文档视界 最新最全的文档下载
当前位置:文档视界 › 激光焊1

激光焊1

激光焊1
激光焊1

首钢技师学院

教案首页

编号:QD(B)-0706-15 版本号: C/0 流水号:授课顺序 3 理论学时/实训学时2/

教研室成型授课教师李晓霞

授课时间2012.5.14

授课班级成型12+大厂焊接

学科特种焊接技术

教材《特种焊接技术》(机械版)

课题(章节)第二单元激光焊

模块一激光焊概述

模块二激光焊设备与焊接工艺

教学目标认知目标:

熟悉激光焊的特点、分类,了解激光焊的应用。能力目标:

熟悉激光焊的设备构成、工艺要点。

德育目标:

热爱本专业,学好专业知识

教学重点激光焊的工艺参数

教学难点激光焊原理

教学方法讲授、讨论、练习

教学媒体多媒体

参考资料职业技能鉴定教材

备注

领导签认月日

教案正文

时间教学行为教学内容设计思想

5' 15'

15 提问引入

视频展示

激光焊接

讲解

分析讲解

1、电子束焊接原理、特点是什么?

2、什么是“小孔效应”

第二单元激光焊

模块一激光焊概述

一、激光焊原理

激光是利用原子受辐射的原理,使工作物质受激而产生的一种

单色性高、方向性强、亮度高的光束,经聚焦后把光束聚焦到焦点

上可获得极高的能量密度,利用它与被焊工件相互作用,使金属发

生蒸发、熔化、结晶、凝固而形成焊缝。

激光焊实质上是激光与非透明物质相互作用的过程,这个过程

极其复杂,微观上是一个量子过程,宏观上则表现为反射、吸收、

加热、熔化、汽化等现象。

1、激光的反射与吸收

电导率越大,对激光的反射率越高,金、银、铜、铝及其合金

对激光的反射比其他金属材料要大得多。

金属对激光的吸收率随着温度的上升而增大,随着电阻率的增

大而增大。

金属表面越粗糙,对激光的吸收率越高。对金属表面喷砂,涂

层可有效提高对激光的吸收率越高。

焊接时,金属表面形成汽化,且金属有良好导电能力,形成小

孔,对激光吸收大幅度提高。

2、材料的加热

激光光子与电子发生碰撞、电子间碰撞都会引起能量传递,

光子能量转化为晶格的热振动能,引起材料温度升高。

3、材料的熔化和汽化

激光焊时材料达到熔点所需时间为为微秒级。脉冲激光焊时

表面吸收功率密度105((10的5次方)W/cm2,达到沸点汽化时间为

几毫秒。

4、焊缝的形成

“小孔效应”

二、特点

激光焊接的主要优点:

1、速度快、深度大、变形小。

2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,

激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环

境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。

3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良

好。

4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:

1,最高可达10:1。

5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精

确定位,可应用于大批量自动化生产的微、小型工件的组焊中。

复习前面知

识,以便采用

对比方法学

习掌握新知

利用视频了

解焊接过程,

形象记忆

对比电子束

焊接特点,找

到共性与区

别,便于理解

记忆

10' 分析讲解

讲授

6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的

灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输

技术,使激光焊接技术获得了更为广泛的推广和应用。

7、激光束易实现光束按时间与空间分光,能进行多光束同时加工

及多工位加工,为更精密的焊接提供了条件。

激光焊接也存在着一定的局限性:

1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著

偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属

材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊

接缺憾。

2、激光器及其相关系统的成本较高,一次性投资较大。

参见P29 表2-1 激光焊接与传统焊接工艺的比较

三、激光焊分类

按激光器输出能量方式的不同,激光焊分为脉冲激光焊和连续

激光焊(包括高频脉冲连续激光焊);

按激光聚焦后光斑上功率密度的不同,激光焊可分为传热焊和

深熔焊。

1、传热焊

采用的激光光斑功率密度小于10W/cm2时,激光将金属表面加

热到熔点与沸点之间,焊接时,金属材料表面将所吸收的激光能转

变为热能,使金属表面温度升高而熔化,然后通过热传导方式把热

能传向金属内部,使熔化区逐渐扩大,凝固后形成焊点或焊缝,其

熔深轮廓近似为半球形。这种焊接机理称为传热焊,它类似于电弧

焊过程,如图所示

传热焊的主要特点是激光光斑的功率密度小,很大一部分光被

金属表面所反射,光的吸收率低,焊接熔深浅,焊接速度慢主要用

于薄(厚度<1mm)、小零件的焊接加工。

2、深熔焊

当激光光斑上的功率密度足够大时,金属在激光的照射下被迅

速加热,其表面温度在极短的时间内,升高到沸点,使金属熔化和

气化。当金属气化时,所产生的金属蒸气以一定的速度离开熔池,

金属蒸气的逸出对熔化的液态金属产生一个附加压力(例如对于

铝,,使熔池金属表面向下凹陷,在激光光斑下产生一个小凹坑

〔图〕。

当光束在小孔底部继续加热气化时,所产生的金属蒸气一方面

压迫坑底的液态金属使小坑进一步加深,另一方面,向坑外飞出的

蒸气将熔化的金属挤向熔池四周。这个过程进行下去,便在液态金

属中形成一个细长的孔洞。当光束能量所产生的金属蒸气的反冲压

力与液态金属的表面张力和重力平衡后,小孔不再继续加深,形成

一个深度稳定的孔而进行焊接,因此称之为激光深熔焊〔图〕。

对比电子束

焊接特点,找

到共性与区

别,便于理解

记忆

使学生了解

激光焊分类

10' 15' 课件图片

讲解

讲授

如果激光功率足够大而材料相对较薄,激光焊形成的小孔贯穿

整个板厚且背面可以收到部分激光,这种焊接方法也可称之为薄板

激光小孔效应焊。从机理上看,深熔焊和小孔效应焊的前提都是焊

接过程中存在着小孔,二者没有本质的区别。

小孔的形成伴随着明显的声、光特征。用激光焊焊接钢件,未

形成小孔时,焊件表面的火焰是橘红色或白色的,一旦小孔生成,

光焰变成蓝色,并伴有爆裂声,这个声音是等离子体喷出小孔时产

生的。利用激光焊时的这种声、光特征,可以对焊接质量进行监控。

四、应用范围

①用脉冲激光焊能够焊接铜、铁、锆、钽、铝、钛、铌等金属及

其合金。用连续激光焊,除铜、铝合金难焊外,其他金属与合

金都能焊接。

②用脉冲激光焊可把金属丝或薄板焊接在一起。

③主要应用于电子工业领域,如微电器件外壳及精密传感器外壳

的封焊、精密热电偶的焊接、波导元件的定位焊接。

④也可用来焊接石英、玻璃、陶瓷、塑料等非金属材料。

模块二激光焊设备与工艺

一、激光焊设备

1、激光器

激光器是利用受激辐射原理使光在某些受激发的物质中放大

或振荡发射的器件。

红绿蓝可见波长纤绿激光

①固体激光器(晶体和玻璃),这类激光器所采用的工作物质,

是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质

中构成发光中心而制成的;

②气体激光器,它们所采用的工作物质是气体,并且根据气体

中真正产生受激发射作用之工作粒子性质的不同,而进一步区分

为原子气体激光器、离子气体激光器、分子气体激光器、准分子

气体激光器等。

CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气

体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性

气体。

了解激光焊

应用,明确学

好激光焊的

重要性

了解电子枪

各电极的主

要作用

15 图片展示

讲解

课件

讲授

用于大熔深激光焊接的CO2激光器一般以连续方式工作,主

要包括快轴流和Slab型两种类型。同快轴流激光器相比,Slab型

激光器具有结构紧凑、气体消耗量少、维护成本低的特点。目前世

界上CO2激光器最大输出功率为45kW,工业生产中应用的激光器

输出功率范围约在700W至12kW之间。

我国目前可以自主生产的快轴流激光器最大输出功率为3kW。

半导体激光器

半导体激光器具有波长短、重量轻、转换效率高、运行成本低、

寿命长的特点,是未来激光器发展的重要方向之一。国外学者已经

开始了利用大功率半导体激光器进行铝合金焊接的研究工作,可以

获得2mm的焊接熔深。但半导体激光器面临的最大问题是光束模

式差,光斑大,因此功率密度较低,这是半导体激光器今后用于工

业生产必须解决的问题。

2、光束传输及聚焦系统

用于把激光束传输并聚焦到工件上

3、光束检测器

4、气源与电源

5、工作台与控制系统

二、激光焊工艺参数

(1)功率密度。功率密度是激光加工中最关键的参数之一。采用

较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生

大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、

雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,

在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在

传导型激光焊接中,功率密度在范围在10^4~10^6W/CM^2。

(2)激光脉冲波形。激光脉冲波形在激光焊接中是一个重要问题,

尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属

表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温

度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。

(3)激光脉冲宽度。脉宽是脉冲激光焊接的重要参数之一,它既

是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价

及体积的关键参数。

(4)离焦量对焊接质量的影响。离焦方式有两种:正离焦与负离

焦。焦平面位于工件上方为正离焦,反之为负离焦。

按几何光学理论,当正负离焦平面与焊接平面距离相等时,所

对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。

负离焦时,可获得更大的熔深,这与熔池的形成过程有关。

在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料

时,宜用正离焦

了解半导体

激光器的发

展前景

教案尾页

课堂小结

5′1、激光焊原理、特点

2、连续激光焊工艺参数

3、安全防护

作业P52 二1

课后记

激光焊接应用讲解

激光焊接应用 一、激光焊接的主要特性。 激光焊接是激光材料加工技术应用的重要方面之一。20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 与其它焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导。 激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。在激光与金属的相互作用过程中,金属熔化仅为其中一种物理现象。有时光能并非主要转化为金属熔化,而以其它形式表现出来,如汽化、等离子体形成等。然而,要实现良好的熔融焊接,必须使金属熔化成为能量转换的主要形式。为此,必须了解激光与金属相互作用中所产生的各种物理现象以及这些物理现象与激光参数的关系,从而通过控制激光参数,使激光能量绝大部分转化为金属熔化的能量,达到焊接的目的。 三、激光焊接的工艺参数。 1、功率密度。 功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/CM2。 2、激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。 激光焊接通常需要一定的离做文章一,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。 离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池

激光焊接分析

一、原理 原理分类: 热传导型焊接:功率密度小于104~105W/cm2为热传导焊,此时熔深浅、焊接速度慢;热传导型激光焊接,需控制激光功率和功率密度,金属吸收光能后,不产生非线性效应和小孔效应。激光直接穿透深度只在微米量级,金属内部升温靠热传导方式进行。 激光深熔焊接:功率密度大于105~107W/cm2时,金属表面受热作用下凹成“小孔”,形成深熔焊,具有焊接速度快、深宽比大的特点。 1.透射或反射镜聚焦后可获得直径小于0.01mm、功率密度高达106~l012W/cm2的能束。 2.微观上是一个量子过程,宏观上则表现为反射、吸收、加热、熔化和汽化等现象。激光焊时,激光照射到被焊接件的表面,与其发生作用,一部分被反射,另一部分进入焊件内部。 3.加热:光子的能量→晶格的热振动能,温度升高,达到2500℃。 熔化和汽化:当功率密度大于106W/cm2时,被焊材料会产生急剧的蒸发。被焊材料蒸发,

①光束焦斑 ②透镜焦距,最短焦深多为焦距126mm; ③焦点位置,通常焦点的位置设置在工件表面之下大约所需熔深的1/4处。 2.材料吸收值 (1)材料的电阻系数,材料吸收率与电阻系数的平方根成正比,而电阻系数又随温度而变化; (2)材料的表面状态(或者光洁度)对光束吸收率有较重要影响; 3.焊接速度 提高速度会使熔深变浅,但速度过低又会导致材料过度熔化、工件焊穿。(需要一个速度范围) 4.保护气体 (1)使工件在焊接过程中免受氧化;

(2)保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射; (3)驱散高功率激光焊接产生的等离子屏蔽; 等离子云对熔深的影响在低焊接速度区最为明显。当焊接速度提高时,它的影响就会减弱。吹气方法学问大啊! 5.焊接起始、终止点的激光功率渐升、渐降控制。 起始和终止端产生凹坑,为了防止这个现象发生,可对功率起止点编制程序,使功率起始和终止时间变成可调,即起始功率用电子学方法在一个短时间内从零升至设置功率值,并调节焊接时间,最后在焊接终止时使功率由设置功率逐渐降至零值。 6.焊缝形状 (1)直线型 (2)正弦型 (3)摇摆型:稳定性高±15% 7.焊缝长度

激光焊接的工艺参数及特性分析讲解

激光焊接的工艺参数及特性分析 一、激光焊接的工艺参数:1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。2、激光脉冲波形。激光脉冲波形在激光焊接 一、激光焊接的工艺参数: 1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。 2、激光脉冲波形。激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。 二、激光焊接工艺方法: 1、片与片间的焊接。包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。

焊接结构名词解释

1.焊接温度场:指在焊接过程中,某一时刻所有空间各点温度的总计或分布。 2.焊接热循环:在焊接过程中,工件上的温度随着瞬时热源或移动热源的作用而发生变化, 温度随时间由低而高,达到最大值后,又由高而低的变化称为焊接热循环。 3.温度应力(热应力):变形不受约束,则说明变形是温度变化的唯一反映;若这种变形 受到约束,就会在物体内部产生应力,这种应力即为温度应力。 4.残余应力:当不均匀温度恢复到原始的均匀状态后残存在物体中的内应力。 5.自由变形(量、率):当金属物体的温度发生变化或发生相变没有受到外界的任何阻碍 而自由进行,它的形状和尺寸的变形就称为自由变形。自由变形的大小称之为自由变形量。单位长度上的自由变形量称之为自由变形率。 6.外观变形(量、率):当物体的变形受到阻碍而不能完全自由变形时,所表现出来的部 分变形称为外观变形或可见变形。外观变形的大小称为外观变形量。单位长度上的外观变形量称为外观变形率。 7.内部变形(量、率):当物体的变形受到阻碍而不能完全自由变形时,未表现出来的部 分变形称为内部变形或可见变形。内部变形的大小称为内部变形量。单位长度上的内部变形量称为内部变形率。 8.高组配:焊缝金属强度比母材高强度高的接头匹配。 9.低组配:焊缝金属强度比母材高强度低的接头匹配。 10.工作焊缝:一种与被连接的元件是串联的焊缝,承担着传递全部载荷的作用,焊缝一旦 开裂,结构就立即失效。 11.联系焊缝:一种与被连接的元件是并联的焊缝,主要起元件之间相互联系的作用,焊缝 一旦开裂,结构就不会立即失效。 12.焊接工艺评定:为验证所拟定的焊接工艺的正确性而进行的试验过程及结果的评价。 13.焊接工艺指导书:就是为验证试验所拟定的、经评定合格的、用于指导生产的焊接工艺 文件。 14.生产过程:使原材料或半成品的形状和重量不断的按照人们的意图发生改变的过程。或 者定义为把原材料变成成品的直接和间接的劳动过程的总和。 15.工艺过程:是指直接改变毛坯的形状、尺寸、力学性能以及物理性能,使之成为半成品 或成品的生产过程。 16.放样:指按设计图样在放样平台上,将其局部或全部按1:1的比例画出结构部件或零 件的图形和平面展开尺寸的加工工序。 17.划线:根据设计图样及工业上的要求按1:1的比例,将待加工工件形状、尺寸及各种 加工符号划在钢板或经粗加工的坯料上的加工工序。 18.号料:是用放样所取得的样板或样杆,在原材料或经粗加工的坯料上划下料线、加工线、 检查线及各种位置线的工艺过程。 19.夹具:是指将待装配的零件准确组对、定位并加紧的工艺装配,是定位器、夹紧器和各 种推拉装置的总称。 20.疲劳强度:指金属材料在无限多次交变载荷作用下而不破坏的最大应力。 21.疲劳极限:在疲劳试验中,应力交变循环大至无限次而试样仍不破损时的最大应力。 22.疲劳图:表达疲劳强度和循环特性之间关系的图形。 23.疲劳曲线:描述疲劳试验中所加交变应力振幅值S与试样达到破坏的交变应力周数N之 间的关系曲线。

激光焊接工艺详解

激光焊接工艺详解 随着科学技术的发展,近年来出现了激光焊接。那么什么是激光焊接呢?激光焊接的特点与优点又有哪些呢? 下图是激光焊接的工作原理: 首先,什么是激光?世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达106瓦,但仍属于低能量输出. 激光技术采用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,假如焦点靠近工件,工件就会在几毫秒内熔化和蒸发,这一效应可用于焊接工艺高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。激光焊接设备的关键是大功率激光器,主要有两大类,一类是固体激光器,又称Nd:YAG 激光器。Nd(钕)是一种稀土族元素,YAG代表钇铝柘榴石,晶体结构与红宝石相似。Nd:YAG激光器波长为1.06μm,主要优点是产生的光束可以通过光纤传送,因此可以省往复杂的光束传送系统,适用于柔性制造系统或远程加工,通常用于焊接精度要求比较高的工件。汽车产业常用输出功率为3-4千瓦的Nd:YAG激光器。另一类是气体激光器,又称CO2激光器,分子气体作工作介质,产生均匀为10.6μm的红外激光,可以连续工作并输出很高的功率,标准激光功率在2-5千瓦之间。 与其它传统焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远间隔焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。

激光焊接机五大组成模块讲解讲解

激光焊接机五大组成模块讲解 1、设备整体介绍: 激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。TY-LF-260型激光焊接实训机采用恒流脉冲式激光电源、灯泵浦Nd:YAG固体激光器、进口三菱PLC运控系统和高精度二维执行机构等核心模块组成。产品整机一体化机身结构,有功能集成度高、操作人性化设计、传动系统稳定、焊接加工效率高等特点,可完成电子、机械器件焊接加工,广泛应用于航天、通讯、电子、汽车制造等加工制造类行业。 2、激光焊接机五大组成模块的作用及介绍: (1)光学系统是激光焊接设备的核心部分,由灯泵浦Nd:YAG固体激光器、谐振腔模块、激光指示定位系统、扩束系统和聚焦系统组成。激光输出的好坏直接影响到激光焊接加工效果,因此激光器及整机激光光路的调试方法是学习阶段和实际应用当中必须掌握的技能。通过对此模块的仿真实训,可以使学员全方位了解激光焊接设备中光学系统的组成及工作原理,各光学器件的结构与调试方法。 ◆激光器:焊接设备激光器为灯泵浦Nd:YAG固体激光器,由激光金属腔、泵浦氙灯和 Nd:YAG激光晶体组成。其中激光金属腔为上下分体式全腔水冷式结构,全镀金面反射瓦块,光学反射率高,有助于激光反射集中,输出光束能量强;激光器泵浦源为强亮度高压氙灯,脉冲式出光激励激光晶体产生激光,使用寿命长;激光器工作物质为Nd:YAG 激光晶体。 ◆谐振腔:激光设备中光学谐振腔指的是全反膜片镜架和半反膜片镜架之间的组成区 域,当然其中包含激光腔体;谐振腔是产生激光不可或缺的重要部分,通常谐振腔的长度直接影响到激光输出的光束质量及功率能量的大小;对于激光设备而言,谐振腔的最佳长度一般在≥4倍的激光器腔长的距离(例:激光腔体有效腔长为130mm,则谐振腔的长度为≥520mm较为合适;具体效果以实际应用情况为准)。 ◆基准光定位系统:基准光是激光光路调试及加工应用当中的重要部分,激光设备当中 一般会采用波长为635nm-650nm的红光点状激光器作为光学基准定位,此激光器定位精准,且输出功率小,光束集中不易发散,作为激光设备整体光路调整及加工的指示定位光,实际应用效果极佳。 ◆扩束系统:激光焊接设备中的扩束系统采用的是2.5倍的光学扩束镜,扩束镜通过将 主光路输出的激光束进行准直、扩束后,可将原有的输出激光光斑扩大至原来的2.5倍,使之光束模式更好,能量更为集中;准直之后的激光束经过聚焦后可得到能量更为集中的精细光斑。 ◆聚焦系统:激光焊接设备中的聚焦系统是由45°导光反射镜、聚焦镜片、调焦输出筒 和吹气组件所组成;经过准直扩束后的激光光束先经过45°导光反射镜,被折射到加工平台,再由聚焦镜片将激光束聚焦到能量最为集中的状态进行焊接加工;调焦输出筒和吹气组件是在实际焊接应用中起到焦距调整和辅助气体保护的作用。 (2)控制系统是激光焊接设备的重要部分,由控制器模块、控制电路、功能控制面板、等组成。此系统完成激光设备的逻辑功能控制、电气控制及电器电压输出、执行程序编辑、自动加工应用等功能。通过对此模块的仿真实训,可以使学员全方位了解激光焊接设备中电气控制系统的组成及工作原理,各电子元器件的结构与调试方法。 ◆控制器模块:激光焊接设备中的控制器部分是整个电气控制电路中的核心器件,一般 采用三菱Fx2n-20GM型PLC微型电脑控制器、SMC-6480型运动控制器等型号的控制器; 此类控制器功能强大,能够完成整机执行程序的编辑及逻辑控制和整机自动加工,一般

激光焊接工艺实践课程学习指南讲解

《激光焊接工艺实践》课程学习指南 一、课程资源导航 二、学前要求 学习本课程需要有一定的预备基础知识,需要配置一台计算机,对计算机具体要求如下: (一) 必备基础 学习本课程的学习者必须具备一定的基础: 1.会熟练使用计算机,如常用操作系统Windows XP或者Linux,还有常用软件如PowerPoint、Word等; 2.一定的激光加工技术和工程材料学知识。 (二) 软硬件环境 1.硬件环境:

三、学习目标与要求 课程设置是基于光机电应用技术专业职业岗位能力的培养需要,要求学生通过视频课件、动画和现场实训操作等多种学习资源,掌握激光焊接原理、工艺特点和应用领域。通过本课程学习,学生不仅应该掌握激光焊接加工的基础理论,更要培养、锻炼实际动手操作能力,从而使其在掌握专业知识的基础上获得所需要的职业技能。具体要求如下: ?了解激光焊接工艺的过程和机理; ?学习根据材料特点和焊接工艺要求来选择合适的激光焊接设备; ?针对不同激光焊接设备,学会选择合适的激光焊接参数并能够对设备进行调试、维护; ?针对不同激光焊接过程,学会分析影响焊接质量的因素和解决的措施; ?学习激光焊接的安全操作常识和正确的操作规范。 四、学习路径 1.学习模式 在校学生学习方式:课堂学习+操作实训+网络辅助+标准化试题库考试 网络学习方式:教材自学+按课件学习+网上导学+实训实验+标准化试题库考试2.课程知识学习路径 按知识点渐进式学习:先导课程为激光加工原理、工程材料学等。 3.推荐书籍和参考 (1)郑启光,邵丹编著,激光加工工艺与设备,北京:机械工业出版社,2009,10;(2)刘其斌编著,激光加工技术及其应用,北京:冶金工业出版社,2007;(3)蒙大桥,张友寿,何建军等译,材料激光工艺过程,北京:机械工业出版社,2012,9; (4)现代激光焊接技术,陈彦宾,科学出版社,2010,,10; (5)激光焊接与切割质量控制,陈武柱,机械工业出版社,2010。 五、考核标准 学生学习考核标准请参见本课程资源“考核方案”

激光焊接基础知识

米亚奇公司 Nd(钕):YAG激光器激光焊接指南 米亚奇公司2003年版 此处包含的材料,未经米亚奇公司书面同意,严禁复 制或用于任何用途 联系方式: 米亚奇公司 Myrtle大道1820号 蒙罗维亚CA, 91017-7133 Tel.: 626 303 5676 Fax: 626 599 9636 https://www.docsj.com/doc/c611736760.html,

目录 1.激光基础 1.1 介绍 1.2 激光产生的原理 1.3 Nd:YAG激光的介质 1.4 泵浦源 1.5 谐振器 1.6 激光安全 2.激光焊接基本原理 2.1脉冲激光焊接 2.1.1实时功率反馈 2.1.2输出功率斜波 2.1.3脉冲的成形 2.1.4时间的分配 2.1.5能量分配 2.1.6光束的传输 2.1.7聚焦头 2.2激光是怎么实现焊接的 2.3主要焊接参数 2.3.1接缝设计与配合 2.3.2部分聚焦 2.3.3材料的选择和其表面镀层 2.4激光的参数 2.4.1名词术语 2.4.2光学系统 2.4.3聚焦镜片 2.4.4峰值功率和脉冲宽度 2.4.5接缝的焊接 2.4.6保护气体 2.5焊接举例

1.激光基础 1.1介绍 “激光”一词是Light Amplification by Stimulated Emission of Radiation(受激辐射而放大的光)的缩写,激光器的要素有: Nd:YAG激光器有两种类型,连续波的和脉冲波的,正如它们的名字所指,连续激光的波形要么是开,要么是关,但脉冲激光只用部分脉冲完成焊接。脉冲激光利用峰值功率进行焊接,反之连续激光使用的是平均功率,这使得脉冲激光只用很小的能量就能实现焊接,并形成了更小的热影响区,脉冲激光焊提供了无与伦比的点焊性能和极低的焊接热输入,米亚奇的就是脉冲激光焊机。 1.2激光产生的原理 激光本质上是分三步产生的,发生几乎是瞬间的。 1.泵浦源给介质提供能量,将介质内部原子激活,使得带电原子暂时被激发到 高能级,处在此活跃级的带电原子是不稳定的,于是跃迁到低能级,在这个过程中,从泵浦源吸收能量的电子释放多余的能量并辐射出一个光子,这个过程叫做自发辐射,通过这种方式产生的光子是激光的种子。 2.光子自发传播并最终撞击到别的处于高能级的电子,由于光速极快,处在激 发态的原子的密度很大,所以这个过程是极其短暂的,入射光子将电子从高能级激发到低能级并产生另一个光子,这两个光子是相干的,这意味着它们相位相同,波长相同,传播方向相同,这个过程叫做受激辐射。 3.光子传播方向是不定的,然而一些沿着介质传播的光子撞击共振器的反射镜, 又通过介质反射回来,共振反射镜决定了受激辐射的优先扩大方向,为了使

激光焊接基本原理讲解-共14页

一、激光基本原理 1、 LASER 是什么意思 Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅的英语开头字母 2、激光产生的原理 激光――“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。 为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。含有钕 (ND的 YAG 结晶体发生的激光是一种人眼看不见的波长为 1.064um 的近红外光。这种光束在微弱的受激发情况下,也能实现连续发振。 YAG 晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。 3、激光的主要特长 a 、单色性――激光不是已许多不同的光混一合而成的,它是最纯的单色光 (波长、频率 b 、方向性――激光传播时基本不向外扩散。 c 、相干性――激光的位相 (波峰和波谷很有规律,相干性好。 d 、高输出功率――用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。 二、 YAG 激光焊接

激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。 常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。前者主要用于单点固定连续和薄件材料的焊接。后者主要用于大厚件的焊接和切割。 l 、激光焊接加工方法的特征 A 、非接触加工,不需对工件加压和进行表面处理。 B 、焊点小、能量密度高、适合于高速加工。 C 、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、 特种材料。 D 、不需要填充金属、不需要真空环境 (可在空气中直接进行、不会像电子束那样在空气中产生 X 射线的危险。 E 、与接触焊工艺相比 . 无电极、工具等的磨损消耗。 F 、无加工噪音,对环境无污染。 G 、微小工件也可加工。此外,还可通过透明材料的壁进行焊接。 H 、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。 I 、很容易改变激光输出焦距及焊点位置。 J 、很容易搭载到自动机、机器人装置上。

激光焊接工艺调研报告详解

激光焊接工艺调研报告引言 21世纪是现代科技高速发展的时代,而激光技术作为目前时代发展中人们所最为瞩目的可击之一,其不仅仅是应用于现代军事领域,同样随着激光技术的日益娴熟以及其本身的制造工艺和应用工艺的普遍化,未来能够在更多的行业得到广泛应用,其中就包括传统制造业。由于传统焊接本身更多是依赖于焊接人员自身的工作经验以及对于焊接目标的目测实现焊接,其往往精度存在一定的偏差性,很难实现高精度项目的作业,而激光焊接无疑能够有效解决这一难题,利用激光技术准确对现有的目标进行准确的焊接,从而大大提升了焊接的准确性和有效性。未来随着工业现代化的迅猛发展,激光焊接技术有着广阔的应用空间。鉴于此,本文主要通过对激光焊接技术的内涵以及分类出发,就目前国内外激光焊接技术研究现状进行综合性、系统性的分析,并由此结合未来制造业发展需求以及激光焊接的特点,对其未来的应用以及发展进行展望。 发展历程 世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达10^6瓦,但仍属于低能量输出。 使用钕(ND)为激发元素的钇铝石榴石晶棒(Nd:YAG)可产生1---8KW的连续单一波长光束。YAG激光,波长为1.06uM,可以通过柔性光纤连接到激光加工头,设备布局灵活,适用焊接厚度0.5-6mm。 使用CO2为激发物的CO2激光(波长10.6uM),输出能量可达25KW,可做出2mm板厚单道全渗透焊接,工业界已广泛用于金属的加工上。 20世纪80年代中期,激光焊接作为新技术在欧洲、美国、日本得到了广泛的关注。1985年德国蒂森钢铁公司与德国大众汽车公司合作,在Audi100车身上成功采用了全球第一块激光拼焊板。90年代欧洲、北美、日本各大汽车生产

特种加工:名词解释-填空-简答题..教学提纲

12-13-2 《特种加工》复习: 名词解释 1.特种加工:特种加工亦称“非传统加工”或“现代加工方法”,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除、变形、改变性能或被镀覆等。 2.电火花加工:电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工。 3.极性效应:在电火花加工过程中,无论是正极还是负极,都会受到不同程度的电蚀。即使是相同的材料,正负电极的电蚀也是不同的。这种单纯由于正负极性不同而彼此电蚀量不一样的现象叫做极性效应。 4.电火花线切割:电火花线切割简称线切割。它是在电火花穿孔、成形加工的基础上发展起来的。它不仅使电火花加工的应用得到了发展,而且某些方面已取代了电火花穿孔、成形加工。如今,线切割机床已占电火花机床的大半。 5.极间介质消电离:放电通道中的带电粒子复合为中性粒子,恢复本次放电通道处间隙介质的绝缘强度,以免总是重复在同一处发生放电发生而导致电弧放电,这样可以保证按两级相对最近处或电阻率最小处形成下一击穿放电通道。 6.混气电解加工:混气电解加工就是将一定压力的气体(主要是压缩空气)用混气装置使之与电解液混合在一起,并使电解液成分为包含无数气泡的气液混合物,然后送入加工区进行电解加工。 7.电化学加工:电化学加工也称为电解加工,是利用金属在外电场作用下的高速局部阳极溶解实现电化学反应,对金属材料进行加工的方法。 8.阳极溶解:金属作为阳极发生氧化反应的电极过程。 9.阴极沉淀: 10.电极极化:一般将有电流通过电极时,电极的平衡状态被破坏,阳极电位向更加正的方向移动,阴极的电位向更加负的方向移动,电极电位偏离平衡电位的现象称为电极极化。11.电化学钝化:在电解加工过程中海油一种叫钝化的现象,它使金属阳极溶解过程的超电位升高,使电解速度减慢。 12.电解加工:基于电解过程中的阳极溶解原理并借助于成型的阴极,将工件按一定形状和尺寸加工成型的一种工艺方法,称为电解加工。 13.电解抛光:是以被抛工件为阳极,不溶性金属为阴极,两级同时浸入到电解槽中,通以直流电而产生有选择性的阳极溶解,从而达到工件表面光亮度增大的效果。 14.电解磨削:是由电解作用和机械磨削作用相结合而进行加工的,比电解加工的加工精度高,表面粗糙度小,比机械磨削的生产率高。 15.电铸加工:电铸是在芯模表面电沉积金属,然后使两者分离来支取零件的工艺。 16.涂镀加工:涂镀又称为刷镀或无槽电镀,是在金属工件表面局部快速电化学沉积金属的技术。 17.激光加工:是利用光的能量,经过透镜聚焦,在焦点上达到很高的能量密度,考光热效应来加工各种材料 17.激光打孔: 18.激光切割:材料在激光热源照射下,工件与激光束相对移动,进行加工的过程。 19.激光焊接:激光焊接是以聚焦的激光束作为能源,利用轰击焊件所产生的热量进行焊接的一种高效精密的焊接方法。 20.激光淬火:激光淬火是以高密度能量激光束作为能源,迅速加热工件并使其自冷硬化的

焊接课后答案及名词解释

焊接课后答案及名词解 释 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

1.试述熔化焊接、钎焊和粘接在本质上有何区别 熔化焊接:使两个被焊材料之间(母材与焊缝)形成共同的晶粒 针焊:只是钎料熔化,而母材不熔化,故在连理处一般不易形成共同的晶粒,只是在钎料与母材之间形成有相互原于渗透的机械结合。 粘接:是靠粘结剂与母材之间的粘合作用,一般来讲没有原子的相互渗透或扩散。 2.怎样才能实现焊接,应有什么外界条件 从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。这样,就会阻碍金属表面的紧密接触。为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施: 1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 3.焊条的工艺性能包括哪些方面(详见:焊接冶金学(基本原理)p84) 焊条的工艺性能主要包括:焊接电弧的稳定性、焊缝成形、在各种位置焊接的适应性、飞溅、脱渣性、焊条的熔化速度、药皮发红的程度及焊条发尘量等 4.低氢型焊条为什么对于铁锈、油污、水份很敏感(详见:焊接冶金学(基本原理)p94) 由于这类焊条的熔渣不具有氧化性,一旦有氢侵入熔池将很难脱出。所以,低氢型焊条对于铁锈、油污、水分很敏感。 5.焊剂的作用有哪些 隔离空气、保护焊接区金属使其不受空气的侵害,以及进行冶金处理作用。 6.能实现焊接的能源大致哪几种它们各自的特点是什么 见课本p3 :热源种类 7.焊接电弧加热区的特点及其热分布(详见:焊接冶金学(基本原理)p4) 热源把热能传给焊件是通过焊件上一定的作用面积进行的。对于电弧焊来讲,这个作用面积称为加热区,如果再进一步分析时,加热区又可分为加热斑点区和活性斑点区; 1)活性斑点区活性斑点区是带电质点(电子和离于)集中轰击的部位,并把电能转为热能; 2)加热斑点区在加热斑点区焊件受热是通过电弧的辐射和周围介质的对流进行的。 8.什么是焊接,其物理本质是什么 焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。 物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性) 2)微观:焊接是在焊件之间实现原子间结合。 9,焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同P8 (1)原材料不同:普通冶金材料的原材料主要是矿石、废钢铁和焦炭等;而焊接化学冶金的原材料主要是焊条、焊丝和焊剂等。(2)反应条件不同:普通化学冶金是对金属熔炼加工过程,是在放牧特定的炉中进行的;而焊接化学冶金过程是金属在焊接条件下,再熔炼的过程,焊接时焊缝相当于高炉。 10.为什么电弧焊时熔化金属的含氮量高于它的正常溶解度(详见:焊接冶金学(基本原理) p34) 电弧焊时熔化金属的含氮量高于溶解度的主要原因在于:1)电弧中受激的氮分子,特别是氮原子的溶解速度比没受激的氮分子要快得多;2)电弧中的氮离子可在阴极溶解;3)在氧化性电弧气氛中形成NO,遇到温度较低的液态金属它分解为N和O,N迅速溶于金属。

激光焊接知识集锦讲解

激光焊接知识集锦 目录 激光焊接基本原理 ....................................................................... - 2 - 激光焊接概述........................................................................... - 4 - 激光传感器焊接技术的介绍与发展 ......................................................... - 6 - 激光焊接技术及其在汽车制造中的应用 ..................................................... - 8 - 激光塑料焊接概述..................................................................... - 13 -

激光焊接基本原理 一、激光基本原理 1、LASER 是什么意思 Light Amplification by Stimulated Emission of Radiation (通过诱导放出实现光能增幅)的英语开头字母 2、激光产生的原理 激光——“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。 为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。含有钕(ND )的YAG 结晶体发生的激光是一种人眼看不见的波长为 1.064um 的近红外光。这种 光束在微弱的受激发情况下,也能实现连续发振。YAG 晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。 3、激光的主要特长 a、单色性一一激光不是已许多不同的光混一合而成的,它是最纯的单色光(波长、频率) b、方向性激光传播时基本不向外扩散。 c、相干性一一激光的位相(波峰和波谷)很有规律,相干性好。 d、高输出功率一一用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。 二、YAG 激光焊接 激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激 光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。 常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。前者主要用于单点固定连续和薄件材料的焊接。后者主要用于大厚件的焊接和切割。 I、激光焊接加工方法的特征 A、非接触加工,不需对工件加压和进行表面处理。 B、焊点小、能量密度高、适合于高速加工。 C、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、特种材料。 D 、不需要填充金属、不需要真空环境(可在空气中直接进行)、不会像电子束那样在 空气中产生X 射线的危险。 E、与接触焊工艺相比.无电极、工具等的磨损消耗。 F、无加工噪音,对环境无污染。 G、微小工件也可加工。此外,还可通过透明材料的壁进行焊接。 H、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。

激光焊接原理讲解-共12页

激光焊接是激光材料加工技术应用的重要方面之一,又常称为激光焊机、镭射焊机,按其工作方式常可分为激光模具烧焊机(手动焊接机)、自动激光焊接机、激光点焊机、光纤传输激光焊接机,光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池以达到焊接的目的。 一、激光焊接的主要特性。 20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 与其它焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导。

焊接与激光焊接应用介绍

焊接与激光焊接应用介绍 轿车车身都采用金属构件和复盖件的分块组合。将各种预先制好的结构件,例如风窗立柱,门立柱、门上横、前后冀子板、前后围板、顶盖等零部件通过焊接和铆接的方式进行组合装配。其中焊接是汽车装配流水线上不可缺少的工序。 车身焊接主要有电阻电焊、缝焊、二氧化碳焊等方式。 电阻电焊通过施加在点焊电极上的电流将零件的接触表面熔化,然后在压力作用下连接在一起,主要用于车身构件及车架的焊接。缝焊用滚轮电极代替电阻电焊的点焊电极,滚轮电极传递焊接电流和压力,其转动与零件的移动相互协调,产生连续的焊缝,主要用于密封性焊接或缝点焊工件,例如油箱。二氧化碳焊是一种电弧焊,即局部加热来熔化和连接零件而不需要施压的一种焊接方法,在电极与工件之间的电弧作为热源,同时施加二氧化碳遮住电弧和熔化区,使之与大气隔开,主要用于车身蒙皮的焊接。 根据不同的零件和要求,在汽车工业中采用了多样化的焊接技术,应用到的焊接技术还有闪光焊、电子束焊、电栓焊、脉冲焊、摩擦焊等等。近年,还出现了激光焊,并且发展得很快,我国生产的一些轿车车身焊接,也采用了激光焊接。 激光技术采用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,如果焦点靠近工件,工件就会在几毫秒内熔化和蒸发,

这一效应可用于焊接工艺。激光焊接设备的关键是大功率激光 器,主要有两大类,一类是固体激光器,又称Nd:YAG激光器。Nd(钕)是一种稀土族元素,YAG弋表钇铝柘榴石,晶体结构与红宝石相似。Nd:YAG激光器波长为1.06卩m主要优点是产生的光束可以通过光纤传送,因此可以省去复杂的光束传送系统,适用于柔性制造系统或远程加工,通常用于焊接精度要求比较高的工件。汽车工业常用输出功率为3-4千瓦的Nd:YAG激光器。另一类是气体激光器,又称CO2激光器,分子气体作工作介质,产生平均为10.6 am的红外激光,可以连续工作并输出很高的功率,标准激光功率在2-5 千瓦之间。 激光焊接的特点是被焊接工件变形极小,几乎没有连接间隙,焊接深度/ 宽度比高,因此焊接质量比传统焊接方法高。但是, 如向保证激光焊接的质量,也就是激光焊接过程监测与质量控制是一 个激光利用领域的重要内容,包括利用电感、电容、声波、光电等各种传感器,通过电子计算机处理,针对不同焊接对象和要求,实现诸如焊缝跟踪、缺陷检测、焊缝质量监测等项目,通过反馈控制调节焊接工艺参数,从而实现自动化激光焊接。 在激光焊接中,光束焦点位置是最关键的控制工艺参数之一,在一定激光功率和焊接速度下,只有焦点处于最佳位置范围内才能获得最大熔深和好的焊缝形状。在实际激光焊接中,为了避免和减少影响焦点位置稳定性的因素,需要专门的夹紧和设备技术,这种设备的精确程度与激光焊接的质量高低是相辅相成的。

激光焊接工艺参数讲解

激光焊接原理与主要工艺参数 作者:opticsky 日期:2006-12-01 字体大小: 小中大 1.激光焊接原理 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。 激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。 2. 激光深熔焊接的主要工艺参数 1激光功率。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。如果激光功率低于此阈值,工件仅发生表面熔化,也即焊接以稳定热传导型进行。而当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,

相关文档
相关文档 最新文档