文档视界 最新最全的文档下载
当前位置:文档视界 › 高温合金

高温合金

高温合金
高温合金

INCONEL-600

产品产地:美国/德国/日本

主要成分:77Ni-16Cr -6Fe

INCONEL 600的高镍成分使合金具有非常强的抗氯化物应力裂变腐蚀能力,以及在还原状态下可维持其高耐蚀性及在碱溶液中亦具有很强的耐腐蚀能力。同时因含铬,所以在氧化性环境下耐腐蚀性更胜纯镍。

主要特征:具有良好的耐高温腐蚀和抗氧化性能、优良的冷热加工和焊接工艺性能,在700°C以下具有满意的热强性和高的塑性。

用途举例:航空发动机零部件,腐蚀性碱金属的生产和使用领域,特别是使用硫化物的环境。

编辑本段

Inconel 600的化学成分

合金% 镍+钴铬铁碳锰硫铜硅

Inconel 600 最大

17.0 10.0 0.15 1.0 0.015 0.50 0.50

最小72.0 14.0 6.0

Inconel 600的物理性能

密度8.47 g/cm3

熔点1354-1413 ℃

Inconel 600的机械性能

合金抗拉强度(MPA) Rm N/mm2 屈服强度(MPA) RP0.2N/mm2 延伸率A5 % Inconel 600 550-690Mpa 205-345Mpa 35-55

根据不同的形式和条件,600合金产生的强度和硬度是不同的。在退火条件下,合金的屈服强度为25,000 psi to 50,000psi(172 MPa to 345 MPa)。在这个范围内,其延伸率将为35%到55%。然而,对于冷加工的材料,其抗拉强度最高能达至220,000 psi (1517 MPa)。因此,在以上表格中,所做出来的值都是有典型区域的,除了规定了最大值和最小值,不会产生特定的数值。

Incoloy825

目录

概述

Incoloy825化学成分与相近牌号

Incoloy825合金特性

Incoloy825合金应用领域

Incoloy825 焊接

编辑本段概述

Incoloy 825是钛稳定化处理的全奥氏体镍铁铬合金,并添加了铜和钼。Incoloy 825是一种通用的工程合金,在氧化和还原环境下都具有抗酸和碱金属腐蚀性能。高镍成份使合金具有有效的抗应力腐蚀开裂性。在各种介质中的耐腐蚀性都很好,如硫酸、磷酸、硝酸和有机酸,碱金属如氢氧化钠、氢氧化钾和盐酸溶液。Incoloy 825较高的综合性能表现在腐蚀介质多样的核燃烧溶解器中,如硫酸、硝酸和氢氧化钠都在同一个设备中处理。

编辑本段Incoloy825化学成分与相近牌号

Incoloy825相近牌号

NS142(中国)、NC21FeDu (法国)、W.N r.2.4858 NiCr21Mo (德国) NA16 (英国) Incoloy825、UNS NO8825(美国)NiFe30Cr21Mo3(ISO)

Incoloy825化学成分

镍Ni:38-46

铬Cr:19.5-23.5

铁Fe:余量

碳C:≤0.025

锰Mn:≤1.0

硅Si:≤0.5

钼Mo:2.5-3.5

铜Cu:1.5-3.0

钴Co:≤1.0

铝Al:≤0.2

钛Ti:0.6-1.2

编辑本段Incoloy825合金特性

●好的耐应力腐蚀开裂性能

●好的耐点腐蚀和缝隙腐蚀性能

●很好的抗氧化性和非氧化性热酸性能

●在室温和高达550℃的高温时都具有很好的机械性能

●具有制造温度达450℃的压力容器的认证

编辑本段Incoloy825合金应用领域

Incoloy 825广泛应用于各种使用温度不超过550℃的工业领域。

典型应用为:

●硫酸酸洗工厂用的加热管、容器、筐及链等。

●海水冷却热交换器、海洋产品管道系统、酸性气体环境管道。

●磷酸生产中的热交换器、蒸发器、洗涤、浸渍管等。

●石油精炼中的空气热交换器

●食品工程

●化工流程

●压氧气应用的阻燃合金

编辑本段Incoloy825 焊接

Incoloy 825适合采用任何传统焊接工艺与同种材料或其他金属焊接,如钨电极惰性气体保护焊、等离子弧焊、手工亚弧焊、金属极惰性气体保护焊、熔化极惰性气体保护焊,其中脉冲电弧焊是首选方案。在采用手工电弧焊时,推荐使用(Ar+He+H2+CO2)多种成份混合的保护气体。

Incoloy 825的焊接必须在退火态进行,并使用不锈钢丝刷清理干净污渍、粉尘和各种记号。在焊缝根部焊接时,为得到最佳的根部焊缝质量,操作必须非常小心(氩气99.99),这样在根部焊接完后焊缝就不产生氧化物。焊接热影响区产生的颜色要在焊缝区域未冷却时用不锈钢刷刷去。

编辑本段焊接材料

对于气体保护焊接工艺,推荐采用以下的填充金属

金属焊条:

Nicrofer S 6020-FM625

材料号2.4831

SG- NiCr21Mo9Nb

AWS A5.14: ERNiCrMo-3

药皮焊条

材料号2.4621

EL- NiCr20Mo9Nb

AWS A5.11: ENiCrMo-3

编辑本段Incoloy825执行标准

EN DIN DIN VdTUV 816

NiCr15Fe

17742

305

1

305

95

177

50

305

95

177

52

305

95

177

50

95

177

53

54

305

法国

AFNOR

NC15FE

英国BS NA143074

307

2

307

6

307

3

307

5

美国

ASTM ASME AMS UNS NO6

600

B167

SB16

7

5580

B163/B516/517

SB163/SB516/S

B517

B16

8

SB1

68

554

B16

6

SB1

66

566

5

B16

8

SB1

68

554

B16

6

SB1

66

568

7

B56

4

SB5

64

556

5

ISO NiCr15Fe 8

Incoloy 800H

目录

INCOLOY 800H/HT合金全面介绍

编辑本段INCOLOY 800H/HT合金全面介绍

INCOLOY 800 H/HT是一种广泛应用于高温承压结构件的奥氏体耐热合金. 800 H/HT 的高强度主要是由于添加了碳,铝,钛元素,并且在最低1149℃温度下退火以达到晶粒度ASTM 5等级或者更粗.

对于800 H/HT在787℃以下使用,焊接使用82(ER NiCr-3)的焊丝.R A 330-04(N08334)焊丝具有相匹配的热膨胀系数,更高的强度.如果希望获得最大的力学强度,最好使用焊丝617(ERNiCrCoMo-1)或者焊条117(ENiCrCoMo-1).

为了避免800H/HT焊接部件在538℃以上可能发生的应力松弛而导致晶界开裂, 需要在899℃进行焊后热处理,保温时间根据材料厚度每25毫米保温一小时(至少半小时/25毫米厚度),然后空冷.

材料标准UNS 美标: N08811, N08810 W. Nr./EN 欧标: 1.4958, 1.4959 ASTM: B 409, B 408, B 407 ASME: SB-409, SB-408, SB-407 Code Case 1325

化学成分, %

铬镍锰硅铝钛铝+ 钛碳铜磷硫铁最小值19.030.0----0.150.150.850.06--------

变形高温合金的特性、分类及用途

科技名词定义 塑性变形 科技名词定义 中文名称:塑性变形 英文名称:plastic deformation 定义:岩体、土体受力产生的、力卸除后不能恢复的那部分变形。 应用学科:水利科技(一级学科);岩石力学、土力学、岩土工程(二级学科);土力学(水利)(三级学科) 本内容由全国科学技术名词审定委员会审定公布 塑性变形(Plastic Deformation),的定义是物质-包括流体及固体在一定的条件下,在外力的作用下产生形变,当施加的外力撤除或消失后该物体不能恢复原状的一种物理现象。

目录 介绍 机理 影响 介绍 机理 影响 展开 编辑本段介绍 材料在外力作用下产生而在外力去除后不能恢复的那部分变形 塑性变形 。材料在外力作用下产生应力和应变(即变形)。当应力未超过材料的弹性极限时,产生的变形在外力去除后全部消除,材料恢复原状,这种变形是可逆的弹性变形。当应力超过材料的弹性极限,则产生的变形在外力去除后不能全部恢复,而残留一部分变形,材料不能恢复到原来的形状,这种残留的变形是不可逆的塑性变形。在锻压、轧制、拔制等加工过程中,产生的弹性变形比塑性变形要小得多,通常忽略不计。这类利用塑性变形而使材料成形的加工方法,统称为塑性加工。 编辑本段机理 固态金属是由大量晶粒组成的多晶体,晶粒内的原子按照体心立方、面心立方或紧密六方等方式排列成有规则的空间结构。由于多种原因,晶粒内的原子结构会存在各种缺陷。原

塑性变形 子排列的线性参差称为位错。由于位错的存在,晶体在受力后原子容易沿位错线运动,降低晶体的变形抗力。通过位错运动的传递,原子的排列发生滑移和孪晶(图1)。滑移是一部分晶粒沿原子排列最紧密的平面和方向滑动,很多原子平面的滑移形成滑移带,很多滑移带集合起来就成为可见的变形。孪晶是晶粒一部分相对于一定的晶面沿一定方向相对移动,这个晶面称为孪晶面。原子移动的距离和孪晶面的距离成正比。两个孪晶面之间的原子排列方向改变,形成孪晶带。滑移和孪晶是低温时晶粒内塑性变形的两种基本方式。多晶体的晶粒边界是相邻晶粒原子结构的过渡区。晶粒越细,单位体积中的晶界面积越大,有利于晶间的移动和转动。某些金属在特定的细晶结构条件下,通过晶粒边界变形可以发生高达300~3000%的延伸率而不破裂。 编辑本段影响 金属在室温下的塑性变形,对金属的组织和性能影响很大,常会出现加工硬化、内应力和各向异性等现象。 加工硬化 塑性变形引起位错增殖,位错密度增加,不同方向的位错发 塑性变形力学原理 生交割,位错的运动受到阻碍,使金属产生加工硬化。加工硬化能提高金属的硬度、强度和变形抗力,同时降低塑性,使以后的冷态变形困难。

incoloy825高温耐蚀合金 N08825

Incoloy825高温耐蚀合金 Incoloy825特性及应用领域概述: 该合金是一种通用的工程合金,在氧化和还原环境下都具有抗酸和碱金属腐蚀性能高镍成分使合金具有有效的抗应力腐蚀开裂性。在各种介质中的耐腐蚀性都很好,如硫酸、磷酸、硝酸和有机酸,碱金属如氢氧化钠、氢氧化钾和盐酸溶液。合金的综合性能表现在腐蚀介质多样的核燃烧溶解器中,如硫酸、硝酸和氢氧化钠都在同一个设备中处理。应用于各种使用温度不超过550℃的工业领域,如:硫酸酸洗工厂用的加热管、容器、筐及链等、海水冷却热交换器、海洋产品管道系统、酸性气体环境管道、磷酸生产中的热交换器、蒸发器、洗涤、浸渍管等、石油精炼中的空气热交换器、食品工程、化工流程、高压氧气应用的阻燃合金等。 Incoloy825相近牌号: NS142、NO8825、NC21FeDu、W.Nr.2.4858 、NiCr21Mo、 NA16 Incoloy825 化学成分: Incoloy825物理性能: Incoloy825力学性能:(在20℃检测机械性能的最小值)

Incoloy825生产执行标准: Incoloy825 金相组织结构: 该合金具有稳定的面心立方结构。化学成分和恰当的热处理保证了耐腐蚀性不受敏化性的削弱。 Incoloy825工艺性能与要求: 1、合金加热环境含有硫、磷、铅或其他低熔点金属,合金将变脆。杂质来源于做标记的油漆、粉笔、润滑油、水、燃料等。燃料的硫含量要低,如液化气和天然气的杂质含量要低于0.1%,城市煤气的硫含量要低于0.25g/m3,石油气的硫含量低于0.5%是理想的。 2、合金合适的热加工温度为1150-900℃,冷却方式可以是水淬或快速空冷。 3、采用钨电极惰性气体保护焊、等离子弧焊、手工亚弧焊、金属极惰性气体保护焊、熔化极惰性气体保护焊,其中脉冲电弧焊是首选方案。 Incoloy825主要规格: Incoloy825无缝管、Incoloy825钢板、Incoloy825圆钢、Incoloy825锻件、Incoloy825法兰、Incoloy825圆环、Incoloy825焊管、Incoloy825钢带、Incoloy825直条、Incoloy825丝材及配套焊材、Incoloy825圆饼、 Incoloy825扁钢、Incoloy825六角棒、Incoloy825大小头、Incoloy825弯头、Incoloy825三通、Incoloy825加工件、Incoloy825螺栓螺母、 Incoloy825紧固件。

铌在超级耐热合金中的重要作用

铌在超级(耐热)合金中的重要作用 在商业用超级(耐热)合金中,镍基超耐热合金718,706和625在产量中占据非常突出的位置。实际上镍基超耐热合金产品主要是由这几种合金组成。这些合金中含铌量为3—5.5wt%。表1列出了最重要的含铌超级合金的化学成分: 表1---最重要含铌超耐热合金的正常化学成分(wt%) 合金Ni Nb Cr Co Mo W Ti Al Fe C 其它 Inconel 718 52.5 5.1 19.0 3.00.90.5 18.5 Inconel706 41.5 2.9 16.0 1.80.2 37.5 0.03 Inconel625 61.0 3.6 21.5 9.00.20.2 2.5 0.05 Rene88DT 56.5 0.7 16.0 13.0 4.0 4.0 3.7 2.1 0.03 0.015B Rene95 61.0 3.5 14.0 8.0 3.5 3.5 2.5 3.5 <0.30.16 0.01B;0.05Zr Udimet630 50.0 6.5 17.0 3.0 3.0 1.00.7 18.0 0.04 0.004B Inconel 751 72.5 1.0 15.5 2.3 1.2 7.0 0.05 0.25max.Cu InconelX750 73.0 1.0 15.5 2.50.7 7.0 0.04 0.25max.Cu Alloy713C 74.0 2.0 12.5 4.20.8 6.1 0.12 0.12B;0.10Zr IN-738 61.0 0.9 16.0 8.5 1.7 2.6 3.4 3.4 0.17 0.01B;0.1Zr;1.7Ta MAR-M200 60.0 1.0 9.0 10.012.0 2.0 5.0 0.15 0.015B;0.05Zr Inconel 907 38.0 4.7 13.0 1.50.0342.0 0.15Si Inconel909 38.0 4.7 13.0 1.50.0342.0 0.01 0.40Si 铌在超级(耐热)合金中的作用 铌在超耐热合金中的主要作用是固溶强化和析出强化。铌形成MC和M6C 形式的碳化物进而形成Ni3Nb 双强化相。铌在超耐热合金中由于固溶和Ni3Nb 双相析出强化明显地提高了抗蠕变强度。 Inconel718是1959年由Inco Alloys开发的,在镍基合金中加入铌是为了增加高温强度。其强化机理是热处理过程中在镍马氏体基体中析出金属间化合物(Ni3Nb)。虽然作为强化元素也可以用其它金属代替铌,但人们发现铌是唯一

高温合金概述

1.1 高温合金 1.1.1 高温合金及其发展概况 高温合金是指以铁、钴、镍为基体,能在600℃以上温度,一定应力条件下适应不同环境短时或长时使用的金属材料。具有较高的高温强度、塑性,良好的抗氧化、抗热腐蚀性能,良好的热疲劳性能,断裂韧性,良好的组织稳定性和使用可靠性。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用的可靠性,基于上述性能特点,且高温合金的合金化程度很高,故在英美称之为超合金(Superalloy)。 高温合金于20世纪40年代问世,最初就是为满足喷气发动机对材料的耐高温和高强度要求而研制的,高温合金的发展与航空发动机的进步密切相关,1939年英国Mond镍公司首先研究出Nimonic75,随后又研究出Nimonic80合金,并在1942年成功用作涡轮气发动机的叶片材料,此后该公司又在合金中加入硼、锆、钴、钼等合金元素,相继开发成功Nimonic80A、Nimonic90等合金,形成Nimonic合金系列。如今先进航空发动机中高温合金用量已超过50%。此外,在航天、核工程、能源动力、交通运输、石油化工、冶金等领域得到广泛的应用。高温合金在满足不同使用条件中得到发展,形成各种系列的合金,除传统的高温合金外,还开发出一批高温耐磨、高温耐蚀的合金。 高温合金是航空发动机、火箭发动机、燃气轮机等高温热端部件的不可代替的材料,由于其用途的重要性,对材料的质量控制与检测非常严格。高温合金的基本用途仍旧是飞行器的燃气轮发动机的高温部分,它要占先进的发动机重量的50%以上。然而,这些材料在高温下极好的性能已使其用途远远超出了这一行业。除了航空部件之外,规定将这些合金用于舰船、工业、陆地发电站以及汽车用途的涡轮发动机上。具体的发动机部件包括涡轮盘、叶片、压缩机轮、轴、燃烧室、后燃烧部件以及发动机螺栓。除了燃气发动机行业之外,高温合金还被选择用于火箭发动机、宇宙、石油化工、能源生产、内燃烧发动机、金属成形(热加工工模具)、热处理设备、核电反应堆和煤转换装置。

NS311(H03110)耐高温耐腐蚀合金

NS311(H03110)耐高温耐腐蚀合金 【供应品种】NS311圆棒、NS311无缝管、NS311板材、NS311带材、NS311管材 【冶韩实业(上海)有限公司周先生、郭女士、康女士、郑先生】 技术顾问:周工/TEL:①③⑧①⑥①⑥⑥③④③ NS311(H03110)耐蚀合金 NS311化学成分 NS311产品NS311标准NS311性能 NS311主要特性NS311用途举例 抗氧化性介质及含氟离子高温硝酸腐蚀,无磁性。 用于高温硝酸环境及强腐蚀条件下工作的无磁构件。 NS311化学成分作用分析: 1.铬(Cr):在结构钢和中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 2.镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 3.钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 4.钛(Ti):钛是钢中强脱氧剂。它能使钢的内部zuzh致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 NS311化学成分检测方法: NS311光谱分析仪——优点是一次可以分析多种元素,精度较高。缺点是价格太高。 NS311分光光度计——优点是检测波长选择方便,价格不高。缺点是检测结果不能直接显示;没有曲线建立调用功能,检测不同元素每次要重新定标;比色皿放入和倒出液体不方便;对操作人员的化学分析基础知识要求高,因此不能适应企业现场在线检测分析的需要。 NS311比色元素分析仪——优点是使用方便,价格也不高,对操作人员的化学分析基础要求不高,因此被广泛用于企业生产检验现场分析。 NS311现货规格说明: 圆钢/圆棒/钢板/钢材/钢带/无缝管/扁钢/六角棒/元钢/角钢/盘条/线材/棒材/板材/板/棒钢棒/带钢/钢管/管材/研磨/棒拉/光棒/工字钢/槽钢/ NS311工艺类别说明: 热轧板/冷轧板/锻打/热顶锻/进口/固溶处理/时效处理/化学成份/价格/性能/淬火/回火/牌号/软态/硬态/全硬/退火/调质

高温合金材料介绍

MONEL 400 /UNS N04400 The alloy has excellent corrosion resistance in hydrofluoric acid and fluorine gas, and is suitable for pipe fittings and valves etc for chemical industry, petroleum, atomic energy, marine development. 在氢氟酸和氟气中具有优异的耐蚀性,适用于化工、石油、原子能、海洋开发中用的管件、阀件等。 NICKEL 200 ( UNS N02200 / DIN. W.Nr. 2.4060 ) The alloy is from pure commercial (99.6%) nickel, has good mechanical properties and excellent corrosion resistance, high thermal conductivity, low gas content and low vapor pressure. Mainly used in food processing equipment, salt refining equipment, mining and ocean mining. High temperature above 300 DEG C for manufacturing industrial sodium hydroxide required equipment. 是纯商业性(99.6%)造成的镍,具有优良的力学性能和优良的耐腐蚀性,较高的热和电导率,低气体含量和低蒸汽压力。主要应用于食物加工处理设备、食盐提炼设备、采矿和海洋开采。在300℃以上的高温条件下制造工业氢氧化钠所需的设备。 NICKEL 201 ( UNS N02201 / DIN. W.Nr. 2.4060 ) The alloy is a commercially pure nickel with very low carbon content and has been approved for use in a high temperature environment of up to 1230 degrees Celsius. 是含碳量极低的纯商业性镍,已被批准用于服务高达1230℃的高温环境中。 INCONEL 600 ( GB NS312 / UNS N06600 / DIN W.Nr.2.4816 / DIN NiCrl 5Fe / BS NA14 / AFNOR NC23FeA ) The alloy has high corrosion resistance against various corrosive media, also has good anti creep rupture strength. Recommended for the above 700 C working environment, mainly used for corrosive alkali metal production and application, especially the use of sulfide in the environment. 对于各种腐蚀介质都具有耐蚀性,还具有很好的抗蠕变断裂强度。推荐用于700℃以上的工

镍基高温合金

镍基高温合金 浏览: 文章来源:中国刀具信息网 添加人:阿刀 添加时间:2007-06-28 以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗 氧化、抗燃气腐蚀能力的高温合金。 发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60 年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内, 镍基高温合金的发展趋势

镍基合金的工作温度从 700℃提高到1100℃,平均每年提高10℃左右。镍基高温合 金的发展趋势见图1。 成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的 A 3B 型金属间化合物 '[Ni 3(Al ,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中 Cr

高温合金应用领域

1、航空航天领域 我国发展自主航空航天产业研制先进发动机,将带来市场对高端和新型高温合金的需求增加。航空发动机被称为“工业之花”,是航空工业中技术含量最高、难度最大的部件之一。作为飞 机动力装置的航空发动机,特别重要的是金属结构材料要具备轻质、高强、高韧、耐高温、 抗氧化、耐腐蚀等性能,这几乎是结构材料中最高的性能要求。 高温合金是能够在600℃以上及一定应力条件下长期工作的金属材料。高温合金是为了满足 现代航空发动机对材料的苛刻要求而研制的,至今已成为航空发动机热端部件不可替代的一 类关键材料。在先进的航空发动机中,高温合金用量所占比例已高达50%以上。 在现代先进的航空发动机中,高温合金材料用量占发动机总量的40%~60%。在航空发动机上,高温合金主要用于燃烧室、导向叶片、涡轮叶片和涡轮盘四大热段零部件;此外,还用于机匣、环件、加力燃烧室和尾喷口等部件。 2、能源领域 高温合金在能源领域中有着广泛的应用。煤电用高参数超超临界发电锅炉中,过热器和再过 热器必须使用抗蠕变性能良好,在蒸汽侧抗氧化性能和在烟气侧抗腐蚀性能优异的高温合金 管材;在气电用燃气轮机中,涡轮叶片和导向叶片需要使用抗高温腐蚀性能优良和长期组织 稳定的抗热腐蚀高温合金;在核电领域中,蒸汽发生器传热管必须选用抗溶液腐蚀性能良好 的高温合金;在煤的气化和节能减排领域,广泛采用抗高温热腐蚀和抗高温磨蚀性能优异的 高温合金;在石油和天然气开采,特别是深井开采中,钻具处于4-150 ℃的酸性环境中,加 之CO2,H2S和泥沙等的存在,必须采用耐蚀耐磨高温合金 [5] 。 我国上海电气、东方电气、哈尔滨汽轮机厂等大型发电设备制造集团在生产规模和生产技术 等方面近年来有了较大提高,拉动了对发电设备用的涡轮盘的需求。正在进行国产化研制的 新一代发电装备-大型地面燃机(也可作舰船动力)取得了显著进展,实现量产后将带动对 高温合金的需求。同时,核电设备的国产化,也将拉动对国产高温合金的需求。

高温合金制备工艺技术

1 CN02128856.9 一种抗金属灰化的镍基高温合金 2 CN02133773.X 汽轮机汽封用高温合金弹簧及其加工方法和检验装置 3 CN01136127.1 耐高温磨耗辊轮修护用焊接合金材料 4 CN02131317.2 一种兼顾高温蠕变与韧性的Fe-Cr-Ni基铸造合金及其制法 5 CN02155647.4 一种超高碳Cr-Ni-C高温耐磨合金材料 6 CN02155648.2 一种高温耐磨耐蚀Ni-Mo-Si金属硅化物合金材料 7 CN02150476.8 高温合金的电化学分解方法 8 CN01135231.0 抗高温磨粒磨损堆焊合金材料 9 CN02157794.3 电弧炉冶炼镍基高温合金的工艺方法 10 CN02145569.4 耐高温抗氧化贱金属铜银合金组合物及其生产方法 11 CN00816047.3 具有良好耐高温氧化性的耐热合金的制备方法 12 CN02121274.0 一种铬基高温合金 13 CN02128855.0 一种抗金属灰化、炭化铁镍铬基铸造高温合金 14 CN02116369.3 高温镍氢电池用贮氢合金材料及制法 15 CN02129176.4 高温耐磨耐腐蚀Cr-Ni-Si金属硅化物合金材料 16 CN02157165.1 耐高温腐蚀合金、热障涂层材料、涡轮机构件及燃气涡轮机 17 CN01138854.4 一种单晶高温合金定向凝固过程温度场数据自动采集方法 18 CN02100328.9 提高TiAl合金抗高温氧化的铬改性铝化物涂层的制备 19 CN02154585.5 铜基合金及其制造方法以及铜基合金制气化器等的耐高温性部件 20 CN02122933.3 长轴类高温合金大锻件整体锻造工艺 21 CN01810058.9 表面合金化的高温合金 22 CN03131144.X 一种抗金属灰化高强度高温耐蚀合金 23 CN03111619.1 一种耐高温耐磨损高强度合金的制备方法 24 CN96115293.1 一种镍基高温合金锻件和棒材获得均匀超细晶粒的方法 25 CN96123394.X 一种由铁-镍超级高温合金组成的耐高温材料体的制造方法 26 CN96103277.4 耐高温低膨胀锌基耐磨合金 27 CN96106513.3 一种合金钢、特种钢、高温合金管的制造方法 28 CN96107076.5 高强度镍基铸造高温合金 29 CN85102472 高温耐热铁基合金 30 CN85105832 高温合金盐浴渗硼剂及其制备方法 31 CN85103156 提高高温合金锻造质量的一种简单新工艺 32 CN85100649 超高温耐磨铸造镍基合金 33 CN85101950 高碳低合金钢高温形变球化退火工艺 34 CN85102029 镍基高温合金可锻性改进 35 CN86108069 耐高温冲击磨损等离子喷焊镍基合金加碳化物复合粉末涂层材料 36 CN88100515 改进选定的铬-钼改良型合金钢高温特性和可焊性的方法 37 CN87101772 电气开关用的高温触点合金 38 CN88104319.2 高温用快速凝固含硅铝基合金 39 CN88100747.1 无稀土高温超导合金及其制备方法 40 CN88100441.3 高温自润滑镍基合金 41 CN89105034.5 一种提高高温合金性能的方法 42 CN89109243.9 供超高温合金用的富集钇的铝化物涂层 43 CN90109970.8 抗氧化的低膨胀高温合金

高温合金ASUHGH应用解析

SUH660 镍基合金 (UNS S66286/A286/SUH660/GH2132/)简介 SUH660(UNS S66286/A286/SUH660/GH2132/)是Fe-25Ni-15Cr基高温合金,加入钼、钛、铝、钒及微量硼综合强化。有可时效硬化高的机械性能。该合金在温度高达约1300°F(700℃)保持良好的强度和抗氧化性能。在700℃以下具有优于奥氏体不锈钢的高温强度,属于沉淀析出硬化耐热不锈钢。与SUS 304相比Ni含量多,且添加有Ti、Al等硬化元素。因此,通过时效硬化处理,会有γ’相(fcc_Ni3(Al,Ti))析出,高温强度将得到显着提高。在650℃以下具有高的屈服强度和持久、蠕变强度,并且具有较好的加工塑性和满意的焊接性能。 SUH660高强度和优异的加工特性使该合金用于飞机的各种部件和有用工业燃气涡轮机。它也用于汽车发动机紧固件和应用多方面受到高层次的热量和压力的元器件,和近海石油和天然气行业。适合制造在650℃以下长期工作的航空发动机高温承力部件,如涡轮盘、压气机盘、转子叶片、紧固件、承力环、机匣、轴类、紧固件、和板材焊接承力件等。 SUH660/A286相近牌号 GH2132(中国),UNS S66286(美国),A286(美国),SUH660(日本),(德国) 技术文件 SUH660/A286材料特性 ·铁基高温 ·高强度合金 SUH660/A286主要应用 ·燃气涡轮机锻件 ·适用于使用高达约1300°F的腐蚀环境,如燃气涡轮机 ·于1500°F的温度连续服务于氧化环境 ·飞机部件 ·汽车发动机紧固件 ·元器件 ·石油和天然气行业 SUH660/A286溶炼与铸造工艺 SUH660/A286合金可采用非真空感应+电渣,电弧炉+电渣和电弧炉+真空电弧以及真空感应+真空电弧等工艺溶炼。 SUH660/A286生产执行标准 中国国家标准 GJB2612-1996《焊接用高温合金冷拉丝材规范》

高温合金材料最新发展

高温合金材料最新发展 新一代高温合金 New Generation Ni-based and Co-based Superalloys 高温合金由于具有优的高温力学性能和抗腐蚀、氧化能力等综合性能,而广泛地用于航空航天发 动机、地面燃气轮机以及其他恶劣服役环境中的关键设备中。 Ni and Co-based superalloys have good balanced properties of high temperature strength, toughness, and resistance to degradation in corrosive or oxidizing environments, which make the materials widely used in aircraft and power-generation turbines, rocket engines, and other aggressive environments. 1.第四代镍基单晶高温合金(Ru-containing Single Crystal Ni-base Superalloys) 先进镍基单晶高温合金由于其高温下优良的综合性能而成为高推比(>12)航空发动机高压涡轮 叶片的首选材料,与传统低Cr商业单晶合金的设计思路不同,利用Ru和高Cr及其交互作用有可能 通过改变γ’相形貌,即改变合金元素在γ和γ’两相中分配比和点阵错配度,提高蠕变性能,并保持良好 的综合性能。 Different from commercial single crystal superalloys with low levels of Cr addition, high levels of Cr and Ru additions as well as the effects of their interaction influence the morphology of γ’ precipitates remark ably. They changed the elemental partitioning ratio between the γ and γ’ phases, and the lattice misfits of these experimental alloys, and enhanced the creep life with keeping the balanced properties. These new

高温合金GH4169

常州市天志金属材料有限公司 一、GH4169 概述 GH4169合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。 该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。 1.1 GH4169 材料牌号 GH4169(GH169) 1.2 GH4169 相近牌号 Inconel 718(美国),NC19FeNb(法国) 1.3 GH4169 材料的技术标准 GJB 2612-1996 《焊接用高温合金冷拉丝材规范》 HB 6702-1993 《WZ8系列用GH4169合金棒材》 GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》 GJB 1952 《航空用高温合金冷轧薄板规范》 GJB 1953《航空发动机转动件用高温合金热轧棒材规范》 GJB 2612 《焊接用高温合金冷拉丝材规范》 GJB 3317《航空用高温合金热轧板材规范》 GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》 GJB 3020 《航空用高温合金环坯规范》 GJB 3167 《冷镦用高温合金冷拉丝材规范》 GJB 3318 《航空用高温合金冷轧带材规范》 GJB 2611《航空用高温合金冷拉棒材规范》 YB/T5247 《焊接用高温合金冷拉丝》 YB/T5249 《冷镦用高温合金冷拉丝》 YB/T5245 《普通承力件用高温合金热轧和锻制棒材》 GB/T14993《转动部件用高温合金热轧棒材》 GB/T14994 《高温合金冷拉棒材》 GB/T14995 《高温合金热轧板》 GB/T14996 《高温合金冷轧薄板》 GB/T14997 《高温合金锻制圆饼》 GB/T14998 《高温合金坯件毛坏》 GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》 HB 5199《航空用高温合金冷轧薄板》 HB 5198 《航空叶片用变形高温合金棒材》 HB 5189 《航空叶片用变形高温合金棒材》 HB 6072 《WZ8系列用GH4169合金棒材》

高温合金材料的应用与发展

高温合金材料的应用与发展分析 李桃山王保山 南昌航空大学飞行器工程学院100631班:10号 南昌航空大学飞行器工程学院100631班:20号 摘要: 本文主要介绍高温合金材料的定义及加工特点,通过了解合金的使用范围及选择标准,使更好的发展运用在各个领域。随着工业技术的发展。要求使用具有耐更高温度下的疲劳、蠕变、热稳定性以及抗氧化性能的高温材料,以适应先进设备(主要是航空运用)的设计要求,因此近半个多世纪以来人们从未停止过对的各种高温合金材料研发。从我国高温材料的发展历程与现状分析认为,我们应该发扬民主, 军民结合, 发扬全国一盘棋的精神, 形成一个和谐的集体,使我国高温合金体系建立在一个更坚实的基础上。 关键字:高温合金材料合金分类应用合金发展前景选择标准 前言: 高温钛合金以其优良的热强性和高比强度,在航空发动机上获得了广泛的应用。类似的高温合金材料在未来很长的一段时间应该是王牌型材料,在科技日新月异的今天,对高温合金材料的研究与来发具有很高的实际意义与战略意义。未来的航空航天飞行器及其推力系统,要求发展比现有的Ti64和Ti6242合金的强度、工作温度和弹性模量更高,密度更小,价格更低的高温合金材料,因此,高温合金材料的是航空材料的发展主流。 一、高温合金材料的定义及加工特点 高温合金定义:高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定应力作用下长期工作的一类金属材料。并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用可靠性。 高温合金加工特点 对于镍合金、钛合金以及钴合金等高温合金来说,耐高温的特性直接提高了

GH600、Inconel600高温耐腐蚀合金参数

上海商虎/张工:158 –0185 -9914 GH600高温合金 相近商标 GH 600 的化学成分: GH 600 的物理功能: GH 600 在常温下合金的机械功能的最小值: GH 600 合金具有以下特性: 1. 具有很好的耐复原、氧化、氮化介质腐蚀的功能 2. 在室温及高温时都具有很好的耐应力腐蚀开裂功能 3. 具有很好的耐干燥氯气和氯化氢气体腐蚀的功能 4. 在零下、室温及高温时都具有很好的机械功能 5. 具有很好的抗蠕变断裂强度,引荐用在700℃以上的工作环境。GH 600 的金相结构: 600 为面心立方晶格结构。

GH 600 的耐腐蚀性: 600合金对于各种腐蚀介质都具有耐腐蚀性。铬的成分使该合金在氧化条件下比镍 99.2 (合金 200) 和镍 99.2(合金 201,低碳)具有更好的耐腐蚀性。一起,较高的镍含量使合金在复原条件和碱性溶液中具有很好的耐腐蚀性,并且能有效地避免氯-铁应力腐蚀开裂。 600合金在乙酸、醋酸、蚁酸、硬脂酸等有机酸中具有很好的耐蚀性,在无机酸中具有中等的耐蚀性。在核反应堆中一次和二次循环运用的高纯度水中具有很优秀的耐蚀性。 600特别突出的功能是可以反抗干氯气和氯化氢的腐蚀,运用温度达 650℃。在高温下,退火态和固溶处理态的合金在空气中具有很好的抗氧化剥落功能和高强度。该合金也能反抗氨气和渗氮、渗碳气氛,但是在氧化复原条件交替变化时,合金会遭到部分氧化介质的腐蚀(如绿色死亡液) GH 600 运用范围运用范畴有: 1.腐蚀气氛中的热电偶套管 2.氯乙烯单体生产:抗氯气、氯化氢、氧化和碳化腐蚀 3.铀氧化转换为六氟化物:抗氟化氢腐蚀 4.腐蚀性碱金属的生产和运用范畴,特别是运用硫化物的环境 5.用氯气法制二氧化钛 6.有机或无机氯化物和氟化物的生产:抗氯气和氟气腐蚀 7.核反应堆 8.热处理炉中曲颈瓶及部件,特别是在碳化和氮化气氛中 9.石油化工生产中的催化再生器在700℃以上的运用中引荐运用合金600以取得较长的运用寿命。 产品:哈氏合金、高温合金、铜镍合金、英科耐尔、蒙乃尔、钛合金、沉淀硬化钢等各种中高端不锈钢,镍基合金等。 高温合金: GH3030、GH4169、GH3128、GH145、GH3039、GH3044、GH4099、GH605、GH5188等 软磁合金: 1J06、1J12、1J22、1J27、1J30、1J36、1J50、1J79、1J85等 弹性合金: 3J01、3J09、3J21、3J35等。蒙乃尔合金:Monel 400(N04400)、Monel K500(N05500)等

铸造高温合金发展的回顾与展望

第20卷 第1期2000年3月 航 空 材 料 学 报 JOURNAL OF AERONAUT ICAL M ATERIALS Vol.20,No.1 M arch2000 铸造高温合金发展的回顾与展望 陈荣章1 王罗宝1 李建华2 (1.北京航空材料研究院,北京100095; 2.中国人民大学,北京100872) 摘要:回顾了20世纪40年代以来铸造高温合金发展中的若干重大事件:叶片以铸代锻;真空 熔炼技术;定向凝固及单晶合金;合金成分设计;Ni3Al基铸造高温合金;合金凝固过程数值 模拟;细晶铸造。展望了铸造高温合金21世纪的发展:单晶高温合金仍然是最重要的涡轮叶 片材料;继续靠工艺的发展挖掘合金潜力;发展有希望的替代材料。 关键词:合金发展;铸造高温合金;燃气涡轮叶片 中图分类号:T G24 文献标识码:A 文章编号:1005 5053(2000)01 0055 07 自从20世纪40年代初期第一台航空喷气发动机采用第一个铸造涡轮工作叶片以来,铸造高温合金的发展经历了一段曲折而又辉煌的历程。众所周知,航空发动机的发展与高温合金的发展是齐头并进、密不可分的,前者是后者的主要动力,后者是前者的重要保证。占据着航空发动机中温度最高、应力最复杂的位置的铸造涡轮叶片的合金发展尤其是这样。半个世纪以来,航空发动机涡轮前温度从40年代的730 提高到90年代的1677 ,推重比从大约3提高到10[1],这一巨大进展固然离不开先进的设计思想、精湛的制造工艺以及有效的防护涂层,但是,高性能的铸造高压涡轮叶片合金的应用更是功不可没。40年代以来,标志着铸造高温合金性能水平的在140M Pa/100h条件下的承温能力从750 左右提高到当前的1200 左右(图1),是十分令人鼓舞的巨大成就。在这世纪之初回顾铸造高温合金发展的历程,不能不提到如下几件使人难忘的重大事件。 叶片以铸代锻 1943年,美国GE公司为其J 33航空发动机选用了钴基合金H S 21制作涡轮工作叶片,代替原先用的锻造高温合金H astelloy B。当时为了考核铸造高温合金作为转动件的可靠性,宇航局(NASA)有关部门曾对两种合金叶片同时进行台架试车鉴定。结果表明, HS 21完全可以代替H astelloy B制作涡轮转子叶片,从此开创了使用铸造高温合金工作叶片的历史[2,3]。之后,又谨慎地对X 40,GM R 235等铸造合金进行类似的考核研究,使铸造叶片的应用有所扩大。随着发动机推力的增大,叶片尺寸增大,当时发现叶片的主要失效模式从蠕变断裂转变为疲劳断裂,而铸造叶片由于晶粒粗大且不均匀,疲劳性能远低于锻造合金,加之当时出现了性能较高的沉淀硬化型镍基锻造高温合金,例如Nimonic80A, Udimet500,W aspaloy, 437 , 617等,而且锻造技术有所进步,这就使设计师又把叶片选 收稿日期:1999 09 20 作者简介:陈荣章(1937 ),男,研究员

高温合金

1、高温合金简介 (1) 2、高温合金的主要类别 (1) 2.1变形高温合金 (2) 2.1.1固溶强化型合金 (2) 2.1.2时效强化型合金 (2) 2.2铸造高温合金 (2) 2.3粉末冶金高温合金 (3) 2.4氧化物弥散强化(ODS)合金 (3) 2.5金属间化合物高温材料 (3) 3、高温合金的强化机理 (3) 3.1固溶强化 (3) 3.2沉淀强化及第二相强化 (4) 3.3晶界强化 (4) 3.4碳化物强化及质点弥散强化 (5) 4、常用高温合金的分类 (6) 4.1铁基超耐热合金 (6) 4.1.1铁基高温合金的成分和性能 (6) 4.2镍基超耐热合金 (6) 4.2.1镍基高温合金的组织特点 (6) 4.3钴基超耐热合金 (7) 4.3.1钴基高温合金的成分 (7) 4.3.2钴基高温的高温性能 (7) 5、高温合金的几种制造工艺 (7) 6、高温合金的应用 (8) 7、参考文献 (8)

1、高温合金简介 高温合金分为三类材料:760℃高温材料、1200℃高温材料和1500℃高温材料,抗拉强度800MPa。或者说是指在760--1500℃以上及一定应力条件下长期工作的高温金属材料,具有优异的高温强度,良好的抗氧化和抗热腐蚀性能,良好的疲劳性能、断裂韧性等综合性能,已成为军民用燃气涡轮发动机热端部件不可替代的关键材料。 按照现有的理论,760℃高温材料按基体元素主要可分为铁基高温合金、镍基高温合金和钴基高温合金。按制备工艺可分为变形高温合金、铸造高温合金和粉末冶金高温合金。按强化方式有固溶强化型、沉淀强化型、氧化物弥散强化型和纤维强化型等。高温合金主要用于制造航空、舰艇和工业用燃气轮机的涡轮叶片、导向叶片、涡轮盘、高压压气机盘和燃烧室等高温部件,还用于制造航天飞行器、火箭发动机、核反应堆、石油化工设备以及煤的转化等能源转换装置。 2、高温合金的主要类别 2.1变形高温合金 变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。GH后第一位数字表示分类号即1、固溶强化型铁基合金2、时效硬化型铁基合金3、固溶强化型镍基合金4、钴基合金GH后,二,三,四位数字表示顺序号。 2.1.1固溶强化型合金 使用温度范围为900~1300℃,最高抗氧化温度达1320℃。例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000℃拉伸强度为140MPa、延伸率为85%,1000℃、30MPa 应力的持久寿命为200小时、延伸率40%。固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。 2.1.2时效强化型合金 使用温度为-253~950℃,一般用于制作航空、航天发动机的涡轮盘与叶片等结构件。制作涡轮盘的合金工作温度为-253~700℃,要求具有良好的高低温强度和抗疲劳性能。例如:GH4169合金,在650℃的最高屈服强度达1000MPa;制作叶片的合金温度可达950℃,例如:GH220合金,950℃的拉伸强度为490MPa,940℃、200MPa的持久寿命大于40小时。变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。 2.2铸造高温合金 铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。其主要特点是: 1.具有更宽的成分范围由于可不必兼顾其变形加工性能,合金的设计可以集中考虑优化其使用性能。如对于镍基高温合金,可通过调整成分使γ’含量达60%或更高,从而在高达合金熔点85%的温度下,合金仍能保持优良性能。

高温合金的研究现状

航空航天镍基高温合金的研究现状 1万艳松2鞠祖强 南昌航空大学航空制造工程学院10032129 万艳松 南昌航空大学航空制造工程学院10032121 鞠祖强 摘要 简单介绍了镍基高温合金的发展历程,综述了近年来镍基高温合金的研究进展,并探讨了镍基高温合金的应用和发展趋势。 关键字:镍基高温合金性能发展现状 1.引言 高温合金是一种能够在600℃以上及一定应力条件下长期工作的金属材料,而镍基高温合金是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金。 2.镍基高温合金发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。 3.镍基高温合金成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr 主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。

相关文档