文档视界 最新最全的文档下载
当前位置:文档视界 › 水灰比与水泥用量对混凝土Cl_结合能力的影响_翁智财

水灰比与水泥用量对混凝土Cl_结合能力的影响_翁智财

水灰比与水泥用量对混凝土Cl_结合能力的影响_翁智财
水灰比与水泥用量对混凝土Cl_结合能力的影响_翁智财

第28卷 第3期2006年3月

武 汉 理 工 大 学 学 报

JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY

Vol.28 No.3 M ar.2006

水灰比与水泥用量对混凝土Cl -结合能力的影响

翁智财1,余红发2,孙 伟3,张金花3,陈浩宇

1

(1.沈阳建筑大学材料科学与工程学院,沈阳110168;2.南京航空航天大学土木工程系,南京210016;

3.东南大学材料科学与工程系,南京210096)

摘 要: 测定了混凝土颗粒样品与氯化物溶液之间的物理吸附和化学结合作用,研究了混凝土的水灰比和水泥用量对其氯离子结合能力的影响规律。结果表明:混凝土对氯离子结合的等温吸附曲线,整体上符合于Freundlich 非线性吸附关系,其中,物理吸附亦服从于F reundlich 非线性吸附关系,而化学结合则符合线性吸附关系,给出了氯离子结合等温吸附的相关参数。进一步进行的研究指出,水灰比一定时,混凝土的水泥用量越多,其氯离子结合能力越大;水泥用量一定时,水灰比越大,则混凝土的氯离子结合能力也就越大。

关键词: 混凝土; 氯离子; 结合能力; 化学结合; 物理吸附中图分类号: T U 528

文献标志码: A

文章编号:1671-4431(2006)03-0047-04

Influence of Water -cement Ratio and Cement Content on

C hloride Binding Capacity of Concrete

WENG Zhi -cai 1

,Y U Hong -f a 2

,S UN Wei 3

,Z H ANG Jin -hua 3

,CHEN Hao -yu

1

(1.College of M ater ials Science and Engineer ing ,Shenyang Jianzhu U niversity ,Shenyang 110168,China; 2.Department of Civil Engineer ing ,N anjing U niversity of A er onautics and Astr onautics,Nanjing 210016,China; 3.Depar tment of Materials

Science and Engineer ing ,Southeast U niversity,N anjing 210096,China)

Abstract: T he effect of concrete grain sample on chloride physical adsorption and chemical binding were tested in chloride

solution,and the influences of water -cement ratio (w /c)and cement content on chlor ide binding capacity were studied.T he ex -perimental results showed that chloride binding isother ms of concrete accord w ith Fr eundlich isotherm as a whole,moreo ver ,physical adsorption also can be descr ibed by Fr eundlich isotherm w hile chemical binding can be described by linear isotherm.T he coefficients of chloride binding isotherms adsorption were given in the paper.Further study showed that when w/c was co nstant ,the more cement content in the concrete,t he higher of chlor ide binding capacity w as;w hile the cement content was co nstant,the hig her of w/c,the hig her of chlor ide binding capacity was.

Key words: co ncrete; chloride ions; binding capacity; chemical binding; physical adsorption

收稿日期:2005-10-08.

基金项目:江苏省自然科学基金前期预研项目(BK 2005216);国家/8630计划西部新材料行动项目(2003AA33X100);国家自然

科学基金(50178044;59938170)和国家/8630计划(2002A A335020).

作者简介:翁智财(1979-),男,硕士生.E -mail:flyhua@https://www.docsj.com/doc/c83567772.html,

在海洋、除冰盐和盐湖环境条件下,氯离子将导致混凝土中的钢筋锈蚀。众多研究表明[1~9],导致钢筋表面的钝化膜破坏、并造成钢筋锈蚀的,并非扩散进入混凝土的氯离子总量,而是残留在混凝土孔溶液中的自由氯离子。为了研究混凝土的氯离子结合能力,需要重点考察混凝土中的结合氯离子与自由氯离子浓度之间的关系问题,为此,T ang [3]提出了氯离子等温吸附法。目前,针对普通硅酸盐水泥净浆和砂浆的氯离子结合能力的研究,已经有大量报道[3,10,11]

,但是,关于混凝土氯离子结合能力的文献报道比较少见。该文参照Tang 方法[3]

,设计了与实际情况相符的混凝土的氯离子结合能力试验,详细研究混凝土中的结合氯离子

与自由氯离子浓度之间的等温吸附关系。

1试验设计

1)原材料江南水泥厂生产的金宁羊牌P#ò42.5型硅酸盐水泥,基本物理性能与化学组成分别见表1和表2;南京产河砂:表观密度2605kg/m3,含泥量1.0%,细度模数2.74,中砂,ò区级配;江苏省句容市产玄武岩碎石,最大粒径12mm,属于5~10mm连续级配;自来水。江苏建筑科学研究院生产的JM-B型萘系高效减水剂,减水率达20%以上,Na2SO4含量小于2%,氯离子含量小于0.01%。

表1水泥基本物理性能

水泥80L m筛

筛余量/%

比表面积/

(m2#kg-1)

需水量/

%

凝结时间/min

初凝终凝

抗折强度/M Pa

3d28d

抗压强度/M Pa

3d28d

P#ò0.635826.4100170 5.047.1526.450.3

表2水泥的化学成分%胶凝材料SiO2Al2O3CaO M gO SO3Fe2O3M nO T iO2Na2O K2O LO I 水泥20.60 5.0365.060.55 2.24 4.38)))) 1.30

2)混凝土配合比混凝土的基本配合比见表3。

3)实验方法

(1)试样制备、样品处理与存放成型混凝土试件尺寸为40mm@40mm@160mm棱柱体试件,表面用薄膜包裹密封,防止水分散发,1d后拆模放入标准养护室,养护28d后取出,将试件压碎,用孔径为0.25mm和2.0mm的筛子收集粒径在0.25~ 2.0mm范围的混凝土压碎颗粒[3],并且要充分混合均匀,即得到混凝土颗粒样品。该压碎样品与Tang方法有所不同,没有剔除石子,反映的是混凝土样品。再将获得的混

表3混凝土的基本配合比

编号

水灰比

(w/c)

单位体积混凝土的材料用量/(kg#m-3)

水泥砂石水J-M B减水剂A10.450066510852000

B10.4300771.41258.61200

B20.4350744.81215.21400

B30.4400718.21171.81600

B40.4450691.61128.41800

B50.4550638.41041.62200

C10.25500693.51131.51253

C20.35006841116150 2.5

C30.550064610542500

C40.650062710233000

凝土颗粒样品,分别装入广口试剂瓶中,并置于存有硅胶的真空干燥箱中,在室温下(20?0.5)e干燥5d,以除去大部分的水分,然后放入存有硅胶和生石灰的干燥器中继续干燥与存放7d后,除去空气中的CO2[3,11]即获得分析样品。

(2)测试方法与计算将25g颗粒样品放入干燥的烧瓶中,然后用移液管移取50mL用饱和Ca(OH)2配置的NaCl溶液,加入三角烧瓶中以浸泡颗粒样品,之后用橡胶塞塞紧瓶口,并用乳胶套密封,放入(20?0.5)e恒温室中静置10d。实验所用10种NaCl溶液的浓度依次是0.004mol/L、0.008mol/L、0.012mol/L、0.04mol/L、0.08mol/L、0.2mol/L、0.4mol/L、0.6mol/L、0.8mol/L和1.0mol/L。T ang 等[3,10]指出,颗粒样品在7d即可达到吸附平衡,为了便于分析、对比,该文测试时采用的静置浸泡时间均为10d。静置10d后,用移液管从三角烧瓶里移取10mL清液,按照5水运工程混凝土试验规程6(1999)水溶性氯离子浓度测定方法,测定出对应于混凝土中孔隙平衡溶液的氯离子浓度C f(mol/L)和混凝土中的总结合氯离子浓度C b(mg/g)。再将浸泡样品的三角烧瓶中的残留溶液尽可能倒出,然后往该烧瓶中倒入200mL的饱和Ca(OH)2溶液,振荡1min后,过滤,废弃洗液,将滤渣连同滤纸一起放入原烧瓶中,再加入200mL饱和Ca(OH)2溶液,瓶口用塞子塞紧,并用乳胶套密封,放入恒温室静置3d。3d后用移液管取出三角烧瓶里的第2次平衡液20mL,按前述方法测定混凝土中的物理吸附氯离子浓度C bp(mg/g)。其中,测定第1次平衡溶液采用的AgNO3溶液浓度见表4,测定第2次平衡溶液采用的AgNO3溶液均为0.01mol/L。C f、C b、C bp和混凝土中的化学结合氯离子浓度C cp(mg/g)的计算公式见文献[3,10]。

48武汉理工大学学报2006年3月

表4 第1次平衡液所用AgNO 3溶液的浓度选择

NaCl 溶液/(mol #L -1)0.004

0.0080.012

0.04

0.080.2

0.4

0.60.8 1.0

Ag NO 3溶液/(mol #L -1)

0.01

0.1

0.5

2 结果与讨论

2.1

混凝土的氯离子等温吸附关系

图1为A1混凝土的氯离子等温吸附曲线。结果表明,随着平衡溶液的自由氯离子浓度的增加,混凝土的总结合氯离子浓度、化学结合氯离子浓度和物理吸附氯离子浓度均随之增加。通过回归分析发现,混凝土的总结合氯离子浓度与平衡溶液中自由氯离子浓度关系符合Freundlich 非线性吸附[1,3,4,8]C b =aC b f 。式中,a 和b 为常数。Fre -undlich 吸附几乎是一种不均匀的表面吸附,结合氯离子浓度随着平衡溶液自由氯离子浓度的提高而提高,即使在高浓度时也不存在吸附极限。混凝土的物理吸附氯离子浓度与平衡溶液中自由氯离子浓度的关系同样符合Freundlich 吸附,吸附公式与式(1)相同。

混凝土的化学结合氯离子浓度和平衡溶液中自由氯离子浓度之

间的关系则属于线性吸附[2,6]C bc =kC f 。式中,k 为常数。线性吸附是一种均匀吸附,不存在吸附极限。

比较图1中曲线的斜率,可以看出,混凝土对氯离子的化学结合速度明显要高于物理吸附速度。在实验范围内,所有混凝土都表现出相同的氯离子等温吸附规律,其等温吸附参数及其相关系数见表5。

表5 混凝土的氯离子等温吸附参数与回归时的相关系数

结合类型总结合

物理吸附化学结合吸附关系F reundlich 非线性吸附

a b R 2Freundlich 非线性吸附

a b R 2线性吸附

k R 2A1 4.66510.51970.987 1.28550.33090.9876 4.42090.976B1 3.91830.66840.9786 1.15010.47090.9913 3.42820.9791B2 4.23860.64010.9834 1.25260.44640.9856 3.70410.9811B3 4.25650.56510.9734 1.23460.38630.9876 4.00190.9855B4 4.56630.54780.9859 1.2770.36050.9847 4.24540.9815B5 4.9430.5030.9889 1.39250.32270.9802 4.66180.9774C1 4.10510.55220.9753 1.20620.36710.992 3.88750.9902C2 4.37670.53160.9818 1.22740.34690.9921 4.17760.9865C3 4.89340.51850.9883 1.35280.33420.9899 4.60760.976C4

5.066

0.5161

0.9897

1.38

0.331

0.9906

4.800

8

0.977

6

2.2 化学结合与物理吸附在混凝土氯离子结合总量中的规律

图2为A1混凝土的化学结合氯离子浓度与物理吸附氯离子浓度在其氯离子结合总量中的比例关系,PC bP 和PC bc 分别是物理吸附氯离子量和化学结合氯离子量占总结合氯离子量的比例。结果表明,随着总结合氯离子浓度的增加,物理吸附量逐渐降低,化学结合量逐渐增加,当总结合氯离子浓度达到5mg/g 时,氯离子的物理吸附量仅占26.43%,而化学结合量则高达73.57%。2.3 水泥用量对混凝土氯离子等温吸附的影响

图3是不同水泥用量(300~550kg /m 3)的混凝土的氯离子等温吸附曲线,其中,水灰比w /c=0.4。结果表明,当平衡溶液的自

由氯离子浓度相同时,对于一定水灰比的混凝土,水泥用量越多,其总结合氯离子浓度就越大,说明混凝土对氯离子的结合能力明显增强。其主要原因在于,水泥用量越多的混凝土,内部生成的CSH 凝胶等水化产物数量也就越多,与溶液中的氯离子发生化学结合和物理吸附的机会更大。可见,在水灰比一定的情况下,混

49

第28卷 第3期 翁智财,等:水灰比与水泥用量对混凝土Cl -结合能力的影响

凝土的氯离子结合能力与其水泥用量有密切的关系。

2.4 水灰比对混凝土氯离子等温吸附的影响

图4是不同水灰比(0.25~0.6)混凝土的氯离子等温吸附曲线,其中,混凝土的水泥用量保持500kg/m 3

。结果表明,在相同的平衡溶液的自由氯离子浓度条件下,对于相同水泥用量的混凝土,水灰比越大,混凝土的总结合氯离子浓度也相应提高,说明高水灰比混凝土对氯离子的结合能力越强,这与Tuutti [2]的结论相同。产生这种现象的主要原因在于,在水泥用量一定时,水灰比越大,一方面,混凝土中水泥的水化程度越高,生成的水化产物越多,从而提高了化学吸附量,另一方面,水灰比大的混凝土,其孔结构粗化,毛细孔增多,孔隙表面对氯离子的物理吸附作用更加显著。因此,水灰比越大时混凝土的氯离子结合能力也就越强。

3 结 论

a.根据混凝土的氯离子等温吸附曲线,发现混凝土对氯离子的物理吸附符合Freundlich 非线性吸附规律,化学结合则符合线性吸附规律,其总体上仍然表现出Freundlich 非线性吸附行为。

b.水灰比一定时,混凝土对氯离子的结合能力与水泥用量密切相关。水泥用量越多,混凝土对氯离子的化学结合量与物理吸附量也就越大。

c.水泥用量一定时,混凝土对氯离子的结合能力与水灰比有关。水灰比越大,混凝土对氯离子的物理吸附与化学结合作用越大。

参考文献

[1] M artin -Perez B,Zibara H,Hooton R D,et al.A Study of the Effect of Chloride Binding on Ser vice L ife P redictions[J].Cem

and Concr Res,2000,30(8):1215~1223.

[2] T uutti K.Cor rosion of Steel in Concr ete[R ].Stockholm:Sw edish Cement and Concrete I nstitute,1982.

[3] T ang L ,N ilsson L O.Chloride Binding Capacity and Binding Isotherms of OP C Pastes and M ortars[J].Cem Concr Res,1993,

23(2):247~253.

[4] N ilsson L O,M assat M ,T ang L.T he Effect of No n -linear Chloride Binding on the Prediction of Chloride Penetr atio n into Con -crete Str uctures[A ].Durability of Concrete[C].Detroit :ACI SP -145,1994.469~486.

[5] Glass G K,Stevenson G M ,Buenfeld N R.Chlor ide -binding Isotherms from the Diffusion Cell T est[J].Cem and Concr Res,

1998,28(7):939~945.

[6] Arya C,N ew man J B.A n Assessment of Four M ethods of Determining the Free Chlor ide Content of Concrete[J].M ater and

Struct Res and T est ing ,1990,23:319~330.

[7] M ohammed T U ,Hamada H.Relationship Between Free Chlo ride and T otal Chloride Contents in Concrete[J].Cem and Concr

Res,2003,33(9):1487~1490.

[8] Wee T H,Wong S F,Swaddiwudhipo ng S,et al.A Pr ediction M ethod for Long -term Chloride Concentration Profiles in Har d -ened Cement M atrix M ater ials[J].ACI M ater J,1997,94(6):565~576.

[9] 王绍东,黄煜镔,王 智.水泥组分对混凝土固化氯离子能力的影响[J].硅酸盐学报,2000,28(6):570~574.[10] 罗 睿,蔡跃波,王昌义.磨细矿渣净浆结合外渗氯离子的性能[J].建筑材料学报,2001,4(2):148~153.[11] 马昆林,谢友均,刘 灿,等.混凝土固化氯离子影响因素的研究[J].混凝土,2004,(6):20~21.

50 武 汉 理 工 大 学 学 报 2006年3月

搅拌桩水灰比计算

水泥搅拌桩施工中的水灰比一般是设计给出。大体的范围介于0.4~0.5之间。这个假如是0.5来推算一些公式,供大家参考使用。 一、水泥浆比重的概念 1、水泥浆比重,是指水泥浆的重量与体积之比。比如是水灰比是0.5,那么我们可以计算出水泥浆的比重如下: 假如是水是1,那么水泥是2,水的体积是1,水泥的体积是2/3.1(3.1是水泥的比重), 这样计算出水泥浆的比重为: (1 2)/(1 (2/3.1))=1.823 2、现场监测根据水泥浆的比重计算水灰比公式 现场水泥浆如何测算其水灰比,采用下面的公式很有用的。 我们使用NB-1水泥浆比重仪测量水泥浆的比重,然后反算这种水泥浆的水灰比。假如现场测量的水泥浆的比重为 x,设定水灰比为n,公式如下(推算过程略): n=(3.1-x)/(3.1*(X-1)) 我们可以验证一下。我们假如测量的水泥浆的比重是1.823,那么计算水灰比就是: 1.277/ 2.551=0.50 ,就是0.5了与前面计算是一致的。 好了,这个供大家参考。 给大家一个nb-1水泥浆比重计使用说明 一、用途: NB-1型泥浆比重计是用于测定比重的仪器,其单位为克/立方厘米。 二、主要技术特性: 测量范围从0.96~3克/立方厘米,刻度分度值为0.01克/立方厘米,泥浆杯的容量为140立方厘米。

三、结构简要说明: 本型泥浆比重计是不等臂杠杆式仪器,它的主要部件,如图所示。 四、使用简要说明: 本泥浆比重计使用时,须将泥浆注入(3)泥浆杯内,齐平杯口为止,不要留有气泡,将杯盖(4)轻轻盖上,多余泥浆和空气即从杯盖中间小孔中排出,再将溢出的泥浆揩刷干净。然后把(1)杠杆的主刀口(2)放到底座(7)的主刀垫(8)上去,将砝码(6)缓缓移动,当水泡位于中央时,杠杆呈水平状态,砝码左侧所示刻度,即为泥浆比重。 如需测得泥浆比重2~3克/立方厘米范围时,需将平衡圆柱盖旋开(11),然后将平衡重锤(10)放入,旋上螺纹盖即可测得。(测量方法及步骤同上)仪器使用后应冲洗揩刷干净。 五、校验方法: 检验仪器是否准确,可在泥浆杯中注满蒸馏水,用同样方法测量所测得比重如为1,则表时比重计是准确的。如果测得结果不为1,则可将比重计的平衡圆柱盖拧开,增减圆柱内的金属颗粒,使所测量的比重为1即可。 六、外形尺寸: 本泥浆比重计所占体积为:500×100×100毫米

水泥浆比重与水灰比公式转换

水泥浆比重:ρ 水灰比:n, n=m1/m2 水体积m1,水泥体积m2 ρ=(m1+m2)/(m1/1+m2/3.1) ρ(m1+m2/3.1)=m1+m2 (ρ-1)*m1+(ρ/3.1-1)m2=0 m1/m2=3.1-ρ/3.1(ρ-1) 即:n=3.1-ρ/3.1(ρ-1)

1、挖坑灌砂法 挖坑灌砂法是检测压实度最常用的试验方法之一,本方法适用于在现场测定基层(或者底基层)、砂石路面以及路基土的各种材料压实层的密度和压实度。方法与步骤:1)准备试验仪器。 2)标定筒下部圆锥体内砂的质量。 3)标定量砂的单位质量。 4)选一块平坦表面,并清扫干净,其面积不得小于基板的面积。 5)将基板放在平坦的表面上,当表面的粗糙度较大时,要考虑粗糙表面砂的质量。 6)沿基板孔凿洞,并将洞内所材料取出称重。 7)灌砂:打开灌砂筒的开关,让砂流入试坑内,砂不流时,关闭开关,并称取灌砂筒内剩余砂的质量。 8)计算试坑内砂的质量。 9)测定试样的含水量。 10)计算试坑内材料的湿密度、干密度以及压实度。 2、核子密度仪法 本方法适用于现场用核子密度仪以散射法或者直射法测定路基或者路面材料的密度和含水率,并计算压实度。本方法可以检测土壤、碎石、土石混合物、沥青混合料和非硬化水泥混凝土等材料。打洞后用直接透视法测定,测定层厚度不超过20cm。也可测定路面材料的密实度和含水量。 3、环刀法 本方法适用于测定细粒土及无机结合料稳定细粒土的密度。 4、钻芯法 本方法适用于检测从压实的沥青路面上钻取的沥青混合料芯样试件的密度,以评定沥青路面的施工压实度。 5、无核密度仪法 本方法适用于现场快速测定沥青路面各层沥青混合料的密度并计算施工压实度。 6、智能压实质量检测仪—ICCC 智能压实质量检测仪—ICCC检测仪是集传感技术、嵌入式系统、计算机技术于一身的新一代车载式压实质量控制仪。配备了24位高精数据转换、三轴一体加速度传感器,处理能力强大的嵌入式电脑,在精度与稳定性较同类产品都有了本质的提升。该仪器实现了对压实质量、振动频率、碾压速度实时、连续检测、控制的还为改良碾压工艺和压实质量检测提供了完整的过程数据,不但避免了大量费时费力的传统压实质量检测而且从根本上解决了漏压、欠压、过压等问题。被广泛用于公路、铁路路基施工及压实质量控制中,能够明显提高工作效率,保证基础压实度的工程质量,可获得明显的经济效益与社会效益。ICCC检测仪通过中国测试技术研究院和中国计量院等权威机构的认可,并在铁路局组织的产品鉴定会上被评为“达到国际先进水平"的压实质量控制设备。

计算水泥用量

因为配制1升水泥净浆所需的干水泥重量为:(水泥的密度*水的密度)/(水的密度+水灰比*水泥密度);水泥密度一般取3.15。该公式简明易算。所以,当水灰比为1,1立方水泥浆需干水泥重量为:1000*(3.15*1)/(1+1*3.15)=759kg 当水灰比为0.8,1立方水泥浆需干水泥重量为:1000*(3.15*1)/(1+0.8*3.15)=895kg 所以,配合比0.8—1时,配制1方净浆所需干水泥在759kg—895kg 之间。另外,我最近研究了——新型高水固结灌浆材料。该材料具有以下特点:(1) 新型高水固结灌浆材料具有高水灰比特性。优化配方采用的水灰比为1.5,比普通水泥浆液采用的水灰比有大幅度的提高,增加了浆液的流动性能,使浆体流动度达33cm以上;高水灰比降低了浆液的浓度,减少了粒状浆材以多粒的形式同时进入孔隙或裂隙导致孔隙被堵塞的几率,更容易达到良好的灌注效果;同时,也减少因浆液的流动性能不足而引起的堵管等给施工造成的延误。(2)新型高水固结灌浆材料具高水灰比条件下的较高强度特性。浆材能及时固结,使岩土体具有足够的强度,在水灰比高达1.5的条件下,其优化配方的3d最低抗压强度为6MPa,最高抗压强度可达12MPa;28d最低抗压强度为13MPa,最高可达24MPa。相对于目前其他高水灰比浆材,其抗压强度已有很大的提高,这是本材料的一大亮点。(3)新型高水固结灌浆材料具有良好的凝结时间可调特性。该材料应用虽有高水灰比特点,但仍然能在短时间内凝结硬化,其凝结时间可以根据施工需要进行调整。通过调整优化配方浆液初凝时间可控制在15min到1h 内,终凝时间可控制在50min到5h内,这种高水灰比条件下的性能调控方法具有创新特点。(当然也可以调至数秒钟就凝结)(4)新型高水固结灌浆材料具有良好的温度适应性。在实际灌注中,普通水泥浆液在低温条件下会长时间不凝结,而新型高水固结灌浆材料在乙料选择适当的情况下,能克服低温给浆液凝结时间带来的障碍,具有良好的抗低温性能。在*****地质钻探施工堵漏中的成功应用就证明了这一点。(5)新型高水固结灌浆材料具有良好的综合性能,能在不同灌浆工程中使用。在实际使用时,可根据具体工程对浆液的性能要求,通过调整材料甲、乙料的配比,实现其综合性能满足工程的要求。这克服了传统的水泥浆液在高水比条件下长时间不凝结且强度很低的缺陷,有效地解决了灌浆过程中浆液流动性要求和灌浆结束后强度要求的矛盾问题,具有新颖性。但该材料还需改进的是:(1)进一步提高浆液结石体在高水灰比的条件下的抗压强度。虽然材料结石体28d抗压强度能达到24 ,但与低水灰比条件下的水泥浆液结石体抗压强度相比还有一定差异,如能到达较高标号的水泥结石体抗压强度,就更为理想。(2)进一步提高新型高水固结灌浆材料浆液的稳定性。实践表明,浆液在长时间静置时稳定性会变差,这对保证灌浆质量是不利的。应研究高水灰比条件下添加稳定剂,改善浆液性能同时又能保障结石体强度的技术方法。综上所述,新型高水固结灌浆材料的性能易于调整,且具有良好的综合性能,如果再进一步提高结石体在高水灰比条件下的抗压强度和提高浆液稳定性而不降低其结石体抗压强度,新型高水固结灌浆材料将具有更为广阔的应用前景,将能更好的服务于地质灾害治理及工程建设领域。

通过水灰比确定水泥浆中水泥用量

小导管注浆: 根据围岩条件、施工条件、机械设备,需要对围岩进行加固处理的,往往很多情况下会考虑到小导管注浆。 小导管外径一般根据钻孔直径选择,一般选用φ42~50mm的热轧钢管,长度3~5m,外插角10°~30°,管壁每隔10~20cm交错钻眼,眼孔直径为6~8mm。采用水泥浆或水泥-水玻璃浆液注浆时,浆液配合比一般由实验室提供,注浆压力一般在~,必要时在孔口处设置止浆塞。纵向小导管不小于1m的水平搭接长度,环向间距20~50cm。 一般情况下,水泥浆水灰比一般是选择1:1,或者是1:种水灰比在水泥浆中较为常见,在设计中也是经常采用这两种水灰比。 已知水的密度是1g/1cm3,水泥的密度一般是~3.3g/cm3; 水灰比为1:的水泥浆密度计算过程为: 理论计算:(*1+1*)/=2.4g/cm3 实际可以按照试验规程GB/T50080-2002普通混凝土拌合物性能试验方法标准测试。 水灰比为1:1水泥浆密度计算过程为: 理论计算:(*1+1*1)/2=2.05g/cm3 其实有时候,现场施工的水泥浆只要知道水灰比,基本上就能计算1方水泥浆需要多少水泥;m/+m/1=1(m为质量,考虑到水灰比为1:1) 则1方水泥浆需要750kg水泥 如果水灰比为1: 说明: 1、水泥是不溶于水的,水泥浆实际是一种悬浮物,在计算过程中不能按照溶液、溶剂,饱和或不饱和进行计算,容易走入误区; 则:m/+0.5m/1=1 则1方水泥浆需要1。2t水泥。 基本上实际情况与此相符 通过已知水泥的用量,可以反推水泥浆的方量 而这正是实际施工中最需要的数据,所以在现场收方时一般通过数水泥袋的包数就可以知道水泥浆的方量,再通过已知水泥浆每方的单价,确定注浆的成本。 比如说现场实际使用1t水泥,则知道水灰比,就完全可以确定水泥浆体积v。 1/+1/1=v 则v=1.32m3 业主基本上给的水泥浆单价一般在800~850元/m3 则:*825=1091元 其实很多时候设计院在设计过程中通过公式来计算水泥浆方量,但在实际计量工作中未必会采纳,因为实际情况与设计未必相符,如考虑到围岩裂隙发育,破碎,往往注浆量远远大于设计值,因此强烈建议在现场收方中必须通过所用水泥确定水泥浆方量是可行的、科学的、符合实际的。 还有一种情况是: 例如:纯水泥浆的用水量按水泥的35%计算,水泥密度为3100kg/m3、表观密度为1200kg/m3,试计算每立方米纯水泥浆的用量。 解: 1、计算虚体积系数 水灰比=*水泥表观密度/水表观密度=*1200/1000=

水泥浆比重计使用方法和计算方法完整版

水泥浆比重计使用方法 和计算方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

水泥浆比重计使用方法和计算方法 2015-03-03 15:55:27 水泥浆是建筑装修的必备材料之一,它结石强度高,制浆方便。但是很多人对水泥浆比重不是很了解,下面小编就来为大家详细介绍水泥浆比重计使用方法和计算方法。 水泥浆是建筑装修的必备材料之一,它结石强度高,制浆方便。但是很多人对水泥浆比重不是很了解,下面小编就来为大家详细介绍水泥浆比重计使用方法和计算方法。 水泥是一种细磨材料,加入适量水后成为塑性浆体,既能在空气中硬化,又能在水中硬化,并能把砂、石等材料牢固地粘结在一起,形成坚固的石状体的水硬性胶凝材料,这就是水泥浆,也即水和水泥的混合物。水泥浆广泛应用于建筑、水利等工程中,很多人在使用水泥时都会计算下水泥浆的比重,下面我们就来了解水泥浆比重的计算方法以及水泥浆比重计的一些知识。 水泥浆比重 水泥浆比重,是指水泥浆的重量与体积之比。比如是水灰比是,那么我们可以计算出水泥浆的比重如下:假如是水是1,那么水泥是2,水的体积是1,水泥的体积是2/是水泥的比重),这样计算出水泥浆的比重为:(1+2)/(1+(2/)=。 根据水泥浆的比重计算水灰比公式 我们使用NB-1水泥浆比重仪测量水泥浆的比重,然后反算这种水泥浆的水灰比。假如现场测量的水泥浆的比重为 x,设定水灰比为n,公式如下(推算过程略):n=/*(X-1))我们可以验证一下。我们假如测量的水泥浆的比重是,那么计算水灰比就是:= ,就是了与前面计算是一致的。 水泥浆比重计 泥浆比重计用于井场或实验室内测量泥浆的重量,单位为g/cm3。该型泥浆比重计是一个不等臂的天平,它的杠杆刀口搁在可固定安装在工作台的座子上,杠杆左侧为有刻度的游码装置,移动游码可在标尺上直接读出泥浆重量。杠杆的平衡可由杠杆顶部的水平泡指标。 具体操作如下: 1、须将泥浆注入泥浆杯中,齐平杯口,不要留有气泡,将杯盖轻轻盖上,多余泥浆和空气即从杯盖中间小孔中排出,再将溢出的泥浆揩刷干净。

通过水灰比确定水泥浆中水泥用量

通过水灰比确定水泥浆中水泥用量 小导管注浆: 根据围岩条件、施工条件、机械设备,需要对围岩进行加固处理的,往往很多情况下会考虑到小导管注浆。 小导管外径一般根据钻孔直径选择,一般选用φ42~50mm的热轧钢管,长度3~5m,外插角10°~30°,管壁每隔10~20cm交错钻眼,眼孔直径为6~8mm。采用水泥浆或水泥-水玻璃浆液注浆时,浆液配合比一般由实验室提供,注浆压力一般在0.5~1.0mpa,必要时在孔口处设置止浆塞。纵向小导管不小于1m的水平搭接长度,环向间距20~50cm。 一般情况下,水泥浆水灰比一般是选择1:1,或者是1:0.5种水灰比在水泥浆中较为常见,在设计中也是经常采用这两种水灰比。 已知水的密度是1g/1cm3,水泥的密度一般是3.0~3.3g/cm3; 水灰比为1:0.5的水泥浆密度计算过程为: 理论计算:(3.1*1+1*0.5)/1.5=2.4g/cm3 实际可以按照试验规程GB/T50080-2002普通混凝土拌合物性能试验方法标准测试。 水灰比为1:1水泥浆密度计算过程为: 理论计算:(3.1*1+1*1)/2=2.05g/cm3 其实有时候,现场施工的水泥浆只要知道水灰比,基本上就能计算1方水泥浆需要多少水泥;m/3.1+m/1=1(m为质量,考虑到水灰比为1:1) 则1方水泥浆需要750kg水泥 如果水灰比为1:0.5 说明: 1、水泥是不溶于水的,水泥浆实际是一种悬浮物,在计算过程中不能按照溶液、溶剂,饱和或不饱和进行计算,容易走入误区; 则:m/3.1+0.5m/1=1 则1方水泥浆需要1。2t水泥。 基本上实际情况与此相符 通过已知水泥的用量,可以反推水泥浆的方量 而这正是实际施工中最需要的数据,所以在现场收方时一般通过数水泥袋的包数就可以知道水泥浆的方量,再通过已知水泥浆每方的单价,确定注浆的成本。 比如说现场实际使用1t水泥,则知道水灰比,就完全可以确定水泥浆体积v。 1/3.1+1/1=v 则v=1.32m3 业主基本上给的水泥浆单价一般在800~850元/m3 则:1.32*825=1091元 其实很多时候设计院在设计过程中通过公式来计算水泥浆方量,但在实际计量工作中未必会采纳,因为实际情况与设计未必相符,如考虑到围岩裂隙发育,破碎,往往注浆量远远大于设计值,因此强烈建议在现场收方中必须通过所用水泥确定水泥浆方量是可行的、科学的、符合实际的。 还有一种情况是: 例如:纯水泥浆的用水量按水泥的35%计算,水泥密度为3100kg/m3、表观密度为1200kg/m3,试计算每立方米纯水泥浆的用量。 解:

混凝土水胶比具体计算方法

混凝土水胶比具体计算方法 混凝土的水灰比和塌落度过是建筑工程在施工中经常要碰到的问题,对于两者的相互关系,大部分民工乃至部分施工技术人员和我们部分监理人员,不是很清楚,以为水灰比大就是塌落度大,塌落度大就是水灰比大,认为两者是一码事,其实不然。这两者之间有本质的区分,但两者之间又有相互牵连的关系。要说明这个问题,得从混凝土的配合比设计说起,现以重量比为例,配合比的计算顺序如下: 1、计算水灰比,计算公式如下:Rh=0.46Rc(C/W-0.52)式中:Rh为混凝土的试配强度,Rc为水泥强度,C/W为灰水比,即水灰比W/C的倒数,其中C代表水泥,W代表水,从式中可以看出,混凝土强度同水泥强度成正比,同灰水比成正比,即同水灰比成反比,(水灰比为灰水比的倒数,1÷灰水比即为水灰比,1÷水灰比即为灰水比),因此灰水比越大则水灰比越小,混凝土强度越大则水灰比越小。由此可见,在确定水灰比大小的计算中,水灰比只与混凝土强度和水泥强度两个因素有关,与塌落度的大小是没有关系的。故水灰比是根据混凝土配比强度和水泥强度计算所得,是既定的,是不能任意改变的。 2、确定塌落度,塌落度是根据混凝土浇灌部位、构件体积、钢筋密集等情况确定的,如基础工程塌落度可小一点,一般为10-30mm,柱梁工程一般为 30-50mm,构件细小或者配筋密集,混凝土较难浇灌,则塌落度应适当大一点,一般可在50-90mm。 3、确定用水量,每立方混凝土的用水量是根据塌落度的大小决定的,此外,与石子粒径的大小和黄砂的粗细略有关系。粒径偏细的石子和细砂用水量略偏

大,以中砂为例,石子最大粒径40mm,塌落度30-50mm,每立方混凝土的用水量为180kg。关于用水量可在相关表中查得。 4、计算水泥用量,水泥用量根据每立方混凝土用水量和水灰比计算:即用水量Χ灰水比或者用水量÷水灰比,例如水灰比为0.5,用水量为180kg,则水泥用量为180÷0.5=360kg。 5、确定每立方混凝土的容重,一般混凝土每立方容重约2400kg,强度高的略重,强度低的略轻,但偏差不是很大。 6、计算砂石总用量,砂石总用量为砼容重—用水量—水泥用量,以上述为例,砂石总用量为砼容重2400—水180—水泥360=1860kg。 7、确定砂率并计算砂、石用量、砂率一般为35%,水灰比小的砂率略小,水灰比大的砂率略大,可根据试配混凝土的和易性调整砂率,以上述为例,中砂用量为1860Χ35%=651kg,石子用量为1860—651=1209kg。水、砂、石子用量分别除水泥用量,即成为以水泥为1的配合比,水泥1:水0.5:中砂1.81:石子3.36。 综合上所述,水灰比是混凝土中水与水泥的比例,是计算所得,水灰比的大小只与混凝土试配强度和水泥强度有关,与塌落度的大小没有关系。水灰比是保证混凝土强度的先决条件,这个比例在施工中自始至终不得改变。而塌落度则是混凝土的干稀程度,即适宜混凝土施工的工作度,这就是我开头所讲水灰比与塌落度有本质的区分。塌落度大并非水灰比一定大,例如商品砼,塌落度很大,一般都在120mm及以上,可它的水灰比不大,只是用水量大而按水灰比增大了水泥的用量,故商品砼的水泥用量比一般自拌砼要大。因此水灰比和塌落度都是在配合比中规定了的,是不能任意改变的。如果任意增大塌落度,则水灰比相应增大,

水泥浆换算方法图文稿

水泥浆换算方法 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

水泥浆换算方法 水泥浆的水灰比1:1(质量比),每立方水泥浆中水泥和水的用量各是多少呢怎么计算。水密度1;水泥密度3.1;水质量/水泥质量=水密度*水体积/水泥密度*水泥体积=1*水体积/3.1*水泥体积=1得出水体积:水泥体积=1:3.1;一立方水泥浆中水的体积占四点一分之一;水泥体积占4.1分之3.1 水泥搅拌桩水泥浆比重和水灰比的计算水泥搅拌桩施工中的水灰比一般是设计给出。大体的范围介于0.4~0.5之间。这个假如是0.5来推算一些公式,供大家参考使用。 一、水泥浆比重的概念 1、水泥浆比重,是指水泥浆的重量与体积之比。比如是水灰比是 0.5,那么我们可以计算出水泥浆的比重如下:假如是水是1,那么水泥是2,水的体积是1,水泥的体积是2/3.1(3.1是水泥的比重),这样计算出水泥浆的比重为:(1+2)/(1+(2/3.1))=1.823 2、现场监测根据水泥浆的比重计算水灰比公式 现场水泥浆如何测算其水灰比,采用下面的公式很有用的。我们使用NB-1水泥浆比重仪测量水泥浆的比重,然后反算这种水泥浆的水灰比。假如现场测量的水泥浆的比重为 x,设定水灰比为n,公式如下(推算过程略):n=(3.1-x)/(3.1*(X-1))我们可以验证一下。我们假如测量的水泥浆的比重是1.823,那么计算水灰比就是:1.277/2.551=0.50 ,就是0.5了与前面计算是一致的。

二、泥浆比重配合比 1、水泥浆: 水泥浆比重γ=(W/C+1)/( W/C+1/3.15) 水灰比W/C=1:1 水泥浆比重 1.5 水灰比W/C=0.8 水泥浆比重 1.6 水灰比W/C=0.6 水泥浆比重 1.7 水灰比W/C=0.5 水泥浆比重1.8 每方水泥用量=1000*(1-空隙率)/(1/水泥表观密度+水灰比) 水泥浆比重=每方水泥用量*(1+水灰比)/1000如空隙率取2%,则:水泥浆比重=0.98*(1+水灰比)/(1/水泥表观密度+水灰比) 2、因水的密度为1g/cm⒊,水泥密度为3.15g/cm⒊(查手册). 那么水灰比为0.8时γ=(0.8+1)/(0.8+1/3.15)≈1.61g/cm⒊水灰比为0.68:1时的水泥浆比重是多少=(1+0.68)/(1/3.1+0.68)=1.678676 吨/立方米注:不计水与水泥化合、结晶等引起的体积变化 3、水的比重为1,水泥的比重为3,用如下公式可算出每L浆液的含灰量,1/(0.4+1/3)=1.364kg/L,1立方水泥浆含水泥量就是1364kg,其他水灰比也可用这个公式,什么水灰比代在0.4那就可以了,很方便. 4、混凝土配合比为1:2.3:4.1,水灰比为0.60。已知每立方米混凝土拌合物中水泥用量为295kg。

水泥搅拌桩水泥浆比重和水灰比的计算

水泥搅拌桩水泥浆比重和水灰比的计算 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

水泥搅拌桩水泥浆比重和水灰比的计算 水泥搅拌桩施工中的水灰比一般是设计给出。大体的范围介于0.4~0.5之间。这个假如是0.5来推算一些公式,供大家参考使用。 一、水泥浆比重的概念 1、水泥浆比重,是指水泥浆的重量与体积之比。比如是水灰比是0.5,那么我们可以计算出水泥浆的比重如下: 假如是水是1,那么水泥是2,水的体积是1,水泥的体积是2/3.1(3.1是水泥的比重), 这样计算出水泥浆的比重为: (1+2)/(1+(2/3.1))=1.823 2、现场监测根据水泥浆的比重计算水灰比公式 现场水泥浆如何测算其水灰比,采用下面的公式很有用的。 我们使用NB-1水泥浆比重仪测量水泥浆的比重,然后反算这种水泥浆的水灰比。假如现场测量的水泥浆的比重为 x,设定水灰比为n,公式如下(推算过程略): n=(3.1-x)/(3.1*(X-1)) 我们可以验证一下。我们假如测量的水泥浆的比重是1.823,那么计算水灰比就是: 1.277/ 2.551=0.50 ,就是0.5了与前面计算是一致的。 好了,这个供大家参考。 给大家一个nb-1水泥浆比重计使用说明 一、用途:

NB-1型泥浆比重计是用于测定比重的仪器,其单位为克/立方厘米。二、主要技术特性: 测量范围从0.96~3克/立方厘米,刻度分度值为0.01克/立方厘米,泥浆杯的容量为140立方厘米。 三、结构简要说明: 本型泥浆比重计是不等臂杠杆式仪器,它的主要部件,如图所示。 四、使用简要说明: 本泥浆比重计使用时,须将泥浆注入(3)泥浆杯内,齐平杯口为止,不要留有气泡,将杯盖(4)轻轻盖上,多余泥浆和空气即从杯盖中间小孔中排出,再将溢出的泥浆揩刷干净。然后把(1)杠杆的主刀口(2)放到底座(7)的主刀垫(8)上去,将砝码(6)缓缓移动,当水泡位于中央时,杠杆呈水平状态,砝码左侧所示刻度,即为泥浆比重。 如需测得泥浆比重2~3克/立方厘米范围时,需将平衡圆柱盖旋开(11),然后将平衡重锤(10)放入,旋上螺纹盖即可测得。(测量方法及步骤同上)仪器使用后应冲洗揩刷干净。 五、校验方法: 检验仪器是否准确,可在泥浆杯中注满蒸馏水,用同样方法测量所测得比重如为1,则表时比重计是准确的。如果测得结果不为1,则可将比重计的平衡圆柱盖拧开,增减圆柱内的金属颗粒,使所测量的比重为1即可。 六、外形尺寸: 本泥浆比重计所占体积为:500×100×100毫米

水稳层配合比

水稳层配合比文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

1;4%水泥稳定碎石每方为2032kg(最大干密度)。 2;一方干混合料用量:2032/1.059=1918.791kg。 3;水用量:2032-1918.791=113.2087kg。 4;集料(碎石+石屑)用量:1918.791/1.04=1844.992kg。 5;1#碎石=1844.992*34%,2#碎石=1844.992*40%,3#石屑=1844.992*26%; 6;水泥用量:1918.791-1844.992=73.799kg。 总结:水泥73.799:集料1844.992:水113.2087; 1#碎石:2#碎石:3#石屑=34%:40%:26%来掺配(即:1#碎石=1844.992*34%,2#碎石 =1844.992*40%,3#石屑=1844.992*26%); 5%的可以参照以上算。 34:40:26:4是材料的质量(重量)比,相当于水泥是外掺,比如4%水泥就相当于在水稳材料中水泥含量是:4/104。以此类推1#碎石34/104,2#碎石40/104,3#石屑26/104,所以,每吨水稳材料中水泥:0.038吨,1#碎石0.327吨,2#碎石0.385吨,3#石屑0.25吨,这是理论数值(干燥状态下即含水量为0)。在拌合站拌合时,要考虑各种材料的含水量,碎石、石屑的含水量可以采用酒精燃烧法测得。施工配比就是考虑材料含水量之后的比例,实际用量为:理论比例*(1+含水量%),例如,假设1#碎石含水量为5%,实际用量为:34*(1+5%)=35.7;计算出各种材料实际比例重新做出新的比例,就是施工配合比。 这里的水泥稳定碎石层每m?配比如下 水泥:p.o42.5用量:107kg 石粉:普通用量:1050kg 碎石:5-31.5连续级配?用量:1087kg 水:63kg 搅拌时间:50s 1;4%水泥稳定碎石每方为2032kg(最大干密度)。 2;一方干混合料用量:2032/1.059=1918.791kg。 3;水用量:2032-1918.791=113.2087kg。 4;集料(碎石+石屑)用量:1918.791/1.04=1844.992kg。 5;1#碎石=1844.992*34%,2#碎石=1844.992*40%,3#石屑=1844.992*26%; 6;水泥用量:1918.791-1844.992=73.799kg。 总结:水泥73.799:集料1844.992:水113.2087; 1#碎石:2#碎石:3#石屑=34%:40%:26%来掺配(即:1#碎石=1844.992*34%,2#碎石 =1844.992*40%,3#石屑=1844.992*26%); 5%的可以参照以上算。

水稳层配合比-水稳基层配合比

实用文档 如题,我只知道他的重量比是6:100,我现在想知道1立方的6%水泥石屑稳定层需要多少公斤水泥,多少方石子,是怎么算来的,稳定层施工应注意事项 答案 要求就是6%水稳?有几种石子?就一种?一般都是几种石子,如果有几种石子的话,就先根据几种石子筛分结果进行掺配。然后做击实。得出最大干密度和最佳含水率。 一般6%水稳最大干密度在2.35g/cm3.最佳含水率5.5%左右,我们就暂时以这个来算。 一方用量2350/1.055=2227.5kg(干混和料质量包括水泥和石子), 水就是2350-2227.5=122.5kg, 用2227.5/1.06=2101.4kg(干石屑质量), 水泥用量就是2227.5-2101.4=126.1kg。 干石屑是2101.4kg. 检证一下, 水泥剂量126.1/2101.4=6%(水泥剂量=水泥质量/干石质量) 含水率122.5/2227.5=5.5%(含水率=水质量/干混合料包含水泥集料质量) 接触这个少的人都有一个误区总会认为6%是水泥占总混合料的6%,其实是不包括水泥和水的,最大干密度和最佳含水率是通过击实试验得来的。当然这是理论数字。里面还有含水率。 水稳施工时水泥剂量要控制好。含水量要比最佳含水量稍高点。现场好施工。石子级配要能均匀。不能断级配。压路机一定要碾压到位。最好先做一小段试验段。每碾压一遍测一下压实度看能达到多少。这样以后施工好控制,如果允许的话最好机械摊铺。 松铺系数=松铺厚度/压实厚度,比较常见的在1.1~1.35范围内。 松铺系数与所用的原材料,配合比及施工工艺均有关系,一般在施工前,要做一段长度大约200~300m的试验段,目的之一就是要确定松铺系数。 .

水泥浆比重与水灰比公式转换

水泥浆比重与水灰比公式转换

水泥浆比重:ρ 水灰比:n, n=m1/m2 水体积m1,水泥体积m2 ρ=(m1+m2)/(m1/1+m2/3.1) ρ(m1+m2/3.1)=m1+m2 (ρ-1)*m1+(ρ/3.1-1)m2=0 m1/m2=3.1-ρ/3.1(ρ-1) 即:n=3.1-ρ/3.1(ρ-1) ρn 1.75 0.580645161 1.76 0.568760611 1.77 0.557184751 1.78 0.545905707 1.85 0.474383302 1.86 0.465116279 1.87 0.456062291 1.88 0.447214076

1、挖坑灌砂法 挖坑灌砂法是检测压实度最常用的试验方法之一,本方法适用于在现场测定基层(或者底基层)、砂石路面以及路基土的各种材料压实层的密度和压实度。方法与步骤: 1)准备试验仪器。 2)标定筒下部圆锥体内砂的质量。 3)标定量砂的单位质量。 4)选一块平坦表面,并清扫干净,其面积不得小于基板的面积。 5)将基板放在平坦的表面上,当表面的粗糙度较大时,要考虑粗糙表面砂的质量。 6)沿基板孔凿洞,并将洞内所材料取出称重。 7)灌砂:打开灌砂筒的开关,让砂流入试坑内,砂不流时,关闭开关,并称取灌砂筒内剩余砂的质量。 8)计算试坑内砂的质量。 9)测定试样的含水量。 10)计算试坑内材料的湿密度、干密度以及压实度。 2、核子密度仪法

本方法适用于现场用核子密度仪以散射法或者直射法测定路基或者路面材料的密度和含水率,并计算压实度。本方法可以检测土壤、碎石、土石混合物、沥青混合料和非硬化水泥混凝土等材料。打洞后用直接透视法测定,测定层厚度不超过20cm。也可测定路面材料的密实度和含水量。 3、环刀法 本方法适用于测定细粒土及无机结合料稳定细粒土的密度。 4、钻芯法 本方法适用于检测从压实的沥青路面上钻取的沥青混合料芯样试件的密度,以评定沥青路面的施工压实度。 5、无核密度仪法 本方法适用于现场快速测定沥青路面各层沥青混合料的密度并计算施工压实度。 6、智能压实质量检测仪—ICCC 智能压实质量检测仪—ICCC检测仪是集传 感技术、嵌入式系统、计算机技术于一身的新一代车载式压实质量控制仪。配备了24位高精数据转换、三轴一体加速度传感器,处理能力强大

根据水稳层配合比怎么算出材料用量

按路面的厚度、长度、宽度,算出水稳的方量 用方量乘以最大干密度,再乘以压实度,得出总的材料重量 用总材料/(1+灰剂量)=集料用量 集料用量*灰剂量=水泥用量 6%水泥石屑稳定层配合比重 要求就是6%水稳?有几种石子?就一种?一般都是几种石子,如果有几种石子的话,就先根据几种石子筛分结果进行掺配。然后做击实。得出最大干密度和最佳含水率。一般6%水稳最大干密度在2.35g/cm3.最佳含水率5.5%左右,我们就暂时以这个来算。一方用量2350/1.055=2227.5kg(干混和料质量包括水泥和石子),水就是2350-2227.5=122.5kg,用2227.5/1.06=2101.4kg(干石屑质量),水泥用量就是2227.5-2101.4=126.1kg。干石屑是2101.4kg. 当然这是理论数字。里面还有含水率。 水稳施工时水泥剂量要控制好。含水量要比最佳含水量稍高点。现场好施工。石子级配要能均匀。不能断级配。压路机一定要碾压到位。最好先做一小段试验段。每碾压一遍测一下压实度看能达到多少。这样以后施工好控制,如果允许的话最好机械摊铺。 控制水稳层材料的配合比经验: 水稳粒料作为路面基层或底基层,设计厚度一般在15cm至20cm左右,7天强度为2-4Mpa。 进行组成设计时,即要符合设计要求,又要考虑施工条件、环境和材料特点,针对其一般的缺点应予以克服,例如用平地机施工情况,混合料应具有较高的和易性,以防止离析,混合料的终凝时间也要相应延长;在较高温度下施工时,水泥剂量应用低限,细集料(0.075mm 以下料)含量采用中低限,以防止干缩和温缩裂缝;由于水泥在较高温度和较低含水量下凝结时间大大缩短,当在夏季较高温度下施工

水稳层配合比

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 如题,我只知道他的重量比是6:100,我现在想知道1立方的6%水泥石屑稳定层需要多少公斤水泥,多少方石子,是怎么算来的,稳定层施工应注意事项 答案 要求就是6%水稳?有几种石子?就一种?一般都是几种石子,如果有几种石子的话,就先根据几种石子筛分结果进行掺配。然后做击实。得出最大干密度和最佳含水率。 一般6%水稳最大干密度在2.35g/cm3.最佳含水率5.5%左右,我们就暂时以这个来算。 一方用量2350/1.055=2227.5kg(干混和料质量包括水泥和石子), 水就是2350-2227.5=122.5kg, 用2227.5/1.06=2101.4kg(干石屑质量), 水泥用量就是2227.5-2101.4=126.1kg。 干石屑是2101.4kg. 检证一下, 水泥剂量126.1/2101.4=6%(水泥剂量=水泥质量/干石质量) 含水率122.5/2227.5=5.5%(含水率=水质量/干混合料包含水泥集料质量) 接触这个少的人都有一个误区总会认为6%是水泥占总混合料的6%,其实是不包括水泥和水的,最大干密度和最佳含水率是通过击实试验得来的。当然这是理论数字。里面还有含水率。 水稳施工时水泥剂量要控制好。含水量要比最佳含水量稍高点。现场好施工。石子级配要能均匀。不能断级配。压路机一定要碾压到位。最好先做一小段试验段。每碾压一遍测一下压实度看能达到多少。这样以后施工好控制,如果允许的话最好机械摊铺。 松铺系数=松铺厚度/压实厚度,比较常见的在1.1~1.35范围内。

松铺系数与所用的原材料,配合比及施工工艺均有关系,一般在施工前,要做一段长度大约200~300m的试验段,目的之一就是要确定松铺系数。 创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

水灰比水泥浆比重换算

水灰比水泥浆比重换算 水灰比为0.8时,水泥浆比重是多少? 解: 如是质量比的话.因水的密度为1g/cm⒊,水泥密度为3.15g/cm⒊(查手册). 那么水灰比为0.8时γ=(0.8+1)/(0.8+1/3.15)≈1.61g/cm⒊ 水泥净浆密度(水泥浆比重大约在1950kg每立方米) 确定过程如下 1、计算估计 水泥净浆的比重需要计算得到,其函数关系属于多项式关系:水比重为1.00;假定水灰比是x, 水泥比重为y=(3.10~3.20), 水泥用量c, 则水用量w = xc, 水泥净浆比重为: d = [水质量+水泥质量]/[水体积+水泥体积] = [xc + c]/[xc/1 + c/y] = [x + 1]y/[xy + 1] = 1 + [y - 1]/[xy + 1] 如果水灰比x=0.5,水泥比重一般应为y=3.15,则混合水泥净浆的比重为: d= 1 + [3.15 - 1]/[0.5x3.15 + 1) = 1.835 kg/升= 1835 kg/m3,即一立方水泥浆为1835kg 2、还没完,上面的算法很得当,但缺乏实践经验,这是不行的 实际上,水和水泥混合后,除了一部分化学作用外,又有一部分物质溶于水,所以说水体积+水泥体积大于水泥浆体积 实测结果为:水泥浆比重大约在1950kg每立方米 最准确的是试配后称重量。 水泥搅拌桩施工中的水灰比一般是设计给出。大体的范围介于0.4~0.5之间。这个假如是 0.5来推算一些公式,供大家参考使用。 一、水泥浆比重的概念 1、水泥浆比重,是指水泥浆的重量与体积之比。比如是水灰比是0.5,那么我们可以计算出水泥浆的比重如下: 假如是水是1,那么水泥是2,水的体积是1,水泥的体积是2/3.1(3.1是水泥的比重),这样计算出水泥浆的比重为: (1+2)/(1+(2/3.1))=1.823 2、现场监测根据水泥浆的比重计算水灰比公式

水稳层配合比

水稳层配合比 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

1;4%水泥稳定碎石每方为2032kg(最大干密度)。 2;一方干混合料用量:2032/1.059=1918.791kg。 3;水用量:2032-1918.791=113.2087kg。 4;集料(碎石+石屑)用量:1918.791/1.04=1844.992kg。 5;1#碎石=1844.992*34%,2#碎石=1844.992*40%,3#石屑=1844.992*26%;6;水泥用量:1918.791-1844.992=73.799kg。 总结:水泥73.799:集料1844.992:水113.2087; 1#碎石:2#碎石:3#石屑=34%:40%:26% 来掺配(即:1#碎石 =1844.992*34%,2#碎石=1844.992*40%,3#石屑=1844.992*26%); 5%的可以参照以上算。 34:40:26:4是材料的质量(重量)比,相当于水泥是外掺,比如4%水泥就相当于在水稳材料中水泥含量是:4/104。以此类推1#碎石34/104,2#碎石40/104,3#石屑26/104,所以,每吨水稳材料中水泥:0.038吨,1#碎石 0.327吨,2#碎石0.385吨,3#石屑0.25吨,这是理论数值(干燥状态下即含水量为0)。在拌合站拌合时,要考虑各种材料的含水量,碎石、石屑的含水量可以采用酒精燃烧法测得。施工配比就是考虑材料含水量之后的比例,实际用量为:理论比例*(1+含水量%),例如,假设1#碎石含水量为5%,实际用量为:34*(1+5%)=35.7;计算出各种材料实际比例重新做出新的比例,就是施工配合比。 这里的水泥稳定碎石层每m?配比如下 水泥:p.o42.5 用量:107kg 石粉:普通用量:1050kg 碎石:5-31.5连续级配?用量:1087kg 水:63kg 搅拌时间:50s 1;4%水泥稳定碎石每方为2032kg(最大干密度)。 2;一方干混合料用量:2032/1.059=1918.791kg。 3;水用量:2032-1918.791=113.2087kg。 4;集料(碎石+石屑)用量:1918.791/1.04=1844.992kg。 5;1#碎石=1844.992*34%,2#碎石=1844.992*40%,3#石屑=1844.992*26%;6;水泥用量:1918.791-1844.992=73.799kg。 总结:水泥73.799:集料1844.992:水113.2087; 1#碎石:2#碎石:3#石屑=34%:40%:26% 来掺配(即:1#碎石 =1844.992*34%,2#碎石=1844.992*40%,3#石屑=1844.992*26%);

水灰比的事宜

婆梅氏比重计0-70是指什么?1.0-2.0指什么 0-70指的是波美度,1.0-2.0指的是密度值。 水灰比=水/水泥 水泥搅拌桩水泥浆比重和水灰比的计算 一、抽样方法:用2个啤酒瓶装满样1、样2,用电子秤现场称重。 抽样1、现场拌制水灰比0.7的水泥浆1.520-0.535=0.985kg 抽样2、施工现场任意抽取拌制水泥浆1.405-0.515=0.890kg 测得空瓶体积1.130-0.535=0.595L 计算: 实测样1比重0.985/0.595=1.655 实测样2比重0.890/0.590=1.496 二、水灰比0.7的水泥浆比重理论计算 Y=(1+X)/(1+X/3.1) =(1+1.429)/(1+1.429/3.1) =1.663 三、校核; 实测样1比重为1.655略小于理论1.663,合格。 实测样2比重为1.496小于理论1.633 四、推算实测样2水灰比 N=(3.1-X)/3.1*(X-1) =(3.1-1.496)/3.1*(1.496-1) =1.04 水泥搅拌桩水泥浆比重和水灰比的计算

水泥搅拌桩施工中的水灰比一般是设计给出。大体的范围介于 0.4~0.5之间。这个假如是0.5来推算一些公式,供大家参考使用。 一、水泥浆比重的概念 1、水泥浆比重,是指水泥浆的重量与体积之比。比如是水灰比是0.5,那么我们可以计算出水泥浆的比重如下: 假如是水是1,那么水泥是2,水的体积是1,水泥的体积是2/3.1(3.1是水泥的比重),这样计算出水泥浆的比重为: (1+2)/(1+(2/3.1))=1.823 2、现场监测根据水泥浆的比重计算水灰比公式 现场水泥浆如何测算其水灰比,采用下面的公式很有用的。 我们使用NB-1水泥浆比重仪测量水泥浆的比重,然后反算这种水泥浆的水灰比。假如现场测量的水泥浆的比重为x,设定水灰比为n,公式如下(推算过程略): n=(3.1-x)/(3.1*(X-1)) 我们可以验证一下。我们假如测量的水泥浆的比重是1.823,那么计算水灰比就是:1.277/2.551=0.50 ,就是0.5了与前面计算是一致的。好了,这个供大家参考。 给大家一个nb-1水泥浆比重计使用说明 一、用途: NB-1型泥浆比重计是用于测定比重的仪器,其单位为克/立方厘米。 二、主要技术特性: 测量范围从0.96~3克/立方厘米,刻度分度值为0.01克/立方厘米,

水灰比的计算

水灰比的计算 水泥强度 42.5级,砂率37 %,水泥富余系数 1.1,混凝土强度标准差4.5 用水量为190Kg/m3;标准差σ取4.5MPa,细骨料含水率为3.1%;粗骨料含水率为0.6%)混凝土强度C35, 据题意已知条件计算C35混凝土理论配合比; 1、水灰比计算: 混凝土配制强度=35+1.645*标准差4.5=42.4 回归系数;a b根据石子品种查表得碎石a =0.46 ,b=0.07 水泥实际强度=42.5*1.1=46.75 W/C=0.46*46.75/(42.4+0.46*0.07*46.75)=0.49 2、计算每立方米混凝土水泥用量; 用水量/水灰比=190/0.49=388kg/m3 核验水泥用量是否符合耐久性允许最小水泥用量260kg/m3,计算得水泥用量388kg/m3大于规定符合 3、选用砂率=37 % 4、计算每立方米混凝土砂、石用量,按重量法计算; 已知每立方米混凝土用水量=190kg/m3,水泥用量=388kg/m3,砂率=37 %,假定混凝土拌合物2400kg/m3 388+G+S+190=2400 S/(G+S)=0.37 G+S=2400-388-190=1822kg/m3 S=(G+S)*0.37=1822*0.37=674kg/m3 G=(G+S)-S=1822-674=1148kg/m3 按重量法计算得到的理论配合比如下; 水泥388kg 水190kg 砂674kg 碎石1148kg 5、根据细骨料含水率为3.1%;粗骨料含水率为0.6% 调整施工配合比; 水泥388kg 水162kg 砂695kg 碎石1155kg 配合比;1:1.79:2.98:0.418 =c25+1.645*5

相关文档
相关文档 最新文档