 【典例3】如图所示,两车厢的质量相同,其中一个车厢内有一人拉动绳子使两车厢相互靠近。若不计绳子质量及车厢与轨道间的摩擦,下列对于哪个车厢里有人的判断正确的是 A.绳子的拉力较大的那一端车厢里有人 B.先开始运动的车厢里有人 C.后到达两车中点的车厢里有人 D.不去称量质量无法确定哪个车厢有人 【答案】C 【解析】若不计绳子质量及车厢与轨道间的摩擦,根据牛顿第三定律,两车之间的拉力大小相等,且两车同时受到拉力,同时开始运动,故AB错误;两车之间的拉力大小相等,根据牛顿第二定律,质量大,加速度小,由位移公式,可知相同时间内位移小,所以后到达中点,即后到达两车中点的车厢里有人,故C正确,D错误。 【名师点睛】本题是牛顿运动定律和运动学公式结合应用,有人的车厢总质量大,绳子对两车厢的拉力大小相等,方向相反,同时产生,同时消失,根据牛顿第三定律和第二定律分析两车加速度大小,再运用运动学位移公式,可以得到正确的结论。 1.质量m=100 kg的小船静止在平静水面上,船两端载着m甲=40 kg、m乙=60 kg的游泳者,在同一水平线上甲向左、乙向右同时以相对于岸3 m/s的速度跃入水中,如图所示,则小船的运动速率和方向为 A.0.6 m/s,向左B.3 m/s,向左 C.0.6 m/s,向右D.3 m/s,向右 【答案】A 【解析】甲、乙和船组成的系统动量守恒,以水平向右为正方向,开始时总动量为零,根据动量守恒定律有:0=–m甲v甲+m乙v乙+mv,解得:,代入数据解得v=–0.6 m/s,负号说明

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

第十六章 动量守恒定律知识点总结

第十六章 动量守恒定律知识点总结 一、动量和动量定理 1、动量P (1)动量定义式:P=mv (2)单位:kg ·m/s (3)动量是矢量,方向与速度方向相同 2、动量的变化量ΔP 12P -P P =? (动量变化量=末动量-初动量) 注意:在求动量变化量时,应先规定正方向,涉及到的矢量的正负根据规定的正方向确定。 3/冲量 (1)定义式:I=Ft 物体所受到的力F 在t 时间内对物体产生的冲量为F 与t 的乘积 (2)单位:N ·s (2)冲量I 是矢量,方向跟力F 的方向相同 4、动量定理 (1)表达式:12P -P I =(合外力对物体的冲量=物体动量的变化量) 注意:应用动量定理时,应先规定正方向,涉及到的矢量的正负根据规定的正方向确定。 二、动量守恒定律 1、系统内力和外力 相互作用的两个(或多个)物体,组成一个系统,系统内物体之间的相互作用力,称为内力;系统外其他物体对系统内物体的作用力,称为外力。 2、动量守恒定律: (1)内容:如果一个系统不受外力,或者受外力的矢量和为零,这个系统的总动量保持不变。 (2)表达式:22112211v m v m v m v m '+'=+ (两物体相互作用前的总动量=相互作用后的总动量) (3)对条件的理解: ①系统不受外力或者受外力合力为零 ②系统所受外力远小于系统内力,外力可以忽略不计 ③系统合外力不为零,但是某个方向上合外力为零,则系统在该方向上总动量守恒 三、碰撞 1、碰撞三原则: (1)碰前后面的物体速度大,碰后前面的物体速度大,即:碰前21v v ?,碰后21 v v '?'; (2)碰撞前后系统总动量守恒 (3)碰撞前后动能不增加,即222211222211v m 2 1v m 21v m 21v m 21'+'≥+ 2、碰撞的分类Ⅰ (1)对心碰撞:两物体碰前碰后的速度都沿同一条直线。 (2)非对心碰撞:两物体碰前碰后的速度不沿同一条直线。

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

莆田市《动量守恒定律》单元测试题含答案

莆田市《动量守恒定律》单元测试题含答案 一、动量守恒定律 选择题 1.如图甲,质量M =0.8 kg 的足够长的木板静止在光滑的水平面上,质量m =0.2 kg 的滑块静止在木板的左端,在滑块上施加一水平向右、大小按图乙所示随时间变化的拉力F ,4 s 后撤去力F 。若滑块与木板间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,重力加速度g =10 m/s 2,则下列说法正确的是 A .0~4s 时间内拉力的冲量为3.2 N·s B .t = 4s 时滑块的速度大小为9.5 m/s C .木板受到滑动摩擦力的冲量为2.8 N·s D .2~4s 内因摩擦产生的热量为4J 2.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是 A .导体棒ab 刚好匀速运动时的速度22 FR v B L = B .通过电阻的电荷量2Ft q BL = C .导体棒的位移222 44 FtRB L mFR x B L -= D .电阻放出的焦耳热22222 44 232tRF B L mF R Q B L -= 3.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )

A .加速度大小为 t F F m - B .速度大小为 ()()021t F F t t m -- C .动量大小为()()0212t F F t t m -- D .动能大小为()()2 2 0218t F F t t m -- 4.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( ) A .在A 离开竖直墙前,A 、 B 与弹簧组成的系统机械能守恒,之后不守恒 B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒 C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为 3 E 5.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( ) A .小球在半圆槽内第一次由A 到最低点 B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰ C .小球第一次在半圆槽的最低点B 时对槽的压力为133 mg D .物块最终的动能为 15 mgR 6.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )

动量守恒四人船模型)

动量守恒(四)――人船模型 两个原来静止的物体(人和船)发生相互作用时 ,不受其它外力,对这两个物体组成的 系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (注意:几 何关系) 基本题型:如图所示,长为L ,质量为M 的船停在静火中,一个质量为?的人站在船头,若 不计火的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少? ?? 贝U mv — Mv = 0, 在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故 mvt — Mvt = 0,即ms 2 —Ms = 0,而几何关系满足:S i + S 2= L 变化1:某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量 为M,枪内有n 颗子弹,每颗子弹的质量为 m 枪口到靶的距离为L ,子弹水平射出枪口相 对于地的速度为V0,在发射后一发子弹时,前一发子弹已射入靶中,在射完 n 颗子弹时, 小船后退的距离为多少? 变化2: 一个质量为M,底面边长为b 的劈静止在光滑的水平面上,如图,有一质量为m 的 3: —只载人的热气球原来静止于空中,热气球本 质量是M,人的质量是m?,已知气球原来离地高H, 若人想沿软梯着地,这软梯至少应为多长 变化4:如图所示,质量为M,半径为R 的光滑圆环静止在光滑水平面上,有一质量为m 的 小滑块从与环心0等高处开始无初速下滑到达最低点时,圆环发生的位移为多少? 变化5:如图所示,一质量为ml 的半圆槽体A ,A 槽内外皆光滑,将A 置于光滑水平面上, 槽半径为R.现有一质量为m2的光滑小球B 由静止沿槽顶滑下,设 A 和B 均为弹性体,且 不计空气物块 多 变化 身的 由斜面顶部无初速滑到底部时,劈移动的距离是 少?

第十六章 第3节 动量守恒定律(学生版)

1.若用p1、p2分别表示两个相互作用物体的初动量,p1′、p2′表示它们的末动量,Δp1、Δp2表示两个相互作用物体的动量的变化,p、Δp表示两物体组成的系统的总动量和总动量的变化量,C为常数。用下列形式表示动量守恒定律,正确的是() A.Δp1=-Δp2B.p1+p2=p1′+p2′ C.Δp=C D.Δp=0 2.(2012·湖北省襄樊月考)如图1所示,在光滑水平面上,用等大异向的F1、F2分别同时作用于A、B两个静止的物体上,已知m A<m B,经过相同的时 间后同时撤去两力,以后两物体相碰并粘为一体,则粘合体最终将() A.静止B.向右运动图1 C.向左运动D.无法确定 3.(2012·福建高考)如图2,质量为M的小船在静止水面上以速率 v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止。若 救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速 率为() 图2 A.v0+m M v B.v0- m M v C.v0+m M(v0+v) D.v0+ m M(v0-v) 4.如图3所示,A、B两物体的质量m A>m B,中间用一段细绳相连并有一被压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态。若地面光滑,则在 细绳被剪断后,A、B从C上未滑离之前,A、B沿相反方向滑动的过 程中() A.若A、B与C之间的摩擦力大小相同,则A、B组成的系统动量守恒,A、B、C组成的系统动量也守恒 B.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,A、B、C组成的系统动量也不守恒 C.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,但A、B、C组成的系统动量守恒 D.以上说法均不对 5.(2012·北京期中检测)如图4所示,在光滑水平面上有一质量为M的木块,木块与轻弹簧水平相连,弹簧的另一端连在竖直墙上,木块处于静止状态,一质量为m的子弹以水平速度v0击中木块,并嵌在其中,木块压缩弹簧后在水平面做往复运动。木块自被子弹击

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

高中物理-《动量守恒定律》章末测试题

高中物理-《动量守恒定律》章末测试题 本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分110分,时间90分钟。 第Ⅰ卷(选择题 共40分) 一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,至少有一个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.如图,质量为3 kg 的木板放在光滑的水平地面上,质量为1 kg 的木块放在木板上,它们之间有摩擦,木板足够长,两者都以4 m/s 的初速度向相反方向运动.当木板的速度为2.4 m/s 时,木块( ) A.处于匀速运动阶段 B.处于减速运动阶段 C.处于加速运动阶段 D.静止不动 2.如图所示,位于光滑水平桌面,质量相等的小滑块P 和Q 都可以视作质点,Q 与轻质弹簧相连,设Q 静止,P 以某一初动能E0水平向Q 运动并与弹簧发生相互作用,若整个作用过程中无机械能损失,用E1表示弹簧具有的最大弹性势能,用E2表示Q 具有的最大动能,则( ) A .2 1E E = B .01E E = C .2 2E E = D .02 E E = 3.光滑水平桌面上有两个相同的静止木块(不是紧捱着),枪沿两个木块连线方向以一定的初速度发射一颗子弹,子弹分别穿过两个木块。假设子弹穿过两个木块时受到的阻力大小相同,且子弹进入木块前两木块的速度都为零。忽略重力和空气阻力的影响,那么子弹先后穿过两个木块的过程中( ) A.子弹两次损失的动能相同 B.每个木块增加的动能相同 C.因摩擦而产生的热量相同 D.每个木块移动的距离不相同 4.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。木箱和小木块都具有一定的质量。现使木箱获得一个向右的初速度v 0,则( ) A .小木块和木箱最终都将静止 B .小木块最终将相对木箱静止,二者一起向右运动 C .小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动 D .如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动 P v Q

高中物理动量守恒定律人船模型

人船模型 “人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。 1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于 水面移动的距离 说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。 变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离 M L m M L

变形2:如图所示,质量为M 的 1 4 圆弧轨道静止于光滑水平面上,轨道半径为R ,今把质量为m 的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离 “人船模型”的应用 ① 等效思想” 如图所示,长为L 质量为M 立质量为m 1、m 2(m 1>m 2后,船在水平方向移动了多少 ②“人船模型”和机械能守恒的结合 如图所示,质量为 M 的物体静止于光滑水平面上,其上有一个半径为R 的光滑半圆形轨道,现把质量为m 的小球自轨道左测最高点静止释放,试计算: 1.摆球运动到最低点时,小球与轨道的速度是多少 2.轨道的振幅是多大? M

人船模型之二 动量守衡定律是自然界最重要最普遍的归律之一,利用该定律只考虑相互作用物体作用前后动量变化的关系,省去了具体细节的讨论,为我们解决力学问题提供了一种简捷的方法和思路。人船模型问题是一种很常见的题形,在研究过程当中,如果能恰当地应用动量守恒定律进行解题,会给我们带来意想不到的效果。 [例1] 如图1所示,静水面上停有一小船,船长L = 3米,质量M = 120千克,一人从船头走到船尾,人的质量m = 60千克。那么,船移动的距离为多少(水的阻力可以忽略不计) ※[例2] 一质量为M的船,静止于湖水中,船身长L,船的两端点有质量分别为m 和m的人,且m>m,当两人交换位置后,船身位移的大小是多少(不计水的阻力) ※[例3] 某人在一只静止的小船上练习射击,船和人连同枪(不包括子弹)及靶的总质量为M,枪内装有n颗子弹,每颗子弹的质量为m,枪口到靶的距离为L,子弹射出枪口时相对地面的速度为v,在发射一颗子弹时,前一颗粒子弹已陷入靶中,则在发射完n颗子弹后,小船后退的距离为多少(不计水的阻力)。 ※[例4] 如图2所示,在光滑水平地面上,有两个光滑的直角三形 木块A和B,底边长分别为a、b,质量分别为M、m,若M = 4m,且不 计任何摩擦力,当B滑到底部时,A向后移了多少距离

第十六章动量守恒定律

第十六章动量守恒定律 活动一:动量动量守恒定律 1、动量 (1)动量的矢量性:动量是矢量,它的方向与物体的速度方向相同,服从矢量运算法则。 (3)动量的单位:kg·m/s。 (4)动量的变化Δp=p′-p=mv′-mv。 2、动量守恒定律 (1)动量守恒定律内容:如果一个系统,或时,这个系统的总动量就保持不变,这就是动量守恒定律. (2)表达式:p=p′ 对两个物体组成的系统,可写为:m1v1+m2v2=m1v′1+m2v′2。式中m1、m2分别为两物体的质量,v1、v2为相互作用前两物体的速度,v′1、v′2为相互作用后两物体的速度。该表达式还可写作p1+p2=p′1+p′2。 (3)动量守恒的条件 ①系统内的任何物体都不受外力作用,或所受外力之和为零。 ②系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。 ③系统所受的合外力不为零,即F外≠0,但在某一方向上合外力为零(F x=0或F y=0),则系统在该方向上动量守恒。 例1.在下列各种现象中,动量守恒的是() A.在光滑水平面上两球发生正碰,两球构成的系统 B.车原来静止在光滑水平面上,车上的人从车头走到车尾,人与车组成的系统 C.水平放置的弹簧,一端固定,另一端与置于光滑水平面上的物体相连,令弹簧伸长,使物体运动,物体与弹簧组成的系统 D.打乒乓球时,球与球拍组成的系统 例2.某同学质量为60kg,在军事训练中要求他从岸上以2m/s的速度跳到一条向他缓缓飘来的小船上,然后去执行任务,小船的质量是140kg,原来的速度是0.5m/s,该同学上船后又跑了几步,最终停在船上。此时小船的速度大小为________m/s,此过程该同学动量的变化大小为______________kg·m/s。 活动二:验证动量守恒定律(实验、探究) 1.在《探究碰撞中的不变量》实验中,某同学采用如图所示的装置进行实 验。把两个小球用等长的细线悬挂于同一点,让B球静止,拉起A球,由静 止释放后使它们相碰,碰后粘在一起。实验过程中除了要测量A球被拉起的 角度θ1,及它们碰后摆起的最大角度θ2之外,还需测量_ _ (写 出物理量的名称和符号)才能验证碰撞中的守恒量。用测量的物理量表示碰 撞中的守恒量应满足的关系是___ _____。

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

动量守恒定律测试题(1)

动量守恒定律测试题(1) 一、动量守恒定律选择题 1.如图所示,一轻杆两端分别固定a、b 两个半径相等的光滑金属球,a球质量大于b球质量.整个装置放在光滑的水平面上,将此装置从图示位置由静止释放,则() A.在b球落地前瞬间,a球的速度方向向右 B.在b球落地前瞬间,a球的速度方向向左 C.在b球落地前的整个过程中,轻杆对b球的冲量为零 D.在b球落地前的整个过程中,轻杆对b球做的功为零 2.如图所示,弹簧的一端固定在竖直墙壁上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始下滑,则 A.在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒 B.在小球从圆弧槽上下滑运动过程中小球的机械能守恒 C.在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒 D.小球离开弹簧后能追上圆弧槽 3.如图甲所示,一轻弹簧的两端与质量分别为99m、200m的两物块A、B相连接,并静止在光滑的水平面上,一颗质量为m的子弹C以速度v0射入物块A并留在A中,以此刻为计时起点,两物块A(含子弹C)、B的速度随时间变化的规律如图乙所示,从图象信息可得() A.子弹C射入物块A的速度v0为600m/s B.在t1、t3时刻,弹簧具有的弹性势能相同,且弹簧处于压缩状态 C.当物块A(含子弹C)的速度为零时,物块B的速度为3m/s D.在t2时刻弹簧处于自然长度 4.如图所示,固定的光滑金属水平导轨间距为L,导轨电阻不计,左端接有阻值为R的电

阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是 A .导体棒ab 刚好匀速运动时的速度22 FR v B L = B .通过电阻的电荷量2Ft q BL = C .导体棒的位移222 44 FtRB L mFR x B L -= D .电阻放出的焦耳热22222 44 232tRF B L mF R Q B L -= 5.如图,质量分别为m A 、m B 的两个小球A 、B 静止在地面上方,B 球距地面的高度h =0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t =0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知m B =3m A ,重力加速度大小为g =10 m/s 2,忽略空气阻力及碰撞中的动能损失.下列说法正确的是( ) A . B 球第一次到达地面时的速度为4m/s B .A 、B 球在B 球向上运动的过程中发生碰撞 C .B 球与A 球碰撞后的速度为1m/s D .P 点距离地面的高度0.75m 6.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则

动量守恒 四人船模型

动量守恒(四)——人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (注意:几何关系) 基本题型:如图所示,长为L,质量为M的船停在静火中,一个质量为的人站在船头,若不计火的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少 则mv 2-Mv 1 =0, 在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t-Mv 1 t=0,即ms 2 -Ms 1=0,而几何关系满足:s 1 +s 2 =L 变化1:某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内有n颗子弹,每颗子弹的质量为m,枪口到靶的距离为L,子弹水平射出枪口相对于地的速度为v0,在发射后一发子弹时,前一发子弹已射入靶中,在射完n颗子弹时,小船后退的距离为多少 变化2:一个质量为M,底面边长为 b 的劈静止在光滑的水平面上,如图,有一质量为 m 的物块由斜面顶部无初速滑到底部时,劈移动的距离是多少 变化3:一只载人的热原来静止于空中,热气球本身的质量是M,人的质量是m,已知气球原来离地高H,若人想沿软梯着地,这软梯至少应为多长。 变化4:如图所示,质量为M,半径为R的光滑圆环静止在光滑水平面上,有一质量为 m 的

小滑块从与环心O等高处开始无初速下滑到达最低点时,圆环发生的位移为多少 变化5:如图所示,一质量为ml的半圆槽体A,A槽内外皆光滑,将A置于光滑水平面上,槽半径为R.现有一质量为m2的光滑小球B由静止沿槽顶滑下,设A和B均为弹性体,且不计空气阻力,求槽体A向一侧滑动的最大距离. 参考答案: 基本题型:s1=ML/(M+m) s2=mL/(M+m) 变化1:s2=nmL/(M+m) 变化2:s2=mb/(M+m) 变化3:L=(M+m)H/M 变化4:s2=mR/(M+m) 变化5:系统在水平方向上动量守恒,当小球运动到糟的最右端时,糟向左运动的最大距离设为s1,则m1s1=m2s2, 又因为s1+s2=2R,所以s1=m 2R /(m1+m2) 2

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上) 【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒: ()20120M v M m M v +=++共,解得5m /s v =共 以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得 25m /s v = 考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求: ?子弹射入木块 时的速度; ?弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2) Mm a M m M m ++b 【解析】 试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得: 解得:

高中物理第16章《动量守恒定律》测试题

高中精品试题 《动量守恒定律》测试题 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100,考试时间60分钟。 第Ⅰ卷(选择题 共40分) 一、选择题(本题共10小题,每小题4分,共40分。在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分。) 1.某人站在静浮于水面的船上,从某时刻开始从船头走向船尾,不计水的阻力,那么在这段时间内人和船的运动情况是( ) A .人匀速走动,船则匀速后退,且两者的速度大小与它们的质量成反比 B .人匀加速走动,船则匀加速后退,且两者的加速度大小一定相等 C .不管人如何走动,在任意时刻两者的速度总是方向相反,大小与它们的质量成反比 D .人走到船尾不再走动,船则停下 解析:以人和船构成的系统为研究对象,其总动量守恒,设v 1、v 2分别为人和船的速 率,则有0=m 人v 1-M 船v 2,故有v 1v 2=M 船 m 人 可见A 、C 、D 正确。 人和船若匀加速运动,则有 F =m 人a 人,F =M 船a 船 所以a 人a 船=M 船 m 人 ,本题中m 人与M 船不一定相等,故B 选项错误。 答案:A 、C 、D 2.如图(十六)-1甲所示,在光滑水平面上的两个小球发生正碰。小球的质量分别为m 1和m 2。图(十六)-1乙为它们碰撞前后的x -t 图象。已知m 1=0.1 kg ,由此可以判断( ) 图(十六)-1 ①碰前m 2静止,m 1向右运动 ②碰后m 2和m 1都向右运动 ③由动量守恒可以算出m 2=0.3 kg ④碰撞过程中系统损失了0.4 J 的机械能 以上判断正确的是( ) A .①③ B .①②③ C .①②④ D .③④ 解析:由图象知,①正确,②错误;由动量守恒m 1v =m 1v 1+m 2v 2,将m 1=0.1 kg ,v =4 m/s ,v 1=-2 m/s ,v 2=2 m/s 代入可得m 2=0.3 kg ,③正确;ΔE =12 m 21-????12m 1v 21+12m 2v 22

0衡水中学物理最经典-物理建模系列(十) 人船模型问题

物理建模系列(十) 人船模型问题 1.“人船模型”问题的特征:两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题. 2.运动特点:两个物体的运动特点是“人”走“船”行,“人”停“船”停. 3.处理“人船模型”问题的两个关键: (1)处理思路:利用动量守恒,先确定两物体的速度关系,再确定两物体通过的位移的关系. ①用动量守恒定律求位移的题目,大都是系统原来处于静止状态,然后系统内物体相互作用,此时动量守恒表达式经常写成m 1v 1-m 2v 2=0的形式,式中v 1、v 2是m 1、m 2末状态时的瞬时速率. ②此种状态下动量守恒的过程中,任意时刻的系统总动量为零,因此任意时刻的瞬时速率v 1和v 2都与各物体的质量成反比,所以全过程的平均速度也与质量成反比,即有 m 1v 1-m 2v 2=0. ③如果两物体相互作用的时间为t ,在这段时间内两物体的位移大小分别为x 1和x 2,则有m 1x 1t -m 2x 2 t =0,即m 1x 1-m 2x 2=0. (2)画出各物体的位移关系图,找出它们相对地面的位移的关系. 4.推广:原来静止的系统在某一个方向上动量守恒,运动过程中,在该方向上速度方向相反,也可应用处理“人船模型”问题的思路来处理.例如,小球沿弧形槽滑下,求弧形槽移动距离的问题. 例 长为L 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的黏滞阻力,当人从船头走到船尾的过程中,人和船对地面的位移各是多少? 【思路点拨】 【解析】 选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对

第十六章 动量守恒定律测试卷

第十六章动量守恒定律测试卷 (时间:90分钟满分:100分) 第Ⅰ卷(选择题共42分) 一、选择题(第1~10题为单项选择题,第11~14题为多项选择题.每小题3分,选对但不全得2分.共42分) 1.[2019·贵州凯里联考]材料相同、质量不同的两滑块,以相同的初动能在水平面上运动直到停止.若两滑块运动过程中只受到水平面的摩擦力,则质量大的滑块() A.克服摩擦力做的功多B.运动的位移大 C.运动的时间长D.摩擦力的冲量大 解析:由动能定理可知,滑块克服摩擦力做的功W=μmgx =E k,两滑块克服摩擦力做功相等,质量大的滑块运动的位移小, A、B错误;E k=1 2m v 2,质量大的滑块初速度小,又由v=at可 知,质量大的滑块运动的时间短,C错误;由动量定理知摩擦力冲量大小I=m v0=2mE k0,质量大的滑块冲量大,D正确.答案:D 2.[2019·海口市调研]一质量为0.6 kg的篮球,以8 m/s的速度水平撞击篮板,被篮板反弹后以6 m/s的速度水平反向弹回,在空中飞行0.5 s后以7 m/s的速度被运动员接住,忽略空气阻力,取g=10 m/s2,则下列说法正确的是() A.与篮板碰撞前后篮球的动量变化大小为1.2 kg·m/s B.被篮板弹回到被运动员接住的过程中篮球的动量变化大小为0.6 kg·m/s C.篮板对篮球的作用力大小约为15.6 N D.被篮板弹回到被运动员接住的过程中篮球的重力产生的冲量大小为3 N·s 解析:以篮球与篮板碰前速度的方向为正方向,篮球与篮板碰撞前后动量的变化量Δp1=m v2-m v1=[0.6×(-6)-0.6×8]

相关文档
相关文档 最新文档