文档视界 最新最全的文档下载
当前位置:文档视界 › 量子力学问题

量子力学问题

量子力学问题
量子力学问题

量子力学问题

第一章

1.物理学中的两朵乌云 (1)“以太”问题

“以太漂移”,迈克尔逊-莫雷实验表明,不存在以太。 (2)固体低温下的比热问题

固体的诸原子在各自的平衡位臵附近作小振动,每个振动自由度占有相同的平均能量(包含动能项和势能项),因而摩尔热容为R 3,而在温度趋于零或多原子分子时,实验值小于该理论值:部分自由度被冻结。

2. 紫外灾难与量子假设

黑体辐射与紫外灾难

当黑体的辐射与周围物体处于平衡状态时的能量分布: 热力学 + 特殊假设 → 维恩公式 长波部分不一致

经典电动力学 + 统计物理学 → 瑞利金斯公式(短波部分完全不一致),——紫外灾难。 普朗克的能量子假设

对一定频率ν的电磁波,物体只能以νh 为单位吸收或发射它,即吸收或发射电磁波只能以“量子”方式进行,每一份能量νh 叫能量子。

3.爱因斯坦与光电效应(利用爱因斯坦方程解释光电效应中为何存在临界频率0ν?)

光照在金属上有电子从金属上逸出的现象,这种电子叫光电子。 (1)光电效应的规律: a 存在临界频率0ν;

b. 光电子的能量只与光的频率有关,与光强无关,光频率越高,光电子能量越大,光强只影响光电子数目。光强越大,光电子数目越多。

c. 0νν>时,光一照射,几乎立刻(s 910-≈)观测到光电子。

(2)爱因斯坦解释

解释实验: W

mv

h +=2

21ν——爱因斯坦方程

逸出功 0νh W =

4. 玻尔的原子理论的中心内容:

定态假设,频率条件。 (1)定态假设

原子内部的运动只可能处于一些不连续的稳定状态,称为定态。原子在每一个定态下能量分别都有一定的值,原子的能量只允许取量子化的离散值,称为能级。

(2)频率条件

原子的能量不能任意连续地改变,只能通过从一个定态到另一定态的跃迁而产生跃迁式的改变。原子从一个能量为n E 的定态跃迁到另一能量为m E 的定态时,将发射或吸收频率为h

E E n m mn |

|-=ν的光子。

(3)量子化条件

在量子理论中,角动量必须是 的整数倍

?=nh

pdx

x 为坐标,p 为对应的动量,n 为正整数,称为量子数,回路积分是延轨道积一

圈。

5 微观粒子的波粒二象性

1924年德布罗意在光有波粒二象性的启发下,提出微观粒子也具有波粒二象性的假设,这种与粒子相联系的波叫德布罗意波。波的频率和波长与粒子的能量和动量通过德布罗意公式联系起来。

光子 量子

能量 νεh = νh E = 动量 λ

νh

c

h p =

=

λ

h

p =

6.实物粒子波动性的实验

(1) 戴维孙――革末电子衍射实验

电子正入射到镍单晶上,散射电子束的强度随散射角而改变,当散射角取某些确定值时,强度有最大值,这与X 射线的衍射现象相同,这充分说明电子具有波动性。

电子衍射 (2)单电子实验

(3)C 60分子束衍射是迄今为止最复杂的分子所表现出来的波动性。

计算题

例1:m =1g ,v =1cm/s 的实物粒子

由于波长很短,所以宏观粒子通常

看不到波动现象

例2:电子质量 m = 9.1?10-31kg ,加速电压为U ,求波长。

实物粒子波长很短,一般宏观条件下,波动性不会表现出来。到了原子世界(原子大

小约1A ), 物质波的波长与原子尺寸可比,物质微粒的波动性就明显的表现出来。

例3:计算25℃时,慢中子的德布罗意波长。 解:

m

mv

h 29

2

3

3410

62.610

10

1062.6----?=??=

=

λeU

mv

=2

21m

eU v 2=

A

U

emU

h mv

h 25.122≈

=

=

λA

V U 1150=→=λJ

kT 21

23

10

17.629810

38.12

323--?=???=

=

ε

第二章 ¥1

1. 概率波——量子力学中的波函数所描述的是粒子在空间的概率分布的概率波

概率波的概念将微观粒子的波动性和粒子性统一起来。微观客体的粒子性反映微观客体具有质量,电荷等属性。而微观客体的波动性,也只反映了波动性最本质的东西:波的叠加性(相干性)。

描述经典粒子:坐标、动量,其他力学量随之确定; 描述微观粒子:波函数,各力学的可能值以一定几率出现。 2. 波函数的意义

(1) 波函数强度的表示

设波函数),,,(t z y x Φ描写粒子的状态,波的强度ΦΦ=Φ*2|| (2) 位臵的概率:(点的概率)

3. 归一化条件:必然事件在整个空间找到粒子的几率为1。

1|),,,(|),,,(2

=Φ=

?

?

τd t z y x C t z y x dW

4.波函数的性质

1. ψ 是单值函数——概率密度的确定性所要求的

2. ψ 连续性——ψ,

x

??ψ,

y

??ψ,

z

??ψ连续,甚至

)(ln '='ψψ

ψ 均连续

3. ψ 有界性—— 概率不可能无穷大。——这称为波函数的标准条件。

2

2

1mv

=

εε

m mv p 2==21

27

10

17.610

67.12--????=1

24

10

55.4--???=s

kg m A

m p

h 46.110

46.110

=?==

4. 2ψ 是平方可积函数——C r d r d ==

?

?3

*32

ψψψ

5. 经典波和微观粒子几率波的区别:

(1)

经典波描述某物理量在空间分布的周期变化,而几率波描述微观粒子某力学量的几率分布;

(2)

经典波的波幅增大一倍,相应波动能量为原来四倍,就变成另一状态了;而微观粒子在空间出现的几率只决定于波函数在空间各点的相对强度,将几率波的波幅增大一倍并不影响粒子在空间各点出现的几率,即将波函数乘上一个常数,所描述的粒子的状态并不改变;

(3)

对经典波,加一相因子δi e ,状态会改变,而对几率波,加一相因子δi e 不会引起状态改变。

题目:

1. 设波函数为),,(z y x ψ,求在(dx x x +,)范围找到粒子的几率。

2. 在球坐标系中,粒子波函数表示为),,(?θr ψ,求(a )在球壳),(dr r r +中找

到粒子的几率。(b)在),(?θ方向的立体角

3. 波函数),,,(t z y x Φ

时刻t :x →x+dx 、y →y+dy 、z →z+dz 区域内找到粒子的几率表示为

τ

d t z y x C t z y x dW 2

|),,,(|),,,(Φ=

4. 例:使x sin =ψ,π≤≤x 0归一化 解:设x A sin 1=ψ 由132

1=?r d ψ,1]2

[

]2sin 4

12

1[

sin

2

02

2

2==-

=?π

πA x x A xdx A

得π

2

=

A , 即归一化波函数为x

sin 2

ψ=

,π≤≤x 0

5. 例:0

,,

2

2>∞<<∞-=-

a x e a

x ψ

解:设2

2a

x Ae

-

13

2

1=?

r d ψ, =-∞∞

-?

x d e A

a

x 2

22

2

+

-∞

-?

x d e A a

x 2

22

2

[

=-∞

?

]2

22

x d e a

x x

d e A

a

x 2

22

2

2-∞

?

由积分公式 a

x d e ax π

2

12

=

-∞

?, 得

x d e A

a

x 2

22

2

2-∞

?

12

2

122

==a A

π

, 所以,a

A 1)

2

(

2

/1π

=

¥2

1. 态叠加原理 经典力学中的叠加原理

经典的波是遵从迭加原理的,两个可能的波动过程1φ与1φ的线性迭加21φφb a +也是一个可能的波动过程。波的干涉、衍射现象可用波的迭加原理解释。 量子力学中的态叠加原理

当,...,...,21n ψψψ是体系的可能状态,他们的线性迭加:

......2211+ψ++ψ+ψ=ψn n c c c i

i i

c ψ=

,也是这个体系的一个可能状态。其中

(...,...,21n c c c 是复数)

习题:

1. 经典与量子叠加原理形式相同,但物理意义不同 经典:u u u 2=+ ,u 和2u 描述不同的状态 量子:ψψψ2=+,ψψ2,描述同一状态

2. ),(),

,(t p c t r

ψ描述的是同一状态

)

,(t r

ψ:以坐标为自变量的波函数,描述位臵概率。

()t p c ,

:以动量为自变量的波函数。描述动量概率。

两者一一对应,一个确定,另一个也确定。

¥3-4

一、定态薛定谔方程 1.

定态——

0)(=??t

r U

2.

定态薛定谔方程 t

t r Ψi ??),(

),()](2[2

2

t r r U

ψ+?-

3. 定态解

)()(),(t f r t r ψ=ψ,

ψ

ψψμ

E r U =+?-

)(22

2

——ψψE H

=? ——定态方程。 (1)能级——本征值

只对一系列特定的E 值——n E E E ,,21才有解,这些值是算符H 的本征值,称为能级 (2)本征函数

与相应能级n E 对应的态函数n ψ——是H 的本征函数。n ψψψ ,,21 (3)本征值方程

n n n

E H ψψ

=——本征值方程,

实际上,λψψ=F

?,则λ为F ?的本征值,ψ为λ的本征函数,方程λψψ=F

?为算符F ?的本征方程。 (4)

简并度——对应一确定的能量值n E ,波函数的数目称为简并度

n d 。

4. 连续性方程和概率流矢量

=??+??J t

w ——连续性方程。

其中,w ——概率密度

J

——概率流密度矢量,单位时间内流过(垂直于粒子流方向)单位面积

的概率。 二、 定态的性质 1. 能量E 为实数——E E

=*

2. 概率密度和概率流密度都与时间无关。

=??t

w ,

=??t

j

题目:

1.证明能量E 为实数

概率密度 t

E E i

t

iE t

iE e r r e

r e

r t r t r t r )()()()()(),(),(),(-*-****

==ψψ=

ψψψψρ

),(3

=???

r d t r w dt

d

0),()(),(3

3

=-=

??????

*∞

r d t r E E i r d t r dt

d

ρρ

所以E E =*

,既E 为实数。

2.概率密度和概率流密度都与时间无关。

因为 )()(),(),(r r t r t r w ψψ**=ψψ=,

)]

()(Im[)Im(*

r r M

M

J

ψψ?=

ψ?ψ≡*只

是位臵函数,所以 0

=??t

w ,

=??t

j

由连续性方程,

0=??+??J t

w ,得0=??J

,表明粒子处于定态中时,其概率

及其概率流的空间分布都是稳定不变的。 ¥6-7

一、 一维无限深势阱 意义

1)是固体物理金属中自由电子的简化模型;

2)数学运算简单,量子力学的基本概念、原理在其中以简洁的形式表示出来 .

??

?∞

=0

)(x V

a

x x a x ><<<,00

1. 薛定谔方程

阱内:

02

2

2

=+ψψk dx

d ,2

2

E k μ=

2. 能级和波函数 2

2

222a n E n μπ =

, )sin(

2)(x a

n a

x n πψ=

3. 概率密度 )(

sin 2)(2

x a

n a

x n πψ=

二、谐振子

研究意义:任何体系在平衡位置附近的小振动,例如分子振动、原子核表面振动以及辐射场的振动等,在选择了适当的坐标之后,往往可以分解成若干彼此独立的一维简谐振动。 任务:求能量、概率分布

一维线性谐振子的势能为2

221)(x x V μω=,不含时间,是定态问题

哈密顿算符2

2

2

22

2

2x

dx

d

H μω

μ+

-

=

谐振子的定态波函数 )()(2

2

ξξψξ

n n n H e

N -

=

能级 ω )2

1

(+=n E n , ,2,1,0=n

相应的递推公式 习题:

1:二维各向同性谐振子的哈密顿算符是

)

(2

)(

22

22

2

22

22

y x M y

x

M

H ++

??

+

??

-

,试在直角坐标系中解出其能级。

解: 由薛定谔方程 ψ

ψψE r V M

=+?-

)(22

2

设波函数 )()()(y Y x X x =ψ

??

?

???++??+??-)(2)(2222

2

2

222y x M y x

M ω E y Y x X =)()()()(y Y x X

]

2

2[2

2

2

22

x M x

M ω+

??

-

+)()(y Y x X ]

2

2[2

2

2

22

y M y

M

ω+

??

+

-

)

()(y Y x X )()(y Y x EX =

方程两边同除以)()(y Y x X ,得

)

(1x X ]2

2[2

2

2

22

x M x

M ω+

??

-

+

)(x X )

(1y Y ]2

2[2

2

2

22

y M y

M

ω+

??

+

-

)(y Y E

=

令E E E ''+'=,上式可分解为一维薛定谔方程

]2

2[2

2

2

22

x M x

M ω+

??

-

=)(x X )(x X E ', 其解为 ω

)2

1(1+=''n E n

, ,2,1,0='n

相应的态函数和一维形式相同,既有)()()(12

2

1

1

2

x H e

N x x X n x

n n αψα

-

==

]2

2[2

2

2

22

y M y

M

ω+

??

+

-

)(y Y )(y Y E ''=,其解为 ω

)2

1(+''=''''n E n

, ,2,1,0=''n

相应的态函数为 )()()(22

2

2

2

2

x H e

N x y Y n y

n n αψα

-

==

E E E ''+'=ω

)1(+=n , ,2,1,021=+=n n n

讨论:1. ω =0E 比一维零点能大一倍

2. 相邻能级的间距为仍为ω =?n E

3.简并态和量子数的概念

n ——主量子数,1n 、2n 分量子数

简并态——若对应主量子数n ,既确定能级,有多个波函数,该能级是简并能级,波函数的数目称为简并度n d 。

2:一维运动的粒子处于 ??

?≤≥=-)

0(0

)0(,)(x x Axe

x kx

ψ 的状态,式中0>λ, 求

(1) 归一化常量A

(2) 粒子的概率密度

(3) 粒子出现在何处的概率最大?

解:(1)1),(3

*==

?

r d ψψψψ

dx e

x A x

λ222-?

dx e

x A

x

λ222

-∞

-?

=1220

2

==-∞

?

dx e

x A

x

λ

由公式

1

!

+-∞

-=

?

n x

n n dx e

x α

α,3

220

822

λ?

=

-∞

?dx e

x x

=),(ψψ1813

2

A

, 2

/3)

2(λ=A (2)ψψ=*

w =x

e x A λ22

2

-x

e

x λλ22

3

8-=

(3)

0=dx

dw ,0]2)2([82223=+---x

x

xe

e

x λλλλ

02

=+-x x λ,01=x ,λ

1

2=

x

=2

2

dx

w d =+-++------})2(]2)2([{16222223x

x

x

x

e xe xe e

x λλλλλλλλ

00

2

2>=x dx

w d ——极小值

01

2

2<=λ

x dx

w d ——极大值

¥8 什么叫势垒贯穿,其应用意义如何?

量子力学选择题1

量子力学选择题 (1)原子半径的数量级是: A.10-10cm; B.10-8m C. 10-10m D.10-13m (2)若氢原子被激发到主量子数为n的能级,当产生能级跃迁时可能发生的所有谱线总条数应为: A.n-1 B .n(n-1)/2 C .n(n+1)/2 D .n (3)氢原子光谱赖曼系和巴耳末系的系线限波长分别为: A.R/4 和R/9 B.R 和R/4 C.4/R 和9/R D.1/R 和4/R (4)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为: A.3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e (5)氢原子基态的电离电势和第一激发电势分别是: A.13.6V和10.2V; B –13.6V和-10.2V; C.13.6V和3.4V; D. –13.6V和-3.4V (6)根据玻尔理论,若将氢原子激发到n=5的状态,则: A.可能出现10条谱线,分别属四个线系 B.可能出现9条谱线,分别属3个线系 C.可能出现11条谱线,分别属5个线系 D.可能出现1条谱线,属赖曼系 (7)欲使处于激发态的氢原子发出Hα线,则至少需提供多少能量(eV)? A.13.6 B.12.09 C.10.2 D.3.4 (8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线? A.1 B.6 C.4 D.3 (9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为: A .0.66 eV B.12.09eV C.10.2eV D.12.75eV (10)用能量为12.75eV的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋); A.3 B.10 C.1 D.4 (11)按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的: A.1/10倍 B.1/100倍 C .1/137倍 D.1/237倍 (12)已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的

曾谨言量子力学(卷I)第四版(科学出版社)2007年1月...

曾谨言《量子力学》(卷I )第四版(科学出版社)2007年1月摘录 第三版序言 我认为一个好的高校教师,不应只满足于传授知识,而应着重培养学生如何思考问题、提出问题和解决问题。 这里涉及到科学上的继承和创新的关系。“继往”中是一种手段,而目的只能是“开来”。 讲课虽不必要完全按照历史的发展线索讲,但有必要充分展开这种矛盾,让学生自己去思考,自己去设想一个解决矛盾的方案。 要真正贯彻启发式教学,教师有必要进行教学与科学研究。而教学研究既有教学法的研究,便更实质性的是教学内容的研究。从教学法来讲,教师讲述一个新概念和新原理时,应力求符合初学者的认识过程。在教学内容上,至少对于像量子力学这样的现代物理课程来讲,我信为还有很多问题并未搞得很清楚,很值得研究。 量子力学涉及物质运动形式和规律的根本变革.20世纪前的经典物理学(经典力学、电动力学、热力学与统计物理学等),只适用于描述一般宏观 从物质波的驻波条件自然得出角动量量子化的条件及自然理解为什么束缚态的能量是量子化的:P17~18; 人类对光的认识的发展历史把原来人们长期把物质粒子看作经典粒子而没有发现错误的启发作用:P18; 康普顿实验对玻尔电子轨道概念的否定及得出“无限精确地跟踪一个电子是不可能的”:P21; 在矩阵力学的建立过程中,玻尔的对应原理思想起了重要的作用;波动力学严于德布罗意物质波的思想:P21; 微观粒子波粒二象性的准确含义:P29; 电子的双缝衍射实验对理解电子波为几率波的作用:P31 在非相对论条件下(没有粒子的产生与湮灭),概率波正确地把物质粒子的波动性与粒子性联系起来,也是在此条件下,有波函数的归一化及归一化不随时间变化的结果:P32; 经典波没有归一化的要领,这也是概率波与经典波的区别之一:P32; 波函数归一化不影响概率分布:P32 多粒子体系波函数的物理意义表明:物质粒子的波动性并不是在三维空间中某种实在的物理量的波动现象,而一般说来是多维的位形空间中的概率波。例如,两个粒子的体系,波函数刻画的是六维位形空间中的概率波。这个六维空间,只不过是标志一个具有6个自由度体系的坐标的抽象空间而已。 动量分布概率: 1 波包的频谱分析 具有一定波长的平面波可表示为: ()e x p ()k x i k x ψ= (A1.1) 波长2/k λπ=,其特点是是波幅(或强度)为常数.严格的平面波是不存在的,实际问题中碰到的都是波包,它们的强度只在空间有限区域不为0.例如,高斯波包 221()exp()2x a x ψ=- (A1.2) 其强度分布222()exp()x a x ψ=-,如图A.1所示.可以看出,波包主要集中在1 x a < 区域中. 所以波包宽度可近似估计为:

量子力学的概率解释

引言:黑体辐射等实验的研究以及光谱实验的诞生,促使了人们对微观世界的不断认识。经典力学的局限性也日益显著,所面临的一些棘手的问题也越来越多。因此迫使我们不得不抛弃经典力学,而重新建立一个全新的力学体系——量子力学。该力学体系描绘了微观世界中,微观粒子的运动行为及其力学特性。 题目:量子力学的概率解释 内容摘要:在经典力学中,我们知道物体的运动可由牛顿第二定律描述: 22(((),(),()))d r F m r x t y t z t dt ==r u r r ;方程的解即为物体的动力学方程。由此方程的解: ((),(),())r x t y t z t =r ;在给定的初始条件下我们即可以知道任意时刻物体在空间所处的位 置。而在微观领域中,微观粒子的运动并不适用于上述的方程所描述。实验证明他们在某一 时刻出现在空间的哪一点上是不确定的。应该用方程μH E ψ=ψ来描述。比如电子的衍射现象,海森堡的不确定性关系,还有薛定谔为批评哥本哈根学派对量子论的观点而提出的一 个思维实验(薛定谔猫)。本文利用概率与统计的相关概念对量子力学做出一些相关的阐明,并对一些相关的问题(衍射,薛定谔猫等)进行说明。对单电子体系薛定谔方程作出较为详细的讨论,并加以例题进行进一步说明。 关键词:量子力学、概率与统计、电子衍射现象、薛定谔猫、薛定谔方程 概率统计理论的简单介绍: 随机变量X :X 是定义在样本空间Ω上的实值函数;对面门一样本点ω,()X ω是一个实数。X 离散取值时,为离散随机变量。X 连续取值时,为连续型随机变量。本文只介绍连续型随机变量。 概率密度函数:当X 为连续型随机变量时,例如一条直线AB 如图:A 0 1 B 假设现在有一个点落到了AB 上,我们是否能问该点恰好落在0.5x =处的概率是多少?显然这是毫无意义的问题,因为该点恰好落在任意一点上的概率均为零。(基本事件的个数为无穷) 我们只能问该店落在某一区间[,]a b 上的概率是多少?例如[,][0,0.5]a b =;此时概率 10.5/12 p == 。 因此设X 是一随机变量,如果存在非负函数()f x 使得对任意满足a b -∞≤≤+∞的,a b 有 ()()b a p a X b f x dx ≤≤=?;就称()f x 是随机变量X 的概率密度函数。 显然()f x 应该具有如下性质: (1) ()1f x dx +∞ -∞ =? ;(量子力学中波函数的归一化性质) (2)()0.p X a ==于是()()()p a X b p a X b p a X b ≤≤==≤p p p ; (3)对于数集,()()A A p X A f x dx ∈= ?;

量子力学考试题

量子力学考试题 (共五题,每题20分) 1、扼要说明: (a )束缚定态的主要性质。 (b )单价原子自发能级跃迁过程的选择定则及其理论根据。 2、设力学量算符(厄米算符)∧ F ,∧ G 不对易,令∧K =i (∧F ∧G -∧G ∧ F ),试证明: (a )∧ K 的本征值是实数。 (b )对于∧ F 的任何本征态ψ,∧ K 的平均值为0。 (c )在任何态中2F +2 G ≥K 3、自旋η/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为 S H ??ω= ∧ H =ω∧ z S +ν∧ x S (ω,ν>0,ω?ν) (a )求能级的精确值。 (b )视ν∧ x S 项为微扰,用微扰论公式求能级。 4、质量为m 的粒子在无限深势阱(0

(a )能量有确定值。力学量(不显含t )的可能测值及概率不随时间改变。 (b )(n l m m s )→(n’ l’ m’ m s ’) 选择定则:l ?=1±,m ?=0,1±,s m ?=0 根据:电矩m 矩阵元-e → r n’l’m’m s ’,n l m m s ≠0 2、(a )6分(b )7分(c )7分 (a )∧ K 是厄米算符,所以其本征值必为实数。 (b )∧ F ψ=λψ,ψ∧ F =λψ K =ψ∧ K ψ=i ψ∧F ∧ G -∧ G ∧F ψ =i λ{ψ∧ G ψ-ψG ψ}=0 (c )(∧F +i ∧G )(∧F -i ∧G )=∧ F 2 +∧ G 2 -∧ K ψ(∧F +i ∧G )(∧F -i ∧G )ψ=︱(∧ F -i ∧ G )ψ︱2≥0 ∴<∧ F 2 +∧ G 2-∧ K >≥0,即2F +2 G ≥K 3、(a),(b)各10分 (a) ∧ H =ω∧ z S +ν∧ x S =2ηω[1001-]+2ην[0110]=2η[ων ν ω -] ∧ H ψ=E ψ,ψ=[b a ],令E =2η λ,则 [λωννλω---][b a ]=0,︱λων ν λω---︱ =2λ-2ω-2ν=0 λ=±22νω+,E 1=-2η22νω+,E 2=2η 22νω+ 当ω?ν,22νω+=ω(1+22ων)1/2≈ω(1+222ων)=ω+ων22 E 1≈-2η[ω+ων22],E 2 =2η [ω+ων22] (b )∧ H =ω∧z S +ν∧ x S =∧H 0+∧H ’,∧ H 0=ω∧ z S ,∧ H ’=ν∧ x S ∧ H 0本征值为ωη21± ,取E 1(0)=-ωη21,E 2(0) =ωη21 相当本征函数(S z 表象)为ψ1(0)=[10],ψ2(0)=[01 ] 则∧ H ’之矩阵元(S z 表象)为

量子力学初步-作业(含答案)

量子力学初步 1. 设描述微观粒子运动的波函数为(),r t ψ ,则ψψ*表示______________________________________;(),r t ψ 须满足的条件是_______________________________; 其 归 一 化 条 件 是 _______________________________. 2. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将_______________________________. (填入:增大D 2倍、增大2D 倍、增大D 倍或不变) 3. 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为 ()()30x x x a a πψ= << 粒子出现的概率最大的各个位置是x = ____________________. 4. 在电子单缝衍射实验中,若缝宽为a =0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量y p ?= _________N·s. (普朗克常量h =6.63×10-34 J·s) 5. 波长λ= 5000 ?的光沿x 轴正向传播,若光的波长的不确定量λ?= 10-3 ?,则利用不确定关系式x p x h ??≥可得光子的x 坐标的不确定量至少为_________. 6. 粒子做一维运动,其波函数为 ()00 x Axe x x x λψ-≥= ≤ 式中λ>0,粒子出现的概率最大的位置为x = _____________. 7. 量子力学中的隧道效应是指______________________________________ 这种效应是微观粒子_______________的表现. 8. 一维无限深方势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为____________. 9. 按照普朗克能量子假说,频率为ν的谐振子的能量只能为_________;而

量子力学讲义

量子力学的通俗讲座 一、粒子和波动 我们对粒子和波动的概念来自直接的经验。和粒子有关的经验对象:小到石子大到天上的星星等;和波动有关的经验对象:最常见的例子是水波,还有拨动的琴弦等。但这些还不是物理中所说的模型,物理中所谓粒子和波动是理想化的模型,是我们头脑中抽象的对象。 1.1 粒子的图像 在经典物理中,粒子的概念可进一步抽象为:大小可忽略不计的具有质量的对象,即所谓质点。质量在这里是新概念,我们可将其定义为包含物质量的多少,一个西瓜,比西瓜仔的质量大,因为西瓜里包含的物质的量更大。 为叙述的简介,我们现在可把粒子等同于质点。要描述一个质点的运动状态,我们需要知道其位置和质量(x,m ),这是一个抽象的数学表达。 但我们漏掉了时间,时间也是一个直观的概念,这里我们可把时间描述为一个时钟,我们会发现当指针指到不同位置时,质点的位置可能不同,于是指针的位置就定 义了时刻t 。有了时刻 t ,我们对质点的描述就变成了(x,t,m ),由此可定义速度v ,现在我们对质点运动状态的描述是(x,v,t,m )。 在日常经验中我们还有相互作用或所谓力的概念,我们在地球上拎起不同质量物体时肌肉的紧张程度是不同的,或者说弹簧秤拎起不同质量物体时弹簧的拉伸程度是不同的。 以上我们对质量、时间、力等的定义都是直观的,是可以操作的。按照以上思路进行研究,最终诞生了牛顿的经典力学。这里我们可简单地用两个公式:F=ma (牛顿第二定律) 和 2 GMm F x (万有引力公式) 来代表牛顿力学。前者是质点的运动方程,用数学的语言说是一个关于位置x 的二阶微分方程,所以只需要知道初始时刻t=0时的位置x 和速度v 即可求出以后任意时刻t 质点所处的位置,即x(t),我们称之为轨迹。 需要强调的是一旦我们知道t=0时x 和v 的精确值(没任何误差),x(t)的取值也是精确的,即我们得到是对质点未来演化的精确预测,并且这个求 解对t<0也精确成立,这意味着我们还可精确地反演质点的历史。这些结论都是由数学理论严格保证的,即轨迹是一根理想的线。 经典的多粒子系统

量子力学考试题

量子力学考试题

量子力学考试题 (共五题,每题20分) 1、扼要说明: (a )束缚定态的主要性质。 (b )单价原子自发能级跃迁过程的选择定则及其理论根据。 2、设力学量算符(厄米算符)∧ F ,∧ G 不对易,令∧K =i (∧F ∧G -∧G ∧ F ),试证明: (a )∧ K 的本征值是实数。 (b )对于∧ F 的任何本征态ψ,∧ K 的平均值为0。 (c )在任何态中2F +2 G ≥K 3、自旋η/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为 S H ??ω= ∧ H =ω∧ z S +ν∧ x S (ω,ν>0,ω?ν) (a )求能级的精确值。 (b )视ν∧ x S 项为微扰,用微扰论公式求能级。 4、质量为m 的粒子在无限深势阱(0

' 11 H =0,'22 H =0,'12H ='21 H =ν η21 E 1=E 1(0)+'11H +)0(2)0(12 '21 E E H -=-ωη21+0-ωνηη2241=-ωη21-ων241η E 2=E 2 (0) +' 22H + )0(1)0(22'12 E E H -=ωη21 +ων241η 4、E 1=2 22 2ma ηπ,)(1x ψ=?????0sin 2a x a π a x x a x ≥≤<<,00 x =dx x a ?021ψ=2sin 20 2a dx a x x a a =?π x p =-i η?=a dx dx d 011ψψ-i ?=a a x d a 020)sin 21(2πη x xp =-i η??-=a a a x d a x x a i dx dx d x 00 11)(sin sin 2ππψψη = ?-a a x xd a i 02) (sin 1πη =0sin [12a a x x a i πη--?a dx a x 0 2]sin π =0+?=a i dx ih 0 2 122ηψ 四项各5分 5、(i ),(ii )各10分 (i )s =0,为玻色子,体系波函数应交换对称。 ),(21→ →r r ψ有:)(1→ r a ψ→ )(2r a ψ,)(1→ r b ψ→ )(2r b ψ,)(1→ r c ψ→ )(2r c ψ, )] ()()()([21 2121→ →→→+r r r r a b b a ψψψψ a c c a b c c b 共6种。 (ii )s =21 ,单粒子态共6种: ? ?????0 1a ψ, ? ?????1 0a ψ, ? ?????0 1b ψ, ? ?????1 0b ψ, ? ?????0 1c ψ, ? ?????1 0c ψ。

量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e α ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ?? 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a =?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率16 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量: =??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ω ==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

量子力学知识点总结(精.选)

1光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子 4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大 5戴维逊-革末实验证明了德布罗意波的存在 6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。按照这种解释,描写粒子的波是几率波 7波函数的归一化条件 1),,,( 2 ?∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。定

态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。⑵粒子几率流密度不随时间改变。⑶任何不显含时间变量的力学量的平均值不随时间改变 9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 10厄密算符的定义:如果算符 F ?满足下列等式() ? ?dx F dx F φψφψ**??=,则称F ?为厄密算符。式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。 11厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。 12简并:对应于一个本征值有一个以上本征函数的情况。简并度:对应于同一个本征值的本征函数的数目。 13量子力学中力学量运动守恒定律形式是: 01=??????+??=H F i t F dt F d ?,?η 量子力学中的能量守恒定律形式是01=??????=H H i dt H d ?,??η 14 15斯特恩-革拉赫实验证明电子存在自旋理由 16黑体辐射揭示了经典物理学的局限性。 17玻尔的量子化条件:在量子理论中,角动量必须是h 的整数 的近似求解方法。 求出,由求出微扰论:由n n n n E E ψψ)0()0(

量子力学诠释问题(一)

量子力学诠释问题(一) 作者:孙昌璞( 中国工程物理研究院研究生院北京北京计算科学研究中心) 1 引言:量子力学的二元结构和其发展的二元状态上世纪二十年代创立的量子力学奠定了 人类认识微观世界的科学基础,成功地解释和预言了各种相关物理效应。然而,关于波函数的意义,自爱因斯坦和玻尔旷世之争以来众说纷纭,并无共识。直到今天,量子力学发展还是处在这样一种二元状态。对此有人以玻尔的“互补性”或严肃或诙谐地调侃之,以“shut up and calculate”的工具主义观点处之以举重若轻。这样一个二元状态主要是由于附加在玻恩几率解释之上的“哥本哈根诠释”之独有的部分:外部经典世界存在是诠释量子力学所必需的,是它产生了不服从薛定谔方程幺正演化的波包塌缩,使得量子力学二元化了。今天,虽然波包塌缩概念广被争议,它导致的后选择“技术”却被广泛地应用于量子信息技术的各个方面,如线性光学量子计算和量子离物传态的某些实验演示。早年,薛定谔曾经写信严厉批评了当时的物理学家们,他在给玻恩的信中写到:“我确实需要给你彻底洗脑……你轻率地常常宣称哥本哈根解释实际上已经被普遍接受,毫无保留地这样宣称,甚至是在一群外行人面前——他们完全在你的掌握之中。这已经是道德底线了……你真的如此确信人类很快就

会屈从于你的愚蠢吗?”1979 年,Weinberg在《爱因斯坦的错误》一文中批评了玻尔对测量过程的不当处理:“量子经典诠释的玻尔版本有很大的瑕疵,其原因并非爱因斯坦所想象的。哥本哈根诠释试图描述观测(量子系统)所发生的状况,却经典地处理观察者与测量的过程。这种处理方法肯定不对:观察者与他们的仪器也得遵守同样的量子力学规则,正如宇宙的每一个量子系统都必须遵守量子力学规则。”“哥本哈根诠释可以解释量子系统的量子行为,但它并没有达成解释的任务,那就是应用波函数演化方程于观察者和他们的仪器。”最近温伯格又进一步强调了他对“标准”量子力学的种种不满。在量子信息领域,不少人不加甄别地使用哥本哈根诠释导致的“后选择”方案,其可靠性令人怀疑!其实,在量子力学幺正演化的框架内,多世界诠释不引入任何附加的假设,成功地描述了测量问题。由于隐变量理论在理论体系上超越了量子力学框架,本质上是比量子力学更基本的理论,所以本文对Bell 不等式不作系统讨论。自上世纪八十年代初,人们先后提出了各种形式迥异的量子力学新诠释,如退相干、自洽历史、粗粒化退相干历史和量子达尔文主义,但实际上都是多世界诠释的拓展和推广。2 哥本哈根诠释及其推论哥本哈根诠释的核心内容是“诠释量子世界,外部的经典世界必不可少”。波函数描述微观系统的状态,遵循态叠加原理,即:如果|?1>

量子力学试题

量子力学试题(一)及答案 一. (20分)质量为m 的粒子,在一维无限深势阱中 ()???><∞≤≤=a x x a x x V ,0 ,0 ,0 中运动,若0=t 时,粒子处于 ()()()()x x x x 3212 1 31210,???ψ+-= 状态上,其中,()x n ?为粒子能量的第n 个本征态。 (1) 求0=t 时能量的可测值与相应的取值几率; (2) 求0>t 时的波函数()t x ,ψ及能量的可测值与相应的取值几率 解:非对称一维无限深势阱中粒子的本征解为 ()x a n a x n n m a E n n π ?πsin 2,3,2,1 ,222 2 2=== (1) 首先,将()0,x ψ归一化。由 12131212222=???? ???????? ??+???? ??+???? ??c 可知,归一化常数为 13 12=c 于是,归一化后的波函数为 ()()()()x x x x 32113 31341360,???ψ++-= 能量的取值几率为 ()()()13 3 ;13 4 ;136321=== E W E W E W 能量取其它值的几率皆为零。 (2) 因为哈密顿算符不显含时间,故0>t 时的波函数为

()()()()?? ? ??-+?? ? ??-+??? ??-= t E x t E x t E x t x 332211i e x p 133i exp 134i exp 136, ???ψ (3) 由于哈密顿量是守恒量,所以0>t 时的取值几率与0=t 时相同。 二. (20分)质量为m 的粒子在一维势阱 ()?? ? ??>≤≤-<∞=a x a x V x x V ,00 ,0 .0 中运动()00>V ,若已知该粒子在此势阱中有一个能量2 V E -=的状态,试确定此势阱的宽度a 。 解:对于02 <- =V E 的情况,三个区域中的波函数分别为 ()()()()??? ??-===x B x kx A x x αψψψexp sin 03 21 其中, E m V E m k 2 ;) (20=+= α 在a x =处,利用波函数及其一阶导数连续的条件 ()()()() a a a a '3 '2 32ψψψψ== 得到 ()() a B ka Ak a B ka A ααα--=-=exp cos exp sin 于是有 α k ka -=tan 此即能量满足的超越方程。 当02 1 V E -=时,由于 1t a n 00 0-=-=??? ? ?? mV mV a mV

量子力学基础简答题(经典)【精选】

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在 ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1 ?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

量子力学的隐变量解释

量子力学的隐变量解释1935 年 5 月, 在 Physical Review 上 Einstein 和他的两位同事 B. Podolsky和 N. Rosen 共同发表了一篇名为「Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?」 (量子力学对物理世界的描述是完备的吗?) 三个人异口同声地回答:「不!」.在这篇著名的文章中,作者首先阐述了他们对物理理论的看法:一个严谨的物理理论应该要区别「客观实体」(object reality) 以及这个理论运作的观点.客观实体应独立于理论而存在.在判断一个理论是否成功时,我们会问自己两个问题:(1) 这个理论是否正确? (2) 理论的描述是否完备?只有当这两个问题的答案是肯定时,这样的理论才是令人满意的.理论的正确性当由实验来决定.而关于量子力学的描述是否完备则是这篇文章探讨的主题.在进一步讨论理论的完备性之前,我们必须先定义什么是完备性.作者们提出了一项判别完备性的条件:每一个物理实体的要素必须在理论中有一对应物(every element of the physical reality must have a counterpart in the physical theory)因此我们决定了什么是「物理实体的要素」,那么第二个问题就容易回答了.那么,究竟什么是「物理实体的要素」呢? 作者们以为: 「如果,在不以任何方式干扰系统的情况下,我们能准确地预测(即机率为一)某一物理量的值,那么必定存在一个物理实体的要素与这个物理量对应.」他们认为,只要不把这个准则视为一必要条件,而看成是一充分的条件,那么这个判别准则同样适用于古典物理以及量子力学中对实在的概念.举例来说,在一维系统中,一个以波函数φ(x) = exp(ip0x/2πh) (其中 p0是一常数,i 表纯虚数,h 为Planck常数)描述的粒子.其动量的算符为 h d ,p = ------ ---- ,2(Pi)i dx,因此: pFI(x) = p0FI(x),所以动量有一确定的值 p0. 因此在这种情形下动量是一物理实体.反之,对位 置算符 q 而言,qFI = xFI ≠ aFI ,因此粒子的位置并没有一确定的值.它是不可预测的,仅能以实验测定之.然而任何一实验的测定都将干扰到粒子而改变其状态,被测后的粒子将再也不具动量 p0了.对于此情况,我们说当一粒子的动量确定时,它的位置并非一物理 实体.一般来说在量子力学中,对两个不可对易的可观察量(observable)而言,知道其中一个物理量的准确知识将排除对另外一个的准确知识.任何企图决定后者的实验都将改变系统的状态而破坏了对前者的知识.至此,作者们发现我们面临了如下的两难局面: (1)或者,在量子力学中波函数对物理实在的描述是不完备的. (2)或者,两个对应于不可对易算符的物理量不能同时是实在的(即具有确定的值).因为,若两个不可对易的物理量同时具有确定的值,根据作者们对完备性的条件,在波函数的描述中应包含这些值.但事实上并非如此,

量子力学练习题

第 五 篇 第 一 章 波粒二象性 玻尔理论 一、选择题 1. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0 (使电子从金属逸出需作功eU 0),则此单色光的波长λ必须满足: [ A ] (A) 0eU hc ≤ λ (B) 0 eU hc ≥λ (C) hc eU 0≤λ (D) hc eU 0≥λ 解:红限频率与红限波长满足关系式hv 0= λhc =eU 0,即0 0eU hc = λ 0λλ≤才能发生光电效应,所以λ必须满足0 eU hc ≤ λ 2. 在X 射线散射实验中,若散射光波长是入射光波长的1.2倍,则入射光光子能量0ε与散射光光子能量ε之比ε0 为 [ B ] (A) 0.8 (B) 1.2 (C) 1.6 (D) 2.0 解: λ εhc = ,0 0λεhc = ,02.1λλ= ,所以 2.10 0==λλεε 3. 以下一些材料的功函数(逸出功)为 铍 -----3.9 eV 钯 ---- 5.0 eV 铯 ---- 1.9 eV 钨 ---- 4.5 eV 今要制造能在可见光(频率范围为3.9×1014 Hz ~ 7.5×1014Hz)下工作的光电管,在这些材料中应选 [ C ] (A) 钨 (B) 钯 (C) 铯 (D) 铍 解:可见光的频率应大于金属材料的红限频率0νh , 才会发生光电效应。这些金属的红限频率由A h =0ν可以得到: 1419 34 )(01086.101063.610 6.15.4?=???= --钨ν(Hz) 1419 34 )(01007.121063.610 6.10.5?=???= --钯ν(Hz) 1419 34 ) (01059.41063.610 6.19.1?=???= --铯ν(Hz) 1419 34 )(01041.91063.610 6.19.3?=???= --铍ν(Hz) 可见应选铯

量子力学思考题及解答

量子力学思考题 1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于 不能忽略的体系,而经典力学适用于 可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或 可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。 (2)如按这种理解 ),()(),()(),(2211t x t c t x t c t x ψψψ+=

11大物C量子力学基础选择题答案

量子力学基础选择题 (参考答案) 1.下面的各种物体如果对光都没有透射,那么,哪种是绝对黑体?() A.不辐射可见光的物体; B.不辐射任何光强的物体; C.不反射可见光的物体; D.不反射任何光线的物体 答(D) 2.实验发现热辐射的波长与温度有关,它们的关系是:() A.温度越高,辐射波长越短 B.温度越高,辐射波长越长 C.温度越低,辐射波长越短 D.温度与波长变化呈线形关系 答(A) 3.黑体辐射的峰值波长与黑体本身温度T的关系:() A. λm与T成正比 B. λm与T2成正比 C. λm与T4成正比 D. λm与T成反比 答(D) 4. 为了证实德布罗意假设,戴维孙—革末于1927年在镍单晶体上做了电子衍射实验从而证明了:( B ) A.电子的波动性和粒子性 B.电子的波动性 C.电子的粒子性 D.所有粒子具有二项性 答(B) 5.普朗常数的数值和单位: () A.6.626 ?10-34焦耳/秒 B.6.626 ?10-34焦耳?秒 C.6.626 ?10-36焦耳/秒 D.6.626 ?10-36焦耳?秒 答(B) 6.原子半径的数量级是: () A.10-10 cm B.10-8 m C.10-10 m D.10-13 m 答(C) 7.已知金属钠的逸出功是2.30eV,光电效应中波长为2000A的紫外线照射钠时,光电子的最大动能越为(eV):() A.1.50 B.3.90 C.15.0 D.39.0 答(B) (hc/λ-W)

8.设某金属的逸出功为A ,h 和C 分别为普朗克常数和光速,则该金属光电效应的红限波长为:( ) A.hc/A B.h/A C.A/h D.A/hc 答(A ) 9.氢原子光谱赖曼系和巴尔末系的系限(最短)波长分别是:( ) A.R/4和R/9 B.R 和R/4 C.4/R 和9/R D.1/R 和4/R 答(D ) 10.氢原子基态的电离电势和第一激发电势分别是:( ) A.13.6V 和10.2V B.-13.6V 和-10.2V C.13.6V 和3.4V D.-13.6V 和-3.4V 答(A ) 11.若赖曼系帕邢系巴尔末系第一条谱线的波长分别为λ赖 ,λ帕和λ巴,则它们之间满足:( ) A. λ赖>λ帕>λ巴 B. λ赖<λ帕<λ巴 C. λ赖< λ巴<λ帕 D. λ巴<λ赖<λ帕 答(C ) 12.如果粒子以速度运动v 时的德布罗意波长为λ,当它的速度增至2v 时,其德布罗意波长应是: ( ) A. 2 λ B. 3λ C. λ /2 D. λ/3 答(C ) 13.微观粒子的状态用波函数表示,对波函数模的平方的统计解释是:( ) A 、表示微观粒子在时刻的坐标位置; B 、表示时刻,坐标处物质波的强度; C 、表示时刻,坐标处物质波的振幅; D 、表示微观粒子时刻在处单位体积中出现的几率。 答(D ) 14.波函数的三个标准条件是:( ) A.连续、归一、有限; B.单值、连续、有限; C.单值、归一、有限; D.单值、连续、归一。 答(B ) 15.定态薛定谔方程的解是波函数:( ) A .()(,)iEt r t r e ψ-ψ=; B .()(,)()r t r T t ψψ=; C .()(,)r t r ψψ=; D .(,)iEt r t e -ψ=。 答(A )

相关文档