文档视界 最新最全的文档下载
当前位置:文档视界 › 页岩气测井解释报告

页岩气测井解释报告

页岩气测井解释报告
页岩气测井解释报告

页岩气测井解释报告编写规程

1范围 本标准规定了页岩气测井解释报告的编写内容和编写格式。

本标准适用于页岩气测井裸眼井和套管井解释报告的编写。

2 报告的编写要求和内容

2.1 编写要求

2.1.1 报告应采用印刷体。

2.1.2 报告应文字简练,文理通顺,层次清楚,逻辑性强,图件

清晰,重点突出油气评价、测井地质分析和地质应用。

2.2 编写内容

2.2.1 裸眼井测井

2.2.1.1 钻井、地质概况包含下述内容:

a) 钻井施工单位;

b) 井别、井位坐标、完钻日期、地质背景、本井构造、钻

探目的、钻遇地层及邻井页岩气(油)显示情况;

c) 井身结构及钻井液性能及相关内容;

d) 测试情况。

2.2.1.2 测井概况包含下述内容:

a) 测井施工单位及测井仪器型号;

b) 测井时间、测井内容、测时井深、测量井段及测井过程

中出现的遇阻、遇卡现象等;

c) 测井项目完成情况,增、减测井内容及原因;

d) 特殊测井项目参数设计;

e) 测井资料质量评价及测井环境对测井资料的影响描述。

2.2.1.3 录井及井壁取心情况 岩屑、岩心、气测、钻井液录井及

井壁取心等油气显示情况。

2.2.1.4 特殊测井项目 根据需要,简述测井基本原理及资料解释

原理

2.2.1.5 测井资料数据处理包含下述内容:

a) 测井资料的环境校正:

b) 测并解释模型的选择;

c) 数据处理程序及主要解释参数的选择:

d) 成果图件说明。

2.2.1.6 储层评价包含下述内容:

a) 页岩岩性识别;

b) 储层划分;

c) 储层物性特征分析;

d) 与邻井测井资料及相应层位的对比分析;

e) 储层流体性质分析;

f) 页岩气(油)指标分析(矿物成分、干酪根类型、有机碳含

量、成熟度和吸附气含量等;

g) 认识及结论;

h) 典型图例说明。

2.2.1.7 地质分析与工程应用包含下述内容:

a) 地层对比;

b) 地质构造分析;

c) 沉积及岩性分析;

d) 岩石特性及力学参数分析;

e) 裂缝分析;

f) 地应力分析;

g) 储层压力分析;

h) 地层压力预测;

i) 认识及结论;

j) 典型图例说明。

2.2.1.8 建议试气(油)层位及试气(油)目的包含下述内容:

a) 建议试气(油)的层位、层段及措施;

b) 试气(油)的目的:

1) 确定页岩气(油)层测井参数界限;

2) 解决对疑难层的认识:

3) 取得页岩气(油)或水性资料;

4) 求取产能。

2.2.1.9 存在问题及建议包含下述内容:

a) 构造;岩性、储层类型的复杂性、测井解释难度及存在

的问题;

b) 针对测井和测井解释中存在的问题,分析解释方法的适

应性。提出测井项目改进意见;

c) 井眼质量对测井资料的影响问题。

3 报告幅面 编制报告采用A4(297mm×210mm)幅面。

煤层气测井评价

题目煤层气的测井评 制作人:刘博彪成杰朱博文崔莎莎 周道琛万程贾凡解冲雷

前言 (1) 0.1研究目的及意义 (1) 0.2煤层气测井的研究现状 (2) 第一章煤层气及储层的基本特征 (4) 1.1 煤层气的储层特征 (4) 1. 2煤层气的赋存状态 (5) 第二章煤层气的测井解释 (6) 2.1 煤储层的测井响应 (6) 2.1.1煤层气的电性特性 (6) 2.2.2 煤层气的测井相应特征 (6) 2.2储层参数的测井评价方法 (7) 2.2.1煤层的深度和厚度 (7) 2.2.2煤的工业分析参数 (8) 2.2.3煤层含气量 (8) 2.2.4渗透率和裂缝孔隙率 (8) 2.2.5岩石力学性质 (8) 2.3 实例分析 (9) 2.3.1 煤层与围岩的识别 (9) 2.3.2 煤的工业分析 (9) 2.3.3 含气量 (12) 2.3.4 渗透性的测井评价 (14) 2.3.5 资料的处理 (15) 第三章结论及建议 (17) 3.1 本文得出的结论 (17) 3.2 煤层气测井技术存在的煤层问题与建议 (17) 参考文献 (18)

前言 0.1研究目的及意义 煤层气俗称煤层甲烷或煤层瓦斯,是有机质在煤化作用过程中生成的、主要以吸附 状态赋存于煤层及其围岩中的可燃气体,其主要成分是甲烷,其次为二氧化碳、氮气等。煤层气是一种自生自储式的天然气资源,与石油及常规天然气藏有所区别,故称为非常 规天然气。 在过去的几十年里,作为一种新型绿色能源,煤层气资源受到世界各国的重视,许 多国家相继加大了对煤层气资源的勘探开发力度。美国、加拿大、澳大利亚、俄罗斯及 英国等国家是较早的将煤层气作为天然气能源进行开发和利用的国家。其中,美国是世 界上开采煤层气最早、煤层气商业性开发最为成功、也是产量最高的国家。 我国煤层气资源丰富,分布广泛,图1-1为我国主要含气区煤层气资源分布情况。 但是,由于我国煤层气勘探开发尚处于起步阶段,煤层气勘探程度普遍偏低。煤岩的组 成组分较为复杂,且各组分含量变化较大,被认为是最复杂的岩石,加之其基质孔隙- 裂缝的双重孔隙系统,共同导致煤层具有很强的非均质性,这给测井解释带来了更大的 多解性和不确定性。 测井方法被广泛应用于煤层气勘探开发过程,主要用于划分煤体宏观结构层深度、厚度及夹研层等),进行煤质分析,确定煤体的物理参数(孔隙度、渗透率、地层孔隙压力及温度等),以及结合室内煤心分析化验资料计算煤层含气量等。目前,我国煤层气测井评价水平整体较低,加强对煤层气储层测井评价的基础研究工作,提高煤层气储层测井解释精度,对我国煤层气资源的开发和利用具有重要意义

测井解释原理

测井解释原理 一: 储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。 必须具备两个条件: (1)孔隙性(孔隙、洞穴、裂缝) 具有储存油气的孔隙、孔洞和裂缝等空间场所。 (2)渗透性(孔隙连通成渗滤通道) 孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。储集层的分类 ?按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。 ?按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。碎屑岩储集层 ?1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。 ?2、组成:–矿物碎屑(石英、长石、云母) –岩石碎屑(由母岩类型决定) –胶结物(泥质、钙质、硅质) ?3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。?4、有关的几个概念 –砂岩:骨架由硅石组成的岩石都称为砂岩。骨架成份主要为SiO 2 –泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。 –砂泥岩剖面:由砂岩和泥岩构成的剖面。 碳酸盐岩储集层 ?1、定义:–由碳酸盐岩石构成的储集层。 ?2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩 ?3、特点:–储集空间复杂 有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等) 次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等) –物性变化大:横向纵向都变化大 ?4 、分类 按孔隙结构: ?孔隙型:与碎屑岩储集层类似。 ?裂缝型:孔隙空间以裂缝为主。裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。?孔洞型:孔隙空间以溶蚀孔洞为主。孔隙度可能较大、但渗透率很小。 ?洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。 ?裂缝-孔洞型:裂缝、孔洞同时存在。 碳酸盐岩储集空间的基本类型 砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主; 碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。 碳酸盐岩储集层孔隙空间的基本形态有三种:孔隙及吼道、裂缝和洞穴。 碳酸盐岩储集层孔隙结构类型有:孔隙型、裂缝型、裂缝- 孔隙型、及裂缝- 洞穴型

页岩气勘探技术

斯伦贝谢 页岩气勘探技术 斯伦贝谢科技服务(北京)有限公司

目录 一、斯伦贝谢页岩气勘探技术概述 (1) 二、页岩气资源量评价 (3) 三、页岩井筒综合评价 (5) 四、有利区(甜点)预测 (6) 五、地质风险分析与经济评价 (7) 六、页岩气勘探技术应用实例 (7) 附斯伦贝谢勘探平台介绍 (11)

一、斯伦贝谢页岩气勘探技术概述 非常规油气资源页岩(油)气目前在国内非常火热,一谈到页岩气,大家首先想到的是水平钻井和多段压裂技术。确实,工程技术是页岩气田成功的必要条件,没有成熟的工程技术,无法将页岩气从这种特殊的油气藏中开发出来。但工程技术成功的前提是,寻找较好的页岩气区块,即从地质上页岩达到生气阶段,有机质的丰度较高,因此地质评价是页岩气勘探的充分条件。这就对研究工作提出了较高的要求,即在钻井等工程工作进行之前,首先通过区域地质研究,对地下页岩的基础地质情况进行分析与预测,为后期的工程施工提供依据,减少钻井和压裂的风险。 与常规油气藏勘探相比较,页岩气藏的特殊性主要表现在以下几点: 1、页岩气藏为自生自储的类型,页岩本身即为烃源岩,同时又是储集层和盖层。气生成后保存于烃源岩中。 2、页岩气包括自由气(孔隙裂缝中)和吸附气(在碳原子表面)两部分,因此在评估页岩气资源量时,除了计算孔隙裂缝中的自由气,还要计算吸附气的资源量,这是有别于常规气藏的一个重要方面 3、储集层为页岩,属特低孔、特低渗储层。对于该类特殊储层,需要总结一套特殊的储层评价标准。同时,需要研究页岩内部裂缝的发育情况和地应力的状况,为后期工作改造提供依据。 与页岩气藏的特殊性相对应,目前勘探难点主要表现在: 1、页岩气资源评价存在很大不确定性。 2、页岩气勘探开发技术缺失成熟的行业标准。 3、页岩气开采投入大、成本高、气价低,经济风险较大。 针对页岩气上述勘探难点,斯伦贝谢公司研发和整合了所有勘探软件系列,形成了以模型为中心的页岩气勘探技术系列。该技术系列主要包括以下主要内容(图1): 1、数据整合阶段:与常规油气藏相比,页岩气区块除了收集地震资料和井数据 外,还需要收集地化数据,如总有机碳、烃源岩厚度和干酪根类型,同时需 要对岩石物理数据和岩石力学数据进行收集和整理。 2、地质模型的建立:不同勘探阶段,建立的地质模型精度不同。从区域地质资 料建立的概念模型到根据地震和井数据建立的三维模型。随着数据的增加, 模型的精度也逐渐增加。

浅谈煤层气测井技术

因其具有改善能源结构,缓解能源压力,保障煤矿安全生产,保护环境等优点,近年来,煤层气开发利用成为能源勘探的一个亮点。为进一步加大煤层气抽采利用力度,强化煤矿瓦斯治理,减轻煤矿瓦斯灾害,国务院办公厅于2006年6月发布了《关于加快煤层气(煤矿瓦斯)抽采利用的若干意见》。在煤炭资源勘探日趋减少的情况下,煤层气勘探给煤炭地质勘探带来了一个新的发展机遇。 1煤层气测井现状 ①早先国内各大石油勘探局(公司)凭着技术、 仪器设备的优势和固井、射孔、压裂方面的能力,率先进入煤层气测井市场,测井项目、测井参数、报告格式均按照石油测井模式进行。现行的唯一一个煤层气测井规程--《煤层气测井作业规程》(中联煤层气有限责任公司企业标准Q/CUCBM 0401-2002)基本照搬了石油测井的标准。测井仪器系统有CSU- D 、SKD-3000、SKH-2000、SKN-3000等等。 ②随着煤层气测井市场的不断扩大,许多煤田 勘探测井队伍进入煤层气测井市场,测井仪器设备主要有美国蒙特系列Ⅲ数字测井仪、渭南煤矿专用设备厂的TYSC 型和北京中地英捷物探仪器研究所的PSJ-2型数字测井仪系统。 2煤层气测井仪器对比分析 ①石油测井仪器设备具有组合化程度高、可测 参数多等优点,如感应测井、地层产状测井、微球聚焦等仪器。但仪器体积大、笨重,施工成本高,采样间隔大,解释精度低。 ②美国蒙特系列Ⅲ数字测井系统方法仪器多, 配备有中子、全波列、产状仪等,基本可以满足煤层气测井参数要求;渭南煤矿专用设备厂的TYSC 型数字测井仪需要另外配备其它仪器厂的补偿中子、双侧向、全波列等测井探管;北京中地英捷物探仪器研究所基本可以配全煤层气测井仪器系统。这些煤田测井仪器设备均具有轻便灵活的特点,虽然组合化程度比石油测井仪器低,但对于煤层气钻孔只是 n ×100m 的孔深来说,效率并不低,而采样间隔密,解 释精度高,施工成本低,适用于煤层气测井。 3测井地质成果 煤层气测井的主要地质任务为: ①划分钻井岩性,进行岩性分析;②确定煤层的深度、厚度及其结构; ③进行煤质分析,计算目的煤层的固定碳、灰 分、水分及挥发份,计算目的煤层的含气量; ④进行含水性、渗透性分析; ⑤测量钻井的井斜角和方位角,计算钻孔歪斜 情况; ⑥测量井温,了解储层温度; ⑦检查固井质量,评价水泥环的胶结情况等。 对于钻井岩性的划分和煤层深度、厚度及其结构的确定,可以说是煤田测井仪器的强项,其较高的仪器分辨率可以划分煤层中10cm 左右的夹矸,井温、井斜测量也可以进行连续测量。在煤质分析、碳、灰、水及含气量计算中,其关键是选择计算参数。在一个地区实施煤层气测井,要尽量收集目的煤层的各项实验室指标,并将其与测井的各项参数进行对比,找出相关关系,以便使测井计算出的煤层各项指标更客观、更接近实际。 作者简介:赵保中(1956—),男,物探工程师,长期从事地球物理测 井、地质勘探等工作。 浅谈煤层气测井技术 赵保中,郑应阁,吴正元 (河南省煤田地质局二队,河南洛阳471023) 摘要:目前用于煤层气测井的主要设备有美国蒙特系列Ⅲ数字测井仪、渭南煤矿专用设备厂TYSC 型和北京中地英捷物探仪器研究所PSJ-2型数字测井仪系统。煤层气裸眼井常测的参数有自然伽马、长短源距人工伽马、自然电位、双侧向、双井径、声波、补偿中子、井温、井斜等,而固井质量检查测井则用自然伽马、声幅、声波变密度和磁定位等方法。受井径过大的影响,密度三侧向测井、声速和补偿中子测井会存在较大误差。另外《煤层气测井作业规程》是单一企业标准,其中有些规定在实际执行过程中存在诸多问题,需在实践中进行修正。关键词:测井仪器;测井方法;固井;测井规范;煤层气中图分类号:P631.8 文献标识码:A 文章编号:1674-1803(2008)12-0032-02 中国煤炭地质 COAL GEOLOGY OF CHINA Vol.20No.12Dec .2008 第20卷12期2008年12月

测井解释识别油、水、气层

用测井曲线判断划分油、气、水层 测井资料是评价地层、详细划分地层,正确划分、判断油、气、水层依据;从渗透层中区分出油、气、水层,并对油气层的物性及含油性进行评价是测井工作的重要任务,要做好解释工作,必须深入实际,掌握油气层的地质特点和四性关系(岩性、物性、含油性、电性),掌握油、气、水层在各种测井曲线上显示不同的特征。 1、油、气、水层在测井曲线上显示不同的特征: (1)、油层: 微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。 自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。 长、短电极视电阻率曲线均为高阻特征。 感应曲线呈明显的低电导(高电阻)。 声波时差值中等,曲线平缓呈平台状。 井径常小于钻头直径。 (2)、气层:在微电极、自然电位、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显的数值增大或周波跳跃现象,中子伽玛曲线幅度比油层高。 (3)、油水同层:在微电极、声波时差、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。 (4)、水层:微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;自然电位曲线显示正异常或负异常,且异常幅度值比油层大;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。 2、定性判断油、气、水层 油气水层的定性解释主要是采用比较(对比)的方法来区别它们。在定性解释过程中,主要采用以下几种比较方法:

(1) 纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。一般油气层的电阻率是水层的3倍以上。纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。 (2) 径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。 (3) 邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。这种对比要注意储集层的岩性、物性和地层水矿化度等在横向上的变化,如下图所示。 (4) 最小出油电阻率法:对某一构造或断块的某一层组来说,地层矿化度一般比较稳定,纯水层的电阻率高低主要与岩性、物性有关,所以若地层的岩性物性相近,则水层的电阻率相同,当地层含油饱和度增加,地层电阻率也随之升高。比较测井解释的真电阻率与试油结果,就要以确定一个电性标准(最小出油电阻率),高于电性标准是油层, 低于电性标准的是水层。从而利用地层真电阻率(感应曲线所求的电阻率)和其它资料,可划分出油(气)、水层。但是应用这种方法时,必须考虑到不同断块、不同层系的电性标准不同,当岩性、物性、水性变化,则最小出油电阻也随之变化。 (5) 判断气层的方法:气层与油层在许多方面相似,利用一般的测井方法划分不开,只能利用气层的“三高”特点进行区分。所谓“三高”即高时差值(或出现周波跳跃);高中子伽马值;高气测值(甲烷高,重烃低)。 根据油、气、水层的这些曲线特征和划分油、气、水层的方法,就可以把一般岩性的、简单明显的油、气、水层划分出来。

页岩气储层评价(斯伦贝谢公司)

页岩气储层评价
斯伦贝谢DCS 2010年5月

汇报提纲
页岩气藏特征 页岩气储层评价技术 实例
2 5/18/2010

页岩气藏普遍特点
有机质含量丰富 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂

页岩气藏普遍特点
有机含量丰富的页岩 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 和单井产量低 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂
采收率 (%) 全球常规气储量:6,300 tcf/178.4万亿方 全球页岩气储量:16,112tcf/456万亿方 中国页岩气储量:3528tcf/99.9万亿方 引:BP Statistical Review of World Energy, June 2008
A O/NA L B
A B L O/NA
Antrim (Michigan) Barnett (Texas) Lewis (New Mexico) Ohio/New Albany

页岩气藏普遍特点
有机含量丰富的页岩 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 和单井产量低 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂

测井资料现场解释规程

?3.5 测井资料现场解释规程 3.5.1 渗透层识别 通常钻遇的渗透层主要有砂岩及碳酸盐岩。 3.5.1.1 砂岩层特征 a.自然电位曲线在钻井液滤液矿化度低于地层水矿化度条件下,砂岩层出现负异常;反之则为正异常;两者矿化度相近,则自然电位显示不明显或无异常显示。 b.自然伽玛曲线对砂岩反映为低值,泥岩反映为高值。砂岩层的泥质含量越高,则自然伽玛曲线幅度越大,向泥岩的自然伽玛值靠得越近。应注意含放射性砂岩的影响,如钾长石砂岩等。(相对泥岩基线) c.深、浅电阻率曲线常呈现幅度差。 d.井径曲线比较平直、接近或低于钻头直径。 e.中子与密度孔隙度曲线砂岩与泥岩具有不同的差值。 3.5.1.2 碳酸盐岩裂缝层特征 a.水平裂缝层 ·倾角测井电导率曲线为急剧的异常,可以在一个极板或四个极板上出现; ·电阻率曲线值降低,探测深度越浅,降低越明显; ·声波时差出现周波跳跃; ·密度测井密度值降低。张开的水平裂缝越大、密度值降低越明显; ·中子孔隙度增大; ·声波全波测井纵、横波幅度衰减,且横波衰减大于纵波。 b.垂直裂缝层 ·倾角测井出现较长井段的连续对称的电导异常,极板运动有键槽效应; ·双井径曲线在裂缝发育井段,出现椭圆形双井径; ·密度测井密度数值降低; ·中子孔隙度值显示增大; ·双侧向曲线深浅电阻率比值稳定,数值略有降低; ·声波时差增大; ·声波全波测井声波幅度明显衰减。 c.碳酸盐岩网状裂缝层特征介于水平裂缝与垂直裂缝之间。 花岗岩裂缝层特征花岗岩裂缝层特征可以参考碳酸盐岩裂缝层的特征。

3.5.2 分层 3.5.2.1 分层原则 a.在海上现场不必过细地分层解释,但不能漏掉油、气层。 b.目的层和油气显示段,应逐一划分出渗透层,主曲线幅度值变化>20%,应单独分层。 c.单层厚度>4m的储层中,如出现流体性质变化,必须分层分别读数、计算、解释。 3.5.2.2 层界划分 a.以自然伽玛半幅点为主,参考自然电位、电阻率、中子、密度等曲线的变化划分层界面。 b.薄层以微电阻率曲线划分层界面。 3.5.3 取值 a.依据岩性、含油性取其代表性的特征值或平均值。 b.各条曲线必须对应取值。 c.取值时应避开干扰。 3.5.4 参数计算 3.5. 4.1. 现场解释 应计算储层的泥质含量、孔隙度、含油气饱和度,各种计算均在现场完成;对以裂缝为主的储层、可以不计算参数,只划分裂缝段,作综合定性解释。 3.5. 4.2.计算中的输入参数 a.骨架和流体参数尽可能依据岩性采用综合骨架参数。 ·综合骨架密度公式: ρ ma =V i ·ρ mai 十……十V n ·ρ man 式中:ρ ma —综合骨架密度,g/cm3; V i 、V n —为i矿物,n矿物的骨架密度值,g/cm3; V i 、V n —为i矿物n矿物的体积百分含量。 b.声波时差公式: Δt ma =V i ·Δt mai 十……十V n ·Δt man 式中:Δt ma —综合骨架的声波时差,μs/m或μs/ft; Δt mai 、Δt man —为i矿物、n矿物的声波时差,μs/m或μs/ft; c.中子孔隙度:可采用相应的Schlumberger或Atlas的φ有关图版校正。

测井解释与生产测井习题与答案

《测井解释与生产测井》期末复习题 一、填充题 1、在常规测井中用于评价孔隙度的三孔隙测井是__________________、_________________、___________________。 2、在近平衡钻井过程中产生自然电位的电动势包括____________、____________。 3、在淡水泥浆钻井液中(R mf > R w ),当储层为油层时出现 ____________现象,当储层为水层是出现______________现象。 4、自然电位包括、和三种电 动势。 5、由感应测井测得的视电导率需要经过、、 和、四个校正才能得到地层真电导率。 6、感应测井的发射线圈在接收线圈中直接产生的感应电动势通常称为___________信号,在地层介质中由_____________产生的感应电动势称为__________信号,二者的相位差为________。 7、中子与物质可发生、、 和四种作用。 8、放射性射线主要有、和三种。 9、地层对中子的减速能力主要取决于地层的元素含量。 10、自然伽马能谱测井主要测量砂泥岩剖面地层中与泥质含量有关的放射性元素____________、______________。 11、伽马射线与物质主要发生三种作用,它们是、 和; 12、密度测井主要应用伽马射线与核素反应的_______________。 13、流动剖面测井解释的主要任务是确定生产井段产出或吸入流 体的、、和。14、垂直油井混合流体的介质分布主要有、 和、四种流型。 15、在流动井温曲线上,由于井眼流体压力地层压力,高压气体到达井眼后会发生效应,因此高压气层出气口显示异常。 16、根据测量对象和应用目的不同,生产测井方法组合可以分为____________、、三大测井系列。 17、生产井流动剖面测井,需要测量的五个流体动力学参量分别

煤层气储层的测井评价方法研究

煤层气储层的测井评价方法研究 发表时间:2019-01-07T16:04:11.333Z 来源:《基层建设》2018年第33期作者:王清琢 [导读] 摘要:随着世界经济的加速发展,常规的油气资源开始无法满足我们的生活和社会需求,煤层气、页岩气等非常规能源的勘探开发显得尤为重要。 中石油煤层气有限责任公司韩城分公司陕西韩城 715400 摘要:随着世界经济的加速发展,常规的油气资源开始无法满足我们的生活和社会需求,煤层气、页岩气等非常规能源的勘探开发显得尤为重要。我国煤炭资源量巨大,开展煤层气储层研究必将为我国的社会发展带来重大效益。本文以煤层气储层测井评价为核心展开讨论,对煤层气储层的地质与测井特征展开分析,开展煤层气储层测井评价研究。 关键词:煤层气储层;煤质组分分析;储集参数评价 1.绪论 由于经济迅猛发展,能源短缺问题日益明显。天然气是一种清洁能源,是未来能源发展的重要方向。随着中国对能源需求的增长,天然气的勘探与开发将解决能源在优化结构和供给安全两方面的难题,对实现可持续发展具有重要作用。测井方法作为煤层气储层开发研究工作中的一种手段具有广泛前途。因此,利用地球物理测井解释理论与方法,结合煤层气储层的特性,深入开展煤层体积模型、煤层气吸附机理和吸附规律测井解释方法研究,建立评价系统,具有较高的理论意义和应用价值。 2.煤层气储层的地质与测井特征 2.1煤层气储层的成分与结构特征 煤层气储层可以看成是孔隙-裂隙双重复杂孔隙结构,是固体、液体、气体三相介质共存的地质体。煤层裂隙把煤岩切割成无数个基质块,煤岩含有许多基质孔隙,其比表面很大,成为吸附气体存储的主要场所,煤裂缝被水填充,有少量溶解气存在于水中,也有少量游离气于孔隙-裂隙系统中存在。 煤层气储层中的固体介质就是指煤基质部分,主要成分分为有机质和无机矿物。在光学显微镜下,有机质可以分为镜质组(脆性强,容易产生裂缝,对气体吸附和流体流动有利)和惰质组以及壳质组。无机矿物组分中粘土约占 60%~80%,其余矿物成分有硫化物、氧化物等。无机矿物在基质中呈现颗粒状,偶尔以夹矸出现,导致煤层气储层的强非均质性,同时也影响了裂隙发育以及渗透性和含气性,煤中无机矿物对煤层气的储集以及开发具有负面影响。 煤层气储层中的液体介质就是指煤中的水,包括自由水和束缚水,自由水主要指宏观裂隙、显微裂隙、大中孔隙中的游离水,束缚水主要指强结合水、弱结合水以及微孔中的毛细水。按照水分结构形态划分,可以分为液态水和结合水。当分子间的引力比重力小时,水与周围岩体颗粒之间以物理力学形式连接,形成液态水,包括主要受重力作用形成的重力水和因毛细管作用吸附的毛细水。 2.2煤层气储集特征 煤层气的储集不需要圈闭,甲烷是其主要成分,在煤基质中以吸附态赋存。基质孔隙内表面大,能够给气体分子充足的存储空间。 在煤的裂缝中可能含有气和水,在煤层气开采之前,为了降低裂缝的存储能力,要把裂缝中的水开采出来。脱水过程会导致基质中的气体解吸,扩散并移动到裂缝中。煤层气的运移机理包括: (1)解吸:在煤层气开采之前,是以分子状态在煤颗粒表面(孔隙内表面)吸附着的,煤层气开采时,由于压力的降低,地层能量逐渐衰减,当低于解吸压力之后,吸附气被解吸出来变成游离气。 (2)扩散:吸附气被解吸出来后,由于煤基质与裂缝之间存在不同的气体浓度,导致煤层气开始扩散,气体从浓度高的基质扩散进入浓度低的裂缝。 (3)运移:气体解吸、扩散导致压力梯度发生改变,由于裂缝与井眼之间压力差的存在,使得气体由煤岩裂缝向井眼中运移。 煤层与其他岩性不同的是,在煤基质中赋存的吸附气的特点。能够产生吸附状态气体是因为有不饱和能存在于煤的孔隙表面,气体分子是非极性的,将与不饱和能之间产生吸附力(范德华力),将气体分子吸附。而水分子并不是非极性的,与煤孔隙表面不会产生这种吸附力。 3.煤层气储层测井评价 3.1常规煤层气测井技术 煤层气测井方法的测井系列与油田的测井系列类似,具体划分为以下三种基本类型。 (1)套管井煤层气测井系列 选择合适的测井系列,对整个煤层气勘探开发环节意义重大。国内外前人学者大量理论及实践,对识别煤层和确定煤层厚度有很多借鉴之处,在裸眼井测井系列中,一般选用补偿密度测井、高分辨率密度测井、岩性密度测井;井径测井;自然伽马测井;双感应、双侧向测井;高分辨率感应测井。 对于完成煤岩工业分析、确定煤层的基质孔隙度和裂缝孔隙度、含气饱和度、基质渗透率和裂缝渗透率以及岩石的力学参数等,除了使用密度测井、井径测量、自然伽马测井外,还可额外使用微电阻率测井;双侧向测井、微球型聚焦测井;自然电位测井;补偿中子测井、超热中子测井;微电阻率扫描测井;数组声波测井和声波全波段测井;地球化学测井;碳氧比能谱测井;井下电视;温度测量等测井技术。 (2)套管井煤层气测井系列 考虑到测井理论,尽可能的选择裸眼井测井,会使获得的煤系地层信息尽可能准确。若实际条件不允许或其它各种客观因素致使无法完成裸眼井测井,可选择套管井测井,从而更方便的处理套管井煤层气储层评价问题及对井筒进行动态监测等。由美国的相关实践,对煤层气储层在套管井中的确定、识别煤层厚度及对水泥胶结的监测,可以选择:密度测井、补偿中子测井、脉冲中子测井;自然伽马测井、自然伽马能谱测井;水泥胶结测井、声波变密度测井等测井技术。 (3)生产井煤层气测井系列 煤层气生产测井是进入生产开发阶段之后,人们设计的一种为了掌握该阶段井筒流体的动态参数和井内出现或可能出现的环境故障的测井组合。此测井组合是融合工程测井,以对动态的流体参数测量为主,并辅以一些勘探中常用的测井方法的组合。目前,煤层气生产测

山西煤层气测井解释方法研究

山西煤层气测井解释方法研究 一煤层电性响应特征 煤层是一种特殊沉积岩,煤层在煤热演化过程中主要产生的副产品是甲烷和少量水,而煤的颗粒细表面积大,每吨煤在0.929×108m2以上,因此煤层具有强吸附能力,所以煤层的甲烷气含量和含氢指数很高。由于煤层的上述特性,反映在电性曲线上的特征是“三高三低”。 三高是:电阻率高、声波时差大、中子测井值高(图1)。 三低是:自然伽马低、体积密度低、光电有效截面低。 根据多井资料统计,煤层的双侧向电阻率变化一般100—7000Ω·m,变质程度差的煤层电阻率一般30—350Ω·m。 测井曲线反映煤层的声波时差一般370—410μs/m;中子值30%—55%;自然伽马一般20—80API;密度测井值1.28—1.7g/cm3;光电有效截面0.35—1.5b/e之间。 不同类型的煤,在电性上的响应有较大的变化。表1中列出了几种煤类与测井信息的响应值。 表1 不同煤类骨架测井响应值

图1 晋1-1井煤层电性典型曲线图

二煤层工业参数解释 煤的重要参数有:煤层有效厚度、镜质反射率、含气量、固定碳、水分、灰分、挥发分等,这些参数是研究煤层组分,评价煤层气的地质勘探、工业分析及经济效果的依据。上述参数一般由钻井取芯后对煤层岩心进行实验测定得出。 1、煤层厚度划分 煤层有效厚度根据电性曲线对煤层的响应特征,以自然伽马和密度或声波时差曲线的半幅度进行划分(见图1),起划厚度为0.6m。2、含气量计算 煤层含气量与煤层的厚度、煤的热演化程度、煤层深度、温度和压力等参数有密切的关系,由于煤的内表面积大,储气能力高,据国外资料统计,煤层比相同体积的常规砂岩多储1~2倍以上的天然气,相当于孔隙度为30%的砂岩含水饱和度为零时的储气能力。据此应用气体状态方程和煤层密度计算含气量: P1V1=RT1(1) P2V2=RT2 (2) 则V1=T1·P2·V2/ P1T2(3) 式中:P1——地面压力,0.1MPa; V1——地面气体体积,m3; T1——地面绝对温度,273.15℃+15℃;

页岩气测井标准

页岩气战略调查井钻井技术要求 YYQ-05 地球物理测井 1.测井内容 对全井段进行标准和全套测井,根据实际钻探情况研究是否需要针对目的 层段增加特殊测井项目,测井内容: 地球物理测井内容

2.5.2测井要求 2.5.2.1在下表层套管前必须进行标准,下技术套管前、完钻前必须进行标准及全套测井。 2.5.2.2每次电测,保证前后两次电测资料重复井段不少于50米(若下套管须能接上图)。 2.5.2.3依据全套组合、微电阻率扫描成像测井及综合研究优选相关井段进行核磁共振测井。 2.5.2.4按核磁共振测井成果优选有利井段进行电缆式动态测试测井了解地层压力及储层渗透率。 2.5.2.5对目的层井段进行偶极子扫描成像测井。 2.5.2.6测井施工单位要在现场提供井斜资料和标准测井图及完井电测回放1:200测井图件,24小时后提供全套测井图及初步测井解释意见。 2.5.2.7取芯井段大于10米要求1:50的全套组合放大曲线和对比曲线。 2.5.2.8固完技油套后,按规定时间测固、放、磁。 2.5.2.9每次测井在5 7天前由施工单位通知甲方指定测井单位,做施工前准备,并预报测井时间。 2.5.2.10为保证测井工作顺利进行,要求钻井承包商确保仪器下井畅通无阻,安全测井。测井方应尽量满足甲方其它的合理要求共同保证各项资料的齐全、准确。 2.5.3对测井资料解释要求 2.5. 3.1测井施工单位要选择该地区地质情况的最佳处理程序进行测井资料处理,及时提供中途测井数字处理成果图、测井解释成果表。 2.5. 3.2完钻全套测井后,24小时内提供初步解释意见,7天内提供系统测井图,30天内提交达到归档标准的全部资料,主要包括: (1)综合数字处理成果图1:200;解释成果表。 (2)回放标准测井图1:500,并提供资料光盘。 (3)综合解释报告。 (4)特殊测井曲线图(原始图)1:200,解释成果图、表及单项解释报告。 (5)固井质量图,磁性定位图、表及解释报告。 2.5. 3.3完井30天后提供全部测井内容的LA716数据带两份及全部测井原始带和胶片。 2.5. 3.4测井施工单位要根据甲方的要求,随时无偿提供各种测井资料,以确保研究工

2014页岩气评价规范

页岩气资源/储量计算与评价技术规范 中华人民共和国地质矿产行业标准 DZ/T 0254-2014页岩气资源/储量计算与评价技术规范 2014-04-17发布2014-06-01实施 中华人民共和国国土资源部发布 前言 本标准按照GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》给出的规则起草。 本标准由中华人民共和国国土资源部提出。 本标准由全国国土资源标准化技术委员会(SAC/TC93)归口。 本标准起草单位:国土资源部矿产资源评审中心石油天然气专业办公室、中国石油天然气股份有限公司、中国石油化工股份有限公司、陕西延长石油(集团)有限责任公司。 本标准主要起草人:陈永武、王少波、韩征、王永祥、耿龙祥、吝文、张延庆、乔春磊、王香增、郭齐军、张君峰、包书景、刘洪林、胡晓春。 本标准由中华人民共和国国土资源部负责解释。 DZ/T 0254-2014 页岩气资源/储量计算与评价技术规范 1 范围 本标准规定了页岩气资源/储量分类分级及定义、储量计算方法、储量评价的技术要求。本标准适用于页岩气资源/储量计算、评价、资源勘查、开发设计及报告编写。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB/T 13610—2003 天然气的组成分析气相色谱法 GB/T 19492—2004 石油天然气资源/储量分类 GB/T 19559—2008 煤层气含量测定方法 DZ/T 0216—2010 煤层气资源/储量规范 DZ/T 0217—2005 石油天然气储量计算规范 SY/T 5895--1993 石油工业常用量和单位(勘探开发部分) SY/T 6098--2010 天然气可采储量计算方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 页岩气shale gas 赋存于富含有机质的页岩层段中,以吸附气、游离气和溶解气状态储藏的天然气,主体上是自生自储成藏的连续性气藏;属于非常规天然气,可通过体积压裂改造获得商业气流。3.2 页岩层段shale layers 富含有机质的烃源岩系,以页岩、泥岩和粉砂质泥岩为主,含少量砂岩、碳酸盐岩或硅质岩等夹层中的致密砂岩气或常规天然气,按照天然气储量计算规范进行计算,若达不到单独开

测井资料综合解释

测井资料综合解释 目录 绪论 (2) 第一章自然电位测井 (6) 第二章电阻率测井 (11) 第三章声波测井 (26) 第四章放射性测井 (39) 第五章工程测井方法 (61) 第六章生产测井 (82) 第七章测井资料综合解释 (93)

绪论 一、测井学和测井技术的发展测井学是一个边缘科学,是应用地球物理的一个分支,它是用物理学的原理解决地质学的问题,并已在石油、天然气、金属矿、煤田、工程及水文地质等许多方面得到应用。30年代首先开始电阻率测井,到50年代普通电阻率发展的比较完善,当时利用一套长短不同的电极距进行横向测井,用以较准确地确定地层电阻率。60 年代聚焦测井理论得以完善,孔隙度形成了系列测井,各类聚焦电阻率测井仪器也得到了发展,精度也相应得以提高。测井资料的应用也有了长足的发展,随着计算机的应用,车载计算机和数字测井仪也被广泛的应用。到现在又发展了各种成像测井技术。 二、测井技术在勘探及开发中的应用无论是金属矿床、非金属矿床、石油、天然气、煤等,在勘探过程中在地壳中只要富集,就具有一定特点的物理性质,那我们就可以用地球物理测井的方法检测出来。特别是石油和天然气,往往埋藏很深,只要具有储集性质的岩石,就有可能储藏有流体矿物。它不用像挖煤一样。而是只要打一口井,确定出那段地层能出油,打开地层就可以开采。由于用测井资料可以解决岩性,即什么矿物组成的岩石,它的孔隙度如何,渗透率怎么样,含油气饱和度大小。沉积时是处于什么环境,是深水、浅水、还是急流河相,有无有机碳,有没有生油条件,能不能富集。在勘探过程中,可以解决生油岩,盖层问题,也可以对储层给予评价,找到目的层,解释出油、气、水。 在油气田开发过程中,用测井可以监测生产动态,解决工程方面的问题。井中产出的流体性质,是油还是水,出多少水,油水比例如何,用流体密度,持水率都可以说明。注水开发过程中,分层的注入量,有没有窜流,用注入剖面测井都可以解决。生产过程中,套管是否变形,有没有损坏、脱落或变位,管外有无窜槽,射孔有没有射开,都需要测井来解决。对于设计开发方案,计算油层有效厚度,寻找剩余油富集区都离不开测井。测井对石油天然气勘探开发来说,自始至终都是不可缺少的,是必要的技术。它服务于勘探开发的全过程。 三、储层分类及需要确定的参数 1.储集层的分类及特点石油、天然气和有用的流体都是储存在储集层中,储集层是指具有一定储集空间的,并彼此相互连通,存在一定渗透能力的的岩层。储层性质分析与评价是测井解释的主要任务。 1) 碎屑岩储集层 它包括砾岩、砂岩、粉砂岩和泥质粉砂岩等。世界上有40%的油气储集在碎屑岩储 集层。碎屑岩由矿物碎屑,岩石碎屑和胶结物组成。最常见的矿物碎屑为石英,长石和其他碎屑颗粒;胶结物有泥质、钙质、硅质和铁质等。控制岩石储集性质是以粒径大小、分选好坏、磨圆度以及胶结物的成分,含量和胶结形式有关。一般粒径大,分选和磨圆度好,胶结物少,则孔隙空间大,连通性好,为储集性质好。 2) 碳酸盐岩储集层 世界上油气50%的储量和60%的产量属于这一类储集层。我国华北震旦、寒武及奥陶系的产油层,四川的震旦系,二叠系和三叠系的油气层,均属于这类储层。 碳酸盐岩属于水化学沉积的岩石,主要的矿物有石灰石、白云石和过渡类型的泥灰岩。它的储集空间有晶

页岩气测井技术-12

测井技术在页岩气开发中的应用 页岩气是一种特殊的非常规的、赋存在泥岩或页岩中的天然气,具有自生自储、大面积连续成藏、低孔、低渗等特征,一般无自然产能或低产,需大型水力压裂和水平井技术才能进行经济开采,单井生产周期长。 测井是页岩气勘探不可缺少的技术手段,发挥着十分重要的作用。经过近百年的发展,测井技术已经发展成为声、光、电、磁、核等五大门类,几十种测井方法,广泛应用到油气田勘探、开发的各个阶段,能有效地解决各类地质、工程问题,尤其是在常规油气储层的识别、评价方面已经成熟,在页岩气等非常规储层评价方面的应用虽然刚刚开始,但同样可以发挥出重要作用。页岩气的测井采集技术与常规测井基本类似,对于页岩储层参数的确定,须通过岩心实验数据标定,建立测井解释模型,然后推广到新井用来计算储层参数和地球化学参数。一、测井技术对于页岩气勘探开发的价值 测井在页岩气藏勘探开发中有两大任务:一是储层及含气量的评价,二是为完井服务提供指导参数并在钻井中起地质导向作用。 在页岩气储层评价中,测井资料可以进行定性和定量解释:定性解释内容包括识别岩性、判断含气页岩层、识别裂缝等;定量解释内容包括确定矿物成分,计算孔隙度和渗透率,计算干酪根含量/总有机碳含量(TOC)、吸附气和游离气含量,计算热成熟度和热成熟度指数(MI),计算储层厚度和岩石弹性参数,确定天然气地质储量(GIP)等。 二、国内外测井方法介绍 国外基本沿用现有油气井测井技术,系列包括常规、核磁共振、多极子阵列声波、元素俘获等。

公司 名称 测井项目 斯伦贝谢常规/元素俘获能谱ECS/成像FMI/声波扫描/核磁共振 贝克休斯常规/能谱/岩性FleX/成像STAR&CBIL/核磁共振/多极子阵列声波XMAC/井壁取芯 哈里伯顿常规/能谱/岩性GEM/超低地层渗透率测量仪/成像XRMI&CAST/核磁共振/ShaleLog软件 国内目前应用于页岩气储层的测井系列主要为常规测井系列,包括自然伽马、井径、自然电位、声波、密度、中子与电阻率测井,主要用于进行页岩储层的识别与储层物性评价。近年来,评价热点涉及到对元素俘获测井(ECS)、声电成像测井和核磁共振测井等先进方法的应用,以对页岩目的层提供尽可能详细的岩石物理信息。实践证明,这些测井新技术的应用在页岩气勘探开发初期非常必要,有助于对含气页岩储层特征进行综合评价,并对后续勘探开发具有指导作用。三、测井曲线特征 页岩气常规测井曲线呈现“三高两低”特征:高自然伽马、高电阻率、高中子、低密度、低PE(光电吸收截面指数)

煤层气储层测井评价技术及应用

煤层气储层测井评价技术及应用 随着我国经济实力的不断增长,我国对于煤的使用率在不断的增加,针对煤层的特点,设计出煤层气测井评价技术,来对煤层进行评价。在煤层中主要是煤层储集,其具有双重孔隙的特点,主要是煤的基质微孔和割理(裂缝)系统组成。所以在进行评价时,不能在采用传统的评价技术,这样会导致评价结果出现错误。本文主要通过对过往的国内外煤层气测井技术的发展过程,并针对目前煤层气储层测井评价技术现状,进行了详细的讲述,并结合所应用的技术,进行分析与研究,为煤层气储层测井评价技术的发展提供相应的参考方向。 标签:煤层气储层;测井评价技术;实际应用 在煤层气储层中,所具有物质的不仅仅具有储存甲烷,还具有生成甲烷的初始物质,所以在煤层的储集中,主要有两个系统构成。在天然气储层中,天然气主要以气体的形式储存在其中,但是在煤层中的甲烷主要有三种形式存在,分别是以分子状态吸附在基质微孔的内表面上;以游离气态存在于煤层中的地层水中;以游离气态存在于煤层中的裂缝中。和天然气的存储状态不同,不能采用评价常规天然气储层的方法。煤层气储层测井技术是煤层气勘探开发中的主要方法,要加强对测井评价技术的研究与分析,并结合其技术进行提出相应的应用方式,才能更好的促进煤层气储层的测井评价技术发展。 1煤层气储层测井评价系列选择 目前主要的评价技术就是采用的煤层气储层测井评价技术,采用这种技术能够有效的对煤层气储层中的数据进行相应的分析,能够对采集到的数据进行估计,从而得出内部煤层气储层的内部信息。煤层气测井技术具有操作便利、可重复利用、成本低、准确率高等优势,能够改进传统技术中技术不达标的问题。煤层气储层是跟周围的岩性具有截然不同的性质,所以在进行检测时,需要对煤层气储层测井评价系列进行选择。目前主要的评价煤层气的常规测井方法有自然电位、微电极、补偿密度、自然伽马、声波时差、声波全波列、中子孔隙度以及井径测井等。 2煤层气储层测井评价技术现状 2.1煤层的划分、岩性识别 在对煤层气储层测井技术的实际应用中,首先要对煤层气井的测井资料进行了解才能进行操作,要对煤层气层进行划分、识别,然后才能在已知种类的煤层气层上进行相应的参数计算。所以在对煤层气井的测井资料解释时,要先对煤层气层进行分类,针对不同的物质来进行分析。煤层是明显的区别于周围的物质的,主要具有的特点是密度低、声波时差大、含氢量高、自然伽马低、自然电位有异常、电阻率高(无烟煤除外)等。所以在进行划分时,只需要对煤层气层进行相应的检测就能将其划分为不同的种类。并通过对数据的探测进行制定煤层气层的

页岩气测井解释和岩心测试技术_以四川盆地页岩气勘探开发为例

第32卷 第3期2011年5月 石油学报 A CT A PETROLEI SINICA V o l.32M ay N o.3 2011 基金项目:国家科技重大专项(2008ZX 05018)资助。 第一作者及通讯作者:吴庆红,女,1968年9月生,1991年7月毕业于西南石油学院,现在中国石油煤层气有限责任公司工作,中国地质大学(北京) 能源学院在读博士,主要从事非常规油气勘探开发方面的研究工作。E mail :w qh 69@p https://www.docsj.com/doc/cf12528439.html, 文章编号:0253 2697(2011)03 0484 05 页岩气测井解释和岩心测试技术 以四川盆地页岩气勘探开发为例 吴庆红1,2 李晓波3 刘洪林3 陈 霞4 (1 中国地质大学能源学院 北京 100083; 2 中国石油煤层气有限责任公司 北京 100076; 3 中国石油勘探开发研究院廊坊分院 河北廊坊 065007; 4 中国石油华北油田分公司综合一处 河北廊坊 065007) 摘要:利用页岩气专用测井技术对页岩气评价井进行了储层参数和气源参数的研究,并利用岩心测试技术对测井结果进行验证及 校正,以更准确地反映储层物性参数。其中对四川盆地页岩气评价井的页岩有利层段进行了有利储层段划分以及硅质、脆性矿物、黄铁矿、含气量和T OC 的测试。由于测井结果具有地域性差异,借助页岩岩心资料对上述参数进行了验证并对部分参数进行了校正,为合理开发页岩气提供了研究手段。 关键词:岩心测试;测井技术;储层段;硅质含量;含气量测试中图分类号:P 631 8 文献标识码:A Log interpretations and the application of core testing technology in the shale gas:Taking the exploration and development of the Sichuan Basin as an example WU Qinghong 1,2 LI Xiaobo 3 LIU H o ng lin 3 CH EN Xia 4 (1.School of Ener gy Resources ,China Univer sity of Geosciences ,B eij ing 100083,China;2.Petr oChina Coalbed Methane Comp any L imited ,B eij ing 100076,China;3.L angf ang Br anch,PetroChina Resear ch I nstitute of Petroleum E x p lor ation &Develop ment,Langf ang 065007,China;4.General Division I ,PetroChina H uabei Oilf ield Comp any ,Langf ang 065007,China )Abstract :T he present paper investig ated so ur ce and r eser vo ir par ameters o f shale gas ev aluatio n wells by using professio nal log ging techniques of the shale g as,and the r esult o f log g ing was ver ified o r calibr ated by core testing techno lo gy so as to mor e accurately re flect physical pro pert y parameters o f reserv oir s.T he paper intro duced the application o f key log ging techniques to appra ising favo ra ble inter vals o f shales from so me shale g as evaluation wells in the Sichuan Basin,w hich included div isio n o f favo rable intervals of a reservo ir ,silica content t esting ,contents of frag ile minerals,pyr ite t esting ,g as co nt ent test ing and T OC t esting.A ll o f the par ameter s mentioned above wer e v erified and so me o f them wer e calibr ated by using co re data of shales because o f the reg ional difference of w ell log g ing r esult s.T he present study prov ided the rat ional develo pment o f the shale g as wit h a r esear ch appro ach.Key words :co re testing;lo gg ing t echnolog y;reservo ir sectio n;silica co nt ent;gas content test ing 1 页岩气测井识别技术 斯伦贝谢公司于2004年开展了页岩气测井解释,通过北美12个页岩气田比较,建立了页岩气测井系列,包括伽马、中子、密度、电阻率、声波扫描、电阻率成像(FM I)、伽马能谱(H NGS)和元素俘获能谱测井(ECS),其中声波扫描、电阻率成像、元素俘获能谱测井是页岩测井的关键技术 [1 2] 。 2 岩石实验技术在测井技术中应用 岩石实验技术的核心工作主要包括: 页岩有利 储层段划分; 硅质、脆性矿物、黄铁矿等含量的确定; 含气量和总有机碳(T OC)的测定[3] 。 测井所测得的参数属于储层的间接资料,通过解释模型反演可得到储层地质参数。由于测井技术上的限制、反演中的多解性以及油气藏地质条件的多变性,用测井资料反演储层地质参数时,其解释方法和解释模型经常具有区域性,必须通过岩心资料进行刻度或检验,成像测井技术可直接通过测井获取井筒的部分地质现象,测井获得的信息已不再完全属于间接资料。但目前测井技术还不能对页岩地层的孔隙度、渗透率、饱和度、T OC 、硅质含量、游离气、吸附气体

相关文档