文档视界 最新最全的文档下载
当前位置:文档视界 › 饲料级纳米氧化锌是做什么用的

饲料级纳米氧化锌是做什么用的

饲料级纳米氧化锌是做什么用的
饲料级纳米氧化锌是做什么用的

饲料级纳米氧化锌是锌的一种氧化物。难溶于水,可溶于酸和强碱。具体作用表现在这些方面:

1、促进动物生长发育

各种动物缺少该产品的共同特征是生长停滞。它能够增加食欲,提高采食量和饲料消化率而促进生长;并且通过提高机体免疫力,增加机体抗氧化能力,增加某些酶蛋白的合成,促进胰岛素和胰岛素样生长因子I( IGF- I) 等的合成和分泌,加强合成代谢,从而促进机体生长,同时还能参与激素的合成及作用。

2、维持动物免疫器官的结构和功能

适宜的纳米氧化锌水平可促进免疫细胞的发育、DNA合成和细胞分化增殖。缺少可致使淋巴细胞增殖受抑制,可以引起免疫活性细胞形态结构发生变化,以及脾、胸腺等免疫相关组织器官重量下降,胸腺素分泌减少。

3、影响畜禽皮肤及毛发等的生长

羔羊严重缺少时,角的正常环状结构消失,最终脱落,蹄壳脱落并裂开。动

物缺少时经常表现出:皮肤的损害,在口鼻四周、后肢膝部以下尤为明显;蹄、角异常;被毛粗乱并伴有不同程度的脱毛,甚至脱光。

4、对生物膜的功能和结构起关键的作用

纳米氧化锌与磷脂及膜蛋白巯基相互作用来稳定生物膜。可以诱导产生氧化锌金属硫蛋白。保护膜蛋白的构象和抑制许多重金属诱导产生的自由基造成的过氧化作用。

河南省磐鸿纳米科技有限公司生产销售的产品密度适中,流动性好,纳米级,吸收利用率高,抗腹泻强,铅、砷、镉不到1PPM,远优于其他的厂家,用户可以致电咨询了解。

ZnO纳米带的光学性能研究

摘要:ZnO作为一种重要的宽带隙半导体材料,具有较好的光学性能。ZnO纳米带以其统一的几何尺寸,较少的线缺陷,作为特殊的纳米材料,展现了其独特的性质。本文综述了ZnO纳米带的制备方法,掺杂不同物质对其光学性能的影响,也对当前对ZnO纳米技术的研究与应用做了简要介绍,并对其今后的研究进行了相应的展望。 关键词:ZnO纳米带光学性质 Abstract:ZnO is an important wide band gap semiconductor material with special optical properties. ZnO nanobelts with its uniform geometry, less linear defects, as the special nanomaterial, demonstrated its unique character. This paper reviews the methods of synthesizing ZnO nanobelts, doped optical properties of different substances to their different effects, but also on the current of the ZnO nanotechnology research and application of a brief introduction, and the future prospects for research accordingly. Key words:ZnO nanobelts optical properties

氧化锌常识

1 普通氧化锌的生产工艺及制备方法进展 普通氧化锌包括直接法氧化锌、间接法氧化锌和湿法氧化锌。其中直接法氧化锌占10% -20%,间接法氧化锌占70%气80%,而湿法氧化锌只占1%-2%。 直接法也称“韦氏炉”法,因首先出现在美国,又称“美国法”。直接法生产氧化锌,优点是成本较低,热效率高。含锌的原料在1000-1200℃下,被含碳物质(主要是煤)还原。锌原料的含锌质量分数在60%-70%。反应设备一般选用回转窑。常用的回转窑长30m,直径2.5 m左右。燃烧气中含有的锌蒸气和CO,可导入氧化设备,使氧化反应进行完全,再经过热交换器,冷却后进入布袋分离器,以收集成品。直接法生产的氧化锌为针状结构,是工业等级氧化锌。直接法氧化锌因含有未能完全分离的杂质,白度也较差,但因价格较低而有一定的销路。 间接法出现于19世纪中叶,法国使用金属锌在坩埚中高温气化,并使锌蒸气氧化燃烧,而收集到氧化锌粉末,因此也称为“法国法”。工业上,间接法生产ZnO是先将锌块在高温下熔融而蒸发成锌蒸气,进而氧化生成ZnO。产品品型及物理性能与氧化的条件有关,而产品的纯度与所用的锌块纯度有关。 间接法也可使用锌渣等低规格的含锌原料,但需要采用气-液相的分离技术,预先分离出Cd,Pb,Fe及Al等杂质,以提高锌蒸气的纯度。除去杂质的措施如下:1)采用坩埚法或马弗炉法,使不易蒸发的Fe和Pb等杂质成渣而分离;2)采用分馏法,使高温蒸发的原料蒸气中的Cd,Pb,Fe,Al及Cu等杂质在通过由碳化硅材料制成的分馏塔板时得以分离;3)采用二室炉分离法,原料预先在一室炉中分离杂质,进入第二室后,在无氧存在的条件下进行蒸馏,以提高锌蒸气的纯度,如纯度不够,还可以继续用分馏法分离少量的Pb;4)采用回转窑法,在回转窑中使物料熔化、蒸馏,并有部分氧化,可控制温度、CO2及O2的分压等操作条件,以减少Pb杂质的含量,还可控制生成的氧化锌的颗粒和晶体形状。 间接法生产的氧化锌为无定形,可制成光敏氧化锌、彩电玻壳用氧化锌、药用氧化锌及饲料级氧化锌等。 湿法是以ZnSO4或ZnCl2为原料,经去除杂质,加入Na2CO3溶液,生成Zn2(OH)2CO3沉淀,再经过漂洗、过滤、干燥,将所得干粉焙烧得ZnO。所制得的ZnO具有较大的比表面积,所以也有称其为活性ZnO。其反应式如下: ZnSO4+Na2CO3→ZnCO3+N a2SO4 沉淀中可能含有一定量的Zn(OH)2,焙烧后释放出CO2和水蒸气,而得到ZnO。 2 活性氧化锌生产方法及改进 2.1 有机化合物的碱性还原法 1951年日本特许公报昭26-113报道了这种方法。即用有机化合物的碱性还原废锌,再用水洗净,加热到高温,单独或混以少量的硫,生产适合橡胶填料用的活性氧化锌。 2.2 通入二氧化碳的方法

利用氧化锌矿制备饲料级氧化锌的工艺流程

利用氧化锌矿制备饲料级氧化锌的工艺流程 摘要:饲料级的氧化锌基本上都是利用富含氧化锌的化工原料经过一定的处理后所得而成的,此处通过实验条件下的操作流程来进一步解释和说明饲料级氧化锌的制备过程,而工业大批量的生产模式、流程及原理也是如此。 1.原料及相关实验仪器 主要的原料为氧化锌矿、硫酸(质量分数30%)、过氧化氢(质量分数为27.5%的过氧化氢溶液)和碳酸钠(质量分数98%)等。氧化锌矿的主要化学组成成分为锌55.7%、铅3.76%、铁3.12%、二氧化硅0.86%、铜0.95%、镉0.39%、砷未检测出。主要的设备有:磁力搅拌器、布氏漏斗、恒温水浴、恒温烘箱、马弗炉和1000mL的三口烧瓶等。 2.锌的浸出 取100g的氧化锌矿粉,加入装有一定量硫酸的1000mL三口烧瓶中,90℃下恒温搅拌 两小时,过滤去渣。原料中主要元素多以氧化物的形式存在,说话的金属氧化物将发生以下反应: MO n 2+nH + M n+ +n 2 H2O 式中M表示Zn、Fe、Cu、Cd等。在酸浸过程中除Zn以外,Pb、Fe、Si、Cu、Cd等杂质元素将大量被浸出,浸出液的组成及含量为锌106.3 g/L、铅0.31 g/L、铁0.65 g/L、二氧化硅0.032 g/L、铜0.16g/L、镉0.06 g/L、砷未检测出。 3.浸出液的净化 浸出液的净化主要包括三个步骤:①双氧水氧化除铁:将浸出液加入1000mL三口烧瓶中,80℃恒温下加入双氧水,控制双氧水用量为理论量的1.5倍,搅拌反应一小时。在酸性条件及氧化剂的共同作用下,浸出液中大量的二价铁转化为三价,溶液由深绿色变成红棕色。

然后向溶液中加入氧化锌矿粉,调节pH值至5.0~5.3,此时三价铁发生反应生成氢氧化铁沉淀被除去。②锌粉的置换:饲料级氧化锌产品对重金属杂质如Pb、Cu、Cd的含量要求相当严格(要求质量分数不大于0.0005%),浸出液中的重金属杂质会影响饲料级氧化锌产品质量,必须除去。实验采用锌粉置换除去溶液中的Pb、Cu、Cd等杂质,同时又不会引入新的杂质。③深度除杂:据相关文献,金属硫化物CdS、PbS、CuS的溶度积比ZnS的小得多,故可以加入硫化钠生成难溶性沉淀除去Cd、Pb、Cu等杂质。为确保重金属杂质沉淀完全而又不致于引入过多新杂质影响产品质量,控制硫化钠的加入量为理论量的105%。 4.碱锌合成 将碳酸钠加入精制硫酸锌溶液中,得到碱式碳酸锌沉淀。反应式如下: 3Na2CO3+ 3ZnSO4+ 3H2O 3Na2SO4+ZnCO3· 2Zn(OH)2·H2O↑+ 2CO2 5.洗涤干燥与煅烧 将碱式碳酸锌转入布氏漏斗进行固液分离,分3次每次采用100mL去离子水洗涤滤饼,后将滤饼取出放置在恒温烘箱设定干燥温度为110℃烘干两小时,后置于马弗炉中在900℃下煅烧四小时得到饲料级氧化锌产品。 结语: 凡特施特所生产的饲料级氧化锌正是严格按照类似的相关规定和原理进行一步一步的分离和提纯,最后得到高纯度的饲料级氧化锌,请买家放心使用。

纳米氧化锌

水热法 1、分别称取适量醋酸锌、氢氧化钠放入烧杯中,加入一定量水, 搅拌均匀,再向其中加入 适当比例的水和丙三醇,搅拌均匀后再加入少量聚丙烯酰胺,加热使其完全溶解直至变为白色均状溶液,然后超声30min, 移入聚四氟乙烯内胆,再装入高压反应釜,密封后放入鼓风干燥箱中180 ℃下反应20 h 后取出, 冷却至室温后离心分离,用去离子水反复洗涤3~4 次, 在90 ℃下真空干燥5 h 后取出样品。 2、称取一定量的醋酸锌,在室温下溶解于100 mL去离子水中,滴加少量醋酸控制水解,使 其形成均匀的透明溶液。将氨水溶解于一定比例的乙醇溶剂中,将该氨水溶液缓慢滴加到醋酸锌溶液中,用氢氧化钠水溶液对混合液体的pH 值进行调节,并持续搅拌30 min。 将该混合液体转移到高压釜中,进行水热反应。经过140 ℃水热反应4 h,离心分离固体产物,并用无水乙醇和去离子水重复洗涤3 次,干燥后收集样品。 3、将Zn( NO3)2·6H2O 和六次甲基四胺( HMT) 配置成0. 5 mol /L 的混合水溶液作为旋涂的溶胶。采用溶胶凝胶法在ITO 玻璃衬底上均匀旋涂一层ZnO 溶胶,为了得到均匀致密的薄膜, 200 ℃预处理后反复旋涂3次, 400 ℃烧结1 h 可得到ZnO 种子层。选Zn( NO3)2·6H2O 和六次甲基四胺( HMT) 配置成0. 05 mol /L的混合水溶液,Zn( NO3)2·6H2O 和HMT 为等摩尔浓度。将配置好的溶液倒入反应釜中,然后将涂覆有氧化锌种子层的ITO 玻璃片悬浮于溶液中( 氧化锌薄膜朝下) ,或斜靠在反应釜的壁面( 氧化锌薄膜朝壁面) 。水热反应温度95 ℃,反应时间分别为2 h、4 h、6 h 和8 h,反应结束后,将反应釜急速冷却到室温取出样片,用去离子水反复冲洗,最后在洁净烘箱中60 ℃干燥10 h,即得到不同粒径的ZnO 纳米棒,下文将其分别称为样品1 ~ 4。样品5 为反应温度和时间分别95 ℃和6 h,自然冷却2 h 的产物。

铟掺杂的氧化锌纳米带的制备和发光特性

第37卷第2期 人 工 晶 体 学 报 Vol .37 No .2 2008年4月 JOURNAL OF SY NTHETI C CRYST ALS Ap ril,2008  铟掺杂的氧化锌纳米带的制备和发光特性 卢会清,高 红,张 锷,张喜田 (哈尔滨师范大学物理系,哈尔滨150080) 摘要:以混合的Zn O 粉和金属I n 作为前驱物,通过化学气相沉积方法在Si 衬底上合成了I n 掺杂的Zn O 纳米带。利用场发射扫描电子显微镜、透射电子显微镜以及附带的能谱仪对它们的结构和成分进行了表征。结果表明,Zn O 纳米带沿<101-0>方向生长;I n 的掺杂浓度是21%原子分数。讨论了Zn O 纳米带的形成机制和光致发光特性。关键词:Zn O 纳米带;掺杂;化学气相沉积 中图分类号:O484 文献标识码:A 文章编号:10002985X (2008)022*******Syn thesis and O pti ca l Properti es of I nd i u m 2doped Z i n c O x i de Nanobelts LU Hui 2qing,G AO Hong,ZHAN G E,ZHAN G X i 2tian (Depart m ent of Physics,Harbin Nor mal University,Harbin 150080,China ) (Received 10July 2007) Abstract:I n 2doped ZnO nanobelts were synthesized on silicon substrates thr ough che m ical vapor depositi on method using a m ixture of ZnO powders and I n as p recurs or .The nanobelts were characterized by field 2e m issi on scanning electr on m icr oscopy,high 2res oluti on trans m issi on electr on m icr oscopy and energy dis X 2ray s pectr oscopy . The results show that the nanobelts gr ow al ong the <101-0>directi on and content of I n in the nanobelts is 21at%.The for mati on mechanis m and phot olum inescence of the nanobelts were discussed . Key words:zinc oxide nanobelts;dop ing;che m ical vapor depositi on 收稿日期:2007207210 基金项目:国家自然科学基金(No .10374024,60776010);黑龙江省人事厅博士后启动基金;黑龙江省教育厅海外学人项目(1055HZ O22); 哈尔滨师范大学博士启动基金 作者简介:卢会清(19812),女,黑龙江省人,硕士研究生。 通讯作者:张喜田,教授。E 2mail:xtzhangzhang@hot m ail .com 1 引 言 ZnO 是直接带隙宽禁带半导体材料,室温下的带隙宽度为3.37e V,具有较高的激子束缚能(~60me V ),保证其室温下紫外激光发射。一维及准一维Zn O 纳米材料在纳米光电器件和传感器件中具有潜在的应用价值,所以近年来备受研究人员的关注,同时也取得了重要进展。人们探索了许多方法和技术合成一 维Zn O 纳米材料,如化学气相沉积法(CVD )[124],金属有机化学气相沉积法[5],激光沉积法[6]和溶胶2凝胶 法[7]等,其中CVD 是一种常见的合成方法。在CVD 方法中,合成样品的形貌和尺寸与前驱物的组成、反应温度、反应压强、载气流速、催化剂等实验参数密切相关。通过选择适当参数,各种不同形貌的一维ZnO 纳

饲料级氧化锌、硫酸锌、硫酸锰生产工艺

无机盐生产厂学习总结 一、衡山绿衡氧化锌生产: 1、主要生产流程:原料验收—氨浸—氧化除杂—置换压滤—浓缩干燥工序(蒸氨—漂洗—闪蒸)—煅烧(成品ZnO) 2、关键点控制: 1)、原料验收(次氧化锌:As≤30 ppm) 2)、氨浸(循环氨水、碳酸氢铵、氨水) Zn形成可溶的碱式四铵络锌 3)、多次除杂(氧化除:Fe、As、Mn 、Zn粉置换除:Pb、Cd)直至产品符合标准 A:置换除杂:置换前检测压滤后清液Pb和Cd含量,加入适量的Zn粉置换;B:氧化除杂:加入氧化剂之前检测Fe、Mn、As的含量,加入适量的氧化剂;PH:4.5(ZnO),除杂最佳PH,温度是60-80℃; FeSO4功能:净水剂(砷酸铁沉淀:量少、絮状沉淀,加入了FeSO4后起促沉剂作用,达到除杂的目的); C:除杂后检测每次压滤后净液(Fe、Mn、As、Pb、Cd),如果超标重复置换和氧化工序; 4)精液浓缩干燥工序(蒸氨-漂洗-闪蒸-煅烧) 蒸氨:碱式四铵络锌-碱式碳酸锌,氨回收利用; 漂洗:碱式碳酸锌不溶于水,可洗掉SO4-和Cl-离子;(此道工序为兴嘉指定添加) 闪蒸干燥:碳酸锌湿料变干料; 煅烧:碱式碳酸锌-氧化锌 二、衡山华兴一水硫酸锌生产: 1、酸浸(硫酸) 2、除杂:除铁、砷(双氧水)、铅、铬等 3、浓缩干燥

三、嘉威一水硫酸锌、七水硫酸锌生产: 1、主要生产流程:原料控制—中浸+高酸浸取—多次除杂(氧化、置换)—隔膜压滤—浓缩干燥—高温结晶(一水硫酸锌)、低温结晶(七水硫酸锌) 2、关键点控制: 1)、原料控制: 次氧化锌来源:管道灰、布袋灰 管道灰:粒度大,浸出率(85%)低于布袋灰,Zn含量低,所以杂质等有害物质多些; 布袋灰:粒度细,浸出率高(95%),Zn含量高些;(我公司选用的原料) 主要检测指标:Zn、Pb、Cr、Ni、Fe、Cu等。 原料外观判断: 浅灰色:Fe含量偏高 青绿色:Cl含量偏高 灰白色:镉和铅含量偏高 2)、中浸、高酸浸取杂质 中浸后反应液状态:45波美度,1个波美度5g Zn 高酸浸取:中浸液压滤后的渣泥进行高酸浸取,浸出杂质里面的Zn; 3)、除杂(富氧除杂、置换除杂) A:富氧除杂:池底鼓氧除杂(区别于常规的高锰酸钾和双氧水除杂) 双氧水缺点:1:造成氧化剂残留;2:双氧水除杂渣液成胶状,容易带走Zn,造成滤液Zn含量降低; 高锰酸钾缺点:1:氧化剂残留;2:带来Mn离子残留; B:PH=5.0,PH最适宜沉淀的生成,;我们用ZnO或ZnCO3(一般厂家用石灰)C:多次除杂(3次);每次除杂前都检测重金属残留,加入适量的氧化剂或者Zn粉 D:隔膜压滤机,重金属残留少,特别是Ca、Mg的除去效果好,Ca、Mg味苦,而且具有轻泄作用 4)浓缩干燥 A:有毒物质(二噁英和多氯联苯)

纳米氧化锌综述

纳米氧化锌综述 概述 纳米氧化锌是一种多功能性的新型无机材料,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点[1]。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。 纳米氧化锌的性质 纳米氧化锌是一种半导体催化剂的电子结构,在光照射下,当一个具有一定能量的光子或者具有超过这个半导体带隙能量Eg的光子射入半导体时,一个电子从价带NB激发到导带CB,而留下了一个空穴。激发态的导带电子和价带空穴能够重新结合消除输入的能量和热,电子在材料的表面态被捕捉,价态电子跃迁到导带,价带的孔穴把周围环境中的羟基电子抢夺过来使羟基变成自由基,作为强氧化剂而完成对有机物(或含氯)的降解,将病菌和病毒杀死[2]。 纳米氧化锌的制备 1.纳米氧化锌的液相化学制备技术 除了能够准确控制粒子的化学组成外,液相法与其它化学制备技术相比还具有设备简单、批量大、原料易得、相对来说粒子大小集中、晶相结构及形状容易控制、产物活性好、成本低等特点。液相法可以分为沉淀法、溶胶-凝胶法、微乳液法、水热合成法、溶剂蒸发法等。 1.1化学沉淀法 1.1.1直接沉淀法 直接沉淀法是直接混合制备氧化锌的锌盐与沉淀剂溶液的方法,特点是条件易于控制,操作简单,适于大批量制备粉体材料,其缺点是副产物离子的洗涤较困难,且产物粒径分布较宽,干燥过程中粒子易于团聚。郭志峰等[3]向乙酸锌溶液滴加草酸,同时搅拌,伴有草酸锌沉淀生成。将沉淀物送入烘箱烘干,烘干的草酸锌粉末置洗净坩埚中,在箱式电阻炉中反应,制得氧化锌晶体。 1.1.2 均匀沉淀法 均匀沉淀法是将反应物之一通过化学反应缓慢释放出来并导致沉淀反应发生的技术,因此混合反应物溶液沉淀反应并不立即发生。其特点是避免了直接沉淀法中的局部过浓,从而大大降低沉淀反应的过饱和度。洪若瑜等[4]采用连续微波加热用硫酸锌和尿素制备了粒径为8~30nm的纳米氧化锌。 1.2溶胶-凝胶法 溶胶-凝胶法是以无机盐或金属醇盐为前驱物,经水解缩聚过程逐渐胶化,然后作相应处理得到所需纳米粉体,方法多采用有机溶剂。该方法合成的粉体纯度高,化学成分均匀,颗粒度小且分布范围窄。溶液的pH值、浓度、反应时间及温度均是影响溶胶-凝胶质量的主要因素。 Tianbao Du等[5]采用溶胶-凝胶浸渍涂布技术制备了氧化锌半导体薄膜,他 们以耐热玻璃为模板,在不断搅拌中把模板加入Zn( CH 3C00) 2 /乙醇溶液中,取出

Ag ZnO纳米复合材料的制备

运城学院应用化学系 文献综述 Ag/ZnO纳米复合材料的制备 学生姓名王新光 学号2010080412 专业班级应用化学1004班 批阅教师 成绩 2013年06月

Ag/ZnO纳米复合材料的制备 1. 研究背景 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。我国著名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。 2.制备方法 2.1采用沉淀法制备 周广、邓建成、王升文[1]采用配位均匀共沉淀法制备了平均粒径约为20 nm的Ag/ZnO纳米复合材料。利用XRD、TEM及UV-Vis等技术对样品进行了表征,并将其与用浸渍光分解法和光还原沉积法制备的样品在形貌结构及催化降解甲基橙溶液和工业废水性能方面进行了比较。结果表明,采用配位均匀共沉淀法制备的样品,表现出更加优异的催化降解性能。 庹度[2]采用沉淀法制备了纳米氧化锌,并以它为前驱物,采用高温分解法对纳米氧化锌进行了载银改性处理,制备了载银氧化锌复合纳米粒子,考察了载银前后纳米粒子的粒径与结构。研究发现,采用沉淀法制备的纳米氧化锌尺寸较为均匀,粒径约为170nm,分散性也较好;载银后的复合纳米粒子粒径略有增加,这来源于银在纳米氧化锌粒子外的成功包覆。 斯琴高娃、照日格图、姚红霞、嘎日迪[3]以ZnCl2.2H2O和无水(NH4)2CO3为原料,采用直接沉淀法制备了纳米氧化锌.TG-DTG-DTA、IR分析结果表明,前驱体为碱式碳酸锌[Zn5(OH)6(CO3)2].前驱体经300℃煅烧1 h、2 h、3 h后分别得到粒径不

晶体形貌的形成、控制与应用——以氧化锌为例

晶体形貌的形成、控制与应用 ——以氧化锌为例 The Morphology of Zinc Oxide Crystal 浙江大学材料科学与工程学系张昶 目录 前言 第一章六棱柱——结晶理论的预言 1.1 经典形核理论 1.2 晶体形貌理论1——BDFH理论 1.3 晶体形貌理论2——HP理论 1.4 六棱柱——晶体形貌理论对氧化锌晶体结构的预言 第二章不同形状的“铅笔”——氧化锌粉体的生长 2.1 预言与实际 2.2 “铅笔”的长大——氧化锌粉体的生长过程 2.2.1 化学反应过程 2.2.2 晶体生长过程 2.3 “橡皮头铅笔”——氧化锌粉体的外形调制 第三章“花簇”与“扇子”——氧化锌纳米粒子的生长 3.1 氧化锌纳米粒子的外形 3.2 氧化锌纳米粒子的生长过程 3.2.1 基本粒子的形成 3.2.2 “杉树”的长大 3.2.3 分化:“花簇”与“扇子”的形成 3.2.4 小节 第四章不同形貌的氧化锌的性能研究 4.1 不同氧化锌晶体的形貌及其制备方式 4.2 不同形貌氧化锌晶体的微波电磁性能及应用 第五章总结 附录一:参考文献 附录二:中英文名词对照表

前言 晶体是内部原子排列长程有序,外部形貌规则而平整的固体。我们该如何了解某种晶体的形貌呢?理论和实践是人类获得知识的两种方式,实践是检验理论的唯一方式。想要知道一种晶体的外形,除了通过做实验直接观察,我们还可以通过已有的理论预测。 氧化锌是一种无机材料,在电子、化工等领域均有广泛应用。它的外形多种多样,且与性质息息相关。如果能控制氧化锌晶体的外形,我们就能调制氧化锌晶体的性质。因此,研究氧化锌晶体的形貌形成对研究和生产有实际的帮助。 本篇论文中,我会从一系列的形核与生长理论出发,预测氧化锌晶体的外形;然后通过实验中观察到的粉体氧化锌和纳米氧化锌晶体外形,验证结晶理论;并给出氧化锌形成这些形状的机理。最后举例说明晶体形貌控制在研究和工业生产中的应用。 希望通过本论文的写作,能巩固我的晶体生长基础知识,并对日后的研究和工作提供帮助。 图0-1:丰富多彩的氧化锌纳米晶外形

饲料级氧化锌和饲料级硫酸锌的对比

饲料级氧化锌和饲料级硫酸锌的对比摘要:锌是动物机体不可或缺的一种微量元素,其与动物机体的生长性能、免疫性能和抗氧化性能密切相关。然而在畜牧业中可以通过多种不同形式的锌源饲料添加剂来满足动物机体对锌的需要。在诸多的无机锌源添加剂中以饲料级硫酸锌添加为最多,而饲料级氧化锌则相对略少,饲料级硫酸锌具有饲料级氧化锌不可替代的优点。 1.饲料级氧化锌 饲料级氧化锌为白色六角晶体或粉末,无气味,难溶于水,可溶于酸和氢氧化钠水溶液。氧化锌的元素含量为72%,其成本低,且对饲料中维生素影响小,储存时间相对长,稳定性好,不易结块,具有良好的加工特性,其能够作为饲料添加剂补充畜禽所需的锌,目前主要用在仔猪料中预防仔猪拉稀。但是氧化锌的生物利用度较低,生物利用度仅为50%~80%(相对于一水硫酸锌),其在畜禽日粮中的添加量较大,当高锌时其添加量能达2500 mg/kg。(《饲料添加剂安全使用规范》中仔猪断奶后前2周锌的允许添加量为≤2250 mg/kg),但其可抑制动物机体内其他矿物元素的吸收,而且畜禽粪便内由于含有大量的锌,也会对环境造成污染。Roselli等研究发现,Heo等研究结果发现,日粮中添加2500 mg/kg氧化锌能降低断奶仔猪腹泻率,促进仔猪生长。 2.饲料级硫酸锌 硫酸锌常见的存在形式为一水硫酸锌(其锌的元素含量为35.5%)和七水硫酸锌(其锌的元素含量为22.3%)。一水硫酸锌为白色结晶粉末,在干燥空气中易风化,100℃加热后会失去6分子水而变成一水硫酸锌。由于价格和生物利用度的原因,硫酸锌是目前饲料中锌最常见的添加形式,可用于补充日粮中缺乏的锌元素。研究表明,硫酸锌与氧化锌和碳酸锌相比,硫酸锌能显著提高蛋鸡饲料转化率、产蛋率及机体的抗氧化能力;张亚男等研究日粮中添加硫酸锌对海蓝灰蛋鸡生产性能和蛋壳品质的影响,结果表明,日粮中添加硫酸锌锌对产蛋后期蛋鸡生产性能无显著影响,但能改善蛋壳微观结构,提高蛋壳品质,且当日粮中添加

纳米氧化锌

纳米氧化锌材料 摘要:综述了纳米氧化锌的性能。描述了纳米氧化锌的制备研究, 随着科技的发展, 许多新的手段引入到了纳米氧化锌的合成工艺中弥补相互之间的不足。 关键词:纳米氧化锌,性能,制备,应用 1.纳米氧化锌的性能 1.1紫外线屏蔽 在整个紫外光区( 200~ 400 nm) ,氧化锌对光的吸收能力比氧化钛强。纳米氧化锌的有效作用时间长, 对紫外屏蔽的波段长, 对长波紫外线和中波紫外线均有屏蔽作用, 能透过可见光, 有很高的化学稳定性和热稳定性。它可用于制备抗紫外线、耐光老化性能好的涂料及其它的高分子材料。在乳胶漆中使用纳米氧化锌可以增大乳胶漆对紫外线辐射的抵抗力, 减弱乳胶漆对潮湿环境条件的敏感性,提高耐老化性。同时,氧化锌能够散射光线,使乳胶漆的遮盖力得到一定程度的改善。1.2补强性 一般的无机填料填充于聚合物中时具有如下缺点: 使用量大, 不能兼顾刚性、耐热性、尺寸稳定性和韧性同时提高。而在聚合物中添加少量的纳米粒子, 就可以使基体树脂的力学性能( 拉伸强度、弯曲强度、冲击强度、断裂伸长率等) 得到显著的提高, 并克服了以上提及的一般无机材料的缺点。 1.3抗菌、除臭性 氧化锌是传统无机抗菌材料, 在与细菌接触时, 锌离子缓慢释放出来。由于锌离子具有氧化还原性, 它能与细胞膜及膜蛋白结合, 并与其结构中有机物的巯基、羧基、羟基反应, 破坏其结构, 进入细胞后破坏电子传递系统的酶, 并与- SH 基反应, 达到抗菌的目的。在杀灭细菌之后, 锌离子可以从细胞内游离出来, 重复上述过程。氧化锌纳米粉末因为粒径小, 表面原子数量大大超过传统粒子, 表面原子由于缺少邻近的配位原子而具有很高的能量, 所以可增强氧化锌的亲和力, 提高抗菌效率。 1.4阻燃性 氧化锌可作为一种阻燃增效剂。它多数是和其它的增效剂或阻燃剂协同使用, 其增效作用与硼酸锌类似。ZnO 一般可作为PVC 的紫外吸收剂, 但其对PVC 的热稳定性有不利的影响, 因此在配方中一般采用的含量不高。在电缆涂层中使用纳米

一水硫酸锌在水产养殖中的作用及添加量

一水硫酸锌在水产养殖中的作用及添加量 一水硫酸锌在水产养殖中的作用 一水硫酸锌又名皓矾、锌矾。是一种无色针状结晶,易溶于水,是水产养殖中常用的杀纤毛虫类药物。硫酸锌属重金属盐类杀虫药,其在水中生成的锌离子与虫体细胞的蛋白质结合成蛋白盐,使其沉淀;另外锌离子容易与虫体细胞酶的巯基相结合,巯基为此酶的活性基因,当与锌离子结合后就失去了作用,从而达到杀灭的目的。用于防治河蟹、虾类等水产养殖动物的固着类纤毛虫病。另外硫酸锌中含有多种矿质元素,在水体中能有效调节虾蟹细胞内外渗透压,能有效抑制虾蟹在水体盐度聚降时的应激反应,同时还可起到表皮收敛的作用,使虾蟹体表清晰。从而提高商品上市率。 因温湿度高而多的闷热气候,伴随养殖物个体增大,鲜活饵料投量增加、排泄物累积,造成混浊、过肥的水体环境,是聚缩虫繁殖高峰期。聚缩虫在养殖物体表、附肢、鳃部频频寄生,形成所谓“长毛病”。患病的虾、蟹肉眼可见体表有绒毛状物且粘滑,导致虾蟹呼吸、脱壳困难。如不及时杀灭,会使养殖物行动迟缓、体质瘦弱、皮肤溃疡,抗病能力降低,严重的则会出现大量死亡。 一水硫酸锌的使用方法:加水搅拌,一次性全塘均匀泼洒。 一水硫酸锌的用量: 治疗用量: 每1m3水体用本品0.4至0.6g(每亩水体深1米用本品300-400g)一日1次,病情严重可连用1至2次。 预防用量: 每1m3水体用本品0.1-0.2g(每亩水体深1米用本品80-120g)每15-20日1次。 此药物尚未发现不良反应。 使用一水硫酸锌的注意要点: (1)鳗鱼禁止使用此药物。幼苗期及脱壳期中期需要谨慎使用。 (2)在施药时要尽量加大稀释量,根据水体深浅调节泼洒数量,保证施药浓度均匀。 (3)此病发生与水过肥有关,因此在施用一水硫酸锌之前.可先换水,再配合施用一些水质改良剂,既能提高疗效,又能延缓耐药性产生,杜绝频繁复发。 (4)使用后,及时、长时间全池增氧。

氧化锌

CdS/ZnO纳米棒的制备和性质研究 09应用物理孙家驹200910250101 ZnO是一种重要的Ⅱ―Ⅵ族半导体化合物,能广泛应用于光电领域本文采用水溶液生长法,以硝酸锌和氨水为前驱生长液,通过衬底表面晶种层的外延生长方式,制备了高取向的六方纤锌矿氧化锌(ZnO)纳米/微米棒晶阵列薄膜。研究了ZnO棒晶在水溶液中外延生长的机理。考察衬底微结构、生长时间和初始锌离子浓度等对ZnO棒晶尺寸的影响。在生长溶液中添加硝酸镉,通过调节生长液中硝酸镉的浓度、pH值、硝酸镉的加入方式以及生长时间等考察了对ZnO薄膜形貌的影响。在生长溶液中加入氯化钠、柠檬酸钠、硝酸铵以及氟化铵研究了 ZnO薄膜形貌的变化。 利用XRD、SEM、EDS、FESEM、TEM和HRTEM等方法分析和表征了制得的ZnO薄膜的物相组成、晶体形貌和组织结构等。实验发现在氨水体系中加入硝酸镉由于静电力作用,到正电的[Cd(NH3)6]2+与[Zn(NH3)4]2+竞争吸附于ZnO晶体(0001)负极性面,迫使大量[Zn(NH3)4]2+吸附于ZnO晶体的(1000)和(1010)晶面,导致棒径方向的生长速率增大,制备出直径高达700nm的ZnO棒晶,棒晶之间相互嵌合生长,得到了高取向、高致密度的ZnO多晶取向薄膜。生长溶液中加入柠檬酸钠后制备出片状ZnO;加入氟化铵后制备出针状ZnO。本文通过考察晶种层衬底微结构、生长时间和初始锌离子浓度等研究了水溶液法ZnO的外延生长规律。实验结果表明:排列整齐一致的

ZnO纳米棒晶阵列的制备需要衬底表面涂敷ZnO晶种层;随着生长时间的增加,棒的尺寸增大;生长液初始锌浓度主要影响棒的c轴方向的生长速率,浓度的增大有利于ZnO棒晶阵列的致密度以及整齐度;生长液中加入硝酸镉后,随着初始镉离子浓度的增加,棒径从~180nm增至~400nm;增大初始pH值后,ZnO棒晶的尺寸无明显变化,但薄膜由致密变的疏松,原因是小棒径的ZnO棒晶溶解;ZnO在原Zn(NO3)2/NH3·H2O体系中生长1h后再置入[Zn(NO3)2、Cd(NO3)2]/NH3·H2O生长体系随着二次生长液中镉离子浓度由0.012 M增至0.03 M时,棒径从~300 nm增至~700nm,且相互嵌合生长在一起,出现棒晶二次生长的现象。通过在生长液中添加Cd(NO3)2,可实现大范围棒径尺寸的调节,其棒径的范围为~180nm至~700nm,并能制备出高取向、高致密度的ZnO多晶薄膜。 制备步骤: 1先制备氧化锌籽晶,将MEA单乙醇胺、Zn(Ac)2、乙二醇甲醚按适量配比混合在60摄氏度温度下不断搅拌加热两个小时,然后取玻璃基底提拉十次,每次提拉都在300摄氏度温度下干燥十分钟。然后放入马弗炉,调整温度500摄氏度,一小时后取出。 2.在氧化锌籽晶的基础上制成氧化锌纳米棒。将0.1mol HTMs 六亚甲基四胺和0.1mol Zn(NO3)2混合,将带有氧化锌种子的玻璃片放入溶液,在95摄氏度温度下加热10h。取出后在500摄氏度温度下干燥2h。 3. 掺入硫化镉。取1 g CdCl2 2.5H2O,0.5 g SC(NH2)2和2 g KOH

纳米氧化锌的奇妙颜色

纳米氧化锌的奇妙颜色 --作者冯铸(高级工程师,工程硕士宝鸡天鑫工业添加剂有限公司销售经理) 纳米级活性氧化锌有多种生产方式,而每种生产方式及各个生产方式的工艺差别的不同,使得最终产品的颜色不同,即呈现微黄色的程度不同。 一、物质颜色的由来 物质的颜色都是其反光的结果。白光是混合光,由各种色光按一定的比例混合而成。如果某物质在白光的环境中呈现黄色(比如纳米氧化锌),那是因为此物体吸收了部分或者全部的蓝色光。物质的颜色是由于其对不同波长的光具有选择性吸收作用而产生的。 不同颜色的光线具有不同的波长,而不同的物质会吸收不同波长的色光。物质也只能选择性的吸收那些能量相当于该物质分子振动能变化、转动能变化及电子运动能量变化的总和的辐射光。换句话说,即使是同一物质,若其内能处在不同的能级,其颜色也会不同。比如氧化锌,不论是普通形式的,还是纳米形式的,高温时颜色均很黄,温度降低时颜色变浅。原因在于在不同温度时,氧化锌的分子能及电子能的跃迁能量不同,因此,对各种色光的吸收不同。 二、粗颗粒的氧化锌与纳米氧化锌的结构区别,及由此导致的分子内能差异 粗颗粒的直接法或间接法氧化锌是离子晶体。通常来说,锌原子与氧原子以离子键形式存在。由于其颗粒较粗,每个颗粒中氧原子与锌原子的数量相当多,而且两种原子的数量是一样的(按分子式ZnO看,是1:1)。但对于纳米氧化锌,其颗粒相当细,使得颗粒表面的未成键的原子数目大增。也就是说,纳米氧化锌不能再看成具有无限多理想晶面的理想晶体,在其表面,会有无序的晶间结构及晶体缺陷存在。表面这些与中心部分不同的原子的存在,使得其具有很强的与其他物质反应的能力,也就是我们通常所说的活性。 研究表明:在纳米氧化锌中,至少存在三种状态的氧,他们是晶格氧(位于颗粒内部)、表面吸附氧及羟基氧(--OH),而且,颗粒中锌的数量大于氧的数量,不是1:1的状况。这一点与普通氧化锌完全不同。纳米氧化锌的表面存在氧空缺,有许多悬空键,易于与其他原子结合而发生反应,这也是纳米氧化锌在橡胶中、催化剂中作为活性剂应用的基本原理。 由于纳米氧化锌与普通氧化锌的上述不同。使得其颗粒中分子能及电子能的跃迁变化能级不同,因此,其颜色也不同。普通氧化锌是白色,而纳米氧化锌是微黄色。 三、纳米氧化锌随时间及环境湿度变化,其颜色的变化 对于纳米氧化锌,由于其颗粒表面存在吸附氧及羟基氧,而这两种氧的数量会随着时间的变化而发生变化,比如水分的吸附及空气中氧气的再吸附与剥离等。这两种氧的数量的变化,必然会引起颗粒中分子及电子能级的变化,对光的吸收也不相同,因此,纳米氧化锌的颜色变浅。 四、纳米氧化锌的颜色与纯度的关系 纯的纳米氧化锌,其颜色是纯微黄的,显得色泽很亮。 当纳米氧化锌含杂质,如铁、锰、铜、镉等到了一定程度,会使氧化锌的颜色在微黄色中带有土色的感觉,那是因为铁、锰、铜、镉等的氧化物均为有色物质,相互混合后,几种色光交混,显出土白色。而纳米氧化锌(或者活性氧化锌,轻质氧化锌)随着时间变化而发生的颜色变化,会被土色所掩盖,而使颜色显得变化极小;当纳米氧化锌中含杂质再高时,其颜色会变得很深,更无法观测到其颜色随时间变化的情况。 如前所述,物质的颜色是其对外界光线选择性的吸收引起的。因此,在我们比较氧化锌的颜色时,最好在户外光亮的地方观察比较确切。选择不同的环境做比较,会得到不同的比较结果,这也体现了光反射的趣味性。 五、关于纳米氧化锌颜色的另外一种解释 纳米氧化锌是经碱式碳酸锌煅烧而得。在此过程中,如果碱式碳酸锌未能完全分解,纳米氧化锌的颜色就会显得白一些,因为碱式碳酸锌为纯白色。此外,在南方与北方生产,或在潮湿的雨天与干燥的天气下生产,也会影响颜色。因为纳米氧化锌可与湿空气及二氧化碳反应生成碱式碳酸锌,发生了煅烧过程的逆反应。这种变化对产品质量的影响有多大,现在尚难断定,因为碱式碳酸锌本身也是具有催化作用的,适于在脱硫剂及橡胶行业使用;而在饲料行业,碱式碳酸锌具有与氧化锌同样的功能,它也是一种饲料添加剂,同时,在饲料行业,我们关心的问题主要是重金属的含量是否达到标准要求。

饲料添加剂指标

饲料、饲料添加剂卫生指标 序号卫生指标项 目 产品名称指标试验 方法 备注 1 砷(以总砷 计)的允许量 (每千克产 品中),mg 石粉 ≤2.0 GB/T 13079 不包括国家主管部门批准使 用的有机砷制剂中的砷含量硫酸亚铁、硫酸镁 磷酸盐≤20 沸石粉、膨润土、麦饭石≤10 硫酸铜、硫酸锰、硫酸锌、碘化 钾、碘酸钙、氯化钴 ≤5.0 氧化锌≤10.0 鱼粉、肉粉、肉骨粉≤10.0 家禽、猪配合饲料≤2.0 牛、羊精料补充料 ≤10.0 猪、家禽浓缩饲料 以在配合饲料中20%的添加 量计 猪、家禽添加剂预混合饲料 以在配合饲料中1%的添加量 计 2铅(以Pb计) 的允许量(每 千克产品 中),mg 生长鸭、产蛋鸭、肉鸭配合饲料 ≤5 GB/T 13080 鸡配合饲料、猪配合饲料 奶牛、肉牛精料补充料≤8 产蛋鸡、肉用仔鸡浓缩饲料 ≤13 以在配合饲料中20%的添加 量计 仔猪、生长肥育猪浓缩饲料 骨粉、肉骨粉、鱼粉、石粉≤10 磷酸盐≤30 产蛋鸡、肉用仔鸡复合预混合饲 料 ≤40 以在配合饲料中1%的添加量 计 仔猪、生长肥育猪复合预混合饲 料 3氟(以F计) 的允许量(每 千克产品 中),mg 鱼粉≤500GB/T 13083 高氟饲料用HG2636–1994中 4.4条 石粉≤2000 磷酸盐≤1800HG 2636 肉用仔鸡、生长鸡配合饲料≤250 GB/T 13083 产蛋鸡配合饲料≤350 猪配合饲料≤100 骨粉、肉骨粉≤1800 生长鸭、肉鸭配合饲料≤200 产蛋鸭配合饲料≤250 牛(奶牛、肉牛)精料补充料≤50 猪、禽添加剂预混合饲料≤1000GB/T 以在配合饲料中1%的添加量

氧化锌纳米晶体的发光原理

The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission 氧化锌纳米晶体粒子的发光:紫外发光与可见发光机理 Abstract (摘要) Results of steady-state luminescence measurements performed on suspensions of nanocrystalline ZnO particles of different sizes are presented. (本文提供了对不同粒径大小的氧化锌纳米晶体粒子悬浮液的稳态发光测量结果。) In all cases two emission bands are observed.(在所有的例子中,观测到两个发光带。) One is an exciton emission band in the UV and the second an intense and broad emission band in the visible, shifted by approximately 1.5 eV with respect to the absorption onset. (第一个是存在于紫外区的激子发光带;第二个是存在于可见光区的强烈且宽的发光带,这个发光带的吸收起始点以约1.5eV进行变换。) As the size of the particles increases, the intensity of the visible emission decreases, while that of the exciton emission increases. (随着粒子大小的增加,可见区发光的强度减弱,而激子发光强度增加。) In accordance with previous results, a model is presented in which the visible emission is assigned to the radiative recombination of an electron from a level close to the conduction band edge and a deeply trapped hole in the bulk (Vo**) of the ZnO particle. (根据之前的结果,提出了一个模型,可见发光是接近导带边缘水平的电子与氧化锌粒子本体(V o**)的深陷阱空穴的辐射再结合。) The size dependence of the intensity ratio of the visible to exciton luminescence and the kinetics are explained by a model in which the photogenerated hole is transferred from the valence band to a V o* level in

氧化锌纳米材料简介

目录 摘要 (1) 1.ZnO材料简介 (1) 2.ZnO材料的制备 (1) 2.1 ZnO晶体材料的制备 (1) 2.2 ZnO纳米材料的制备 (2) 3. ZnO材料的应用 (3) 3.1 ZnO晶体材料的应用 (3) 3.2 ZnO纳米材料的应用 (5) 4.结论 (7) 参考文献 (9)

氧化锌材料的研究进展 摘要介绍了氧化锌(ZnO)材料的性质,简单综述一下近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。 关键词:ZnO;晶体材料;纳米材料 1.ZnO材料简介 氧化锌材料是一种优秀的半导体材料。难溶于水,可溶于酸和强碱。作为一种常用的化学添加剂,ZnO广泛地应用于塑料、硅酸盐制品、合成橡胶、润滑油、油漆涂料、药膏、粘合剂、食品、电池、阻燃剂等产品的制作中。ZnO的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。纳米ZnO粒径介于1-100nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等[1–5]。下面我们简单综述一下,近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。 2.ZnO材料的制备 2.1 ZnO晶体材料的制备 生长大面积、高质量的ZnO晶体材料对于材料科学和器件应用都具有重要意义。尽管蓝宝石一向被用作ZnO薄膜生长的衬底,但它们之间存在较大的晶格失配,从而导致ZnO外延层的位错密度较高,这会导致器件性能退化。由于同质外延潜在的优势,高质量大尺寸的ZnO晶体材料会有利于紫外及蓝光发射器件的制作。由于具有完整的晶格匹配,ZnO同质外延在许多方面具有很大的潜力:能够实现无应变、没有高缺陷的衬底-层界面、低的缺陷密度、容易控制材料的极性等。除了用于同质外延,ZnO晶体

相关文档