文档视界 最新最全的文档下载
当前位置:文档视界 › 管内插入扭带的强化传热数值模拟

管内插入扭带的强化传热数值模拟

管内插入扭带的强化传热数值模拟
管内插入扭带的强化传热数值模拟

食品工程原理试题

食工原理复习题及答案(不含计算题) 一、填空题: 1. 圆管中有常温下的水流动,管内径d=100mm,测得其中的质量流量为15.7kg.s-1,其体积流量为_________.平均流速为______。 ***答案*** 0.0157m3.s-1 2.0m.s-1 2. 流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的____倍; 如果只将管径增加一倍,流速不变,则阻力损失为原来的_____倍。 ***答案*** 2;1/4 3. 离心泵的流量常用________调节。 ***答案*** 出口阀 4.(3分)题号2005 第2章知识点100 难度容易 某输水的水泵系统,经管路计算得,需泵提供的压头为He=25m水柱,输水量为20kg.s-1,则泵的有效功率为_________. ***答案*** 4905w 5. 用饱和水蒸汽加热空气时,换热管的壁温接近____________的温度,而传热系数K值接近____________的对流传热系数。 ***答案*** 饱和水蒸汽;空气 6. 实现传热过程的设备主要有如下三种类型___________、_____________、__________________. ***答案*** 间壁式蓄热式直接混合式 7. 中央循环管式蒸发器又称_______________。由于中央循环管的截面积_______。使其内单位容积的溶液所占有的传热面积比其它加热管内溶液占有的

______________,因此,溶液在中央循环管和加热管内受热不同而引起密度差异,形成溶液的_______________循环。 ***答案*** 标准式,较大,要小,自然 8. 圆管中有常温下的水流动,管内径d=100mm,测得中的体积流量为0.022m3.s-1,质量流量为_________,平均流速为_______。 ***答案*** 22kg.s-1 ; 2.8m.s-1 9. 球形粒子在介质中自由沉降时,匀速沉降的条件是_______________ 。滞流沉降时,其阻力系数=____________. ***答案*** 粒子所受合力的代数和为零24/ Rep 10. 某大型化工容器的外层包上隔热层,以减少热损失,若容器外表温度为500℃, 而环境温度为20℃, 采用某隔热材料,其厚度为240mm,λ=0.57w.m-1.K-1,此时单位面积的热损失为_______。(注:大型容器可视为平壁) ***答案*** 1140w 11. 非结合水份是__________________。 ***答案*** 主要以机械方式与物料相结合的水份。 12. 设离心机转鼓直径为1m,转速n=600 转.min-1,则在其中沉降的同一微粒,比在重力沉降器内沉降的速度快____________倍。 ***答案*** 201 13. 在以下热交换器中, 管内为热气体,套管用冷水冷却,请在下图标明逆流和并流时,冷热流体的流向。 本题目有题图:titu081.bmp

(完整word版)强化传热技术

1、强化传热的目的是什么? (1)减小初设计的传热面积,以减小换热器的体积和重量;(2)提高现有换热器的能力;(3)使换热器能在较低温差下工作;(4)减少换热器的阻力,以减少换热器的动力消耗。 2、采用什么方法解决传热技术的选用问题? (1)在给定工质温度、热负荷以及总流动阻力的条件下,先用简明方法对拟采用的强化传热技术从使换热器尺寸大小、质轻的角度进行比较。这一方法虽不全面,但分析表明,按此法进行比较得出的最佳强化传热技术一般在改变固定换热器三个主要性能参数(换热器尺寸、总阻力和热负荷)中的其他两个,再从第三个性能参数最佳角度进行比较时也是最好的。(2)分析需要强化传热处的工质流动结构、热负荷分布特点以及温度场分布工况,以定出有效的强化传热技术,使流动阻力最小而传热系数最大。(3)比较采用强化传热技术后的换热器制造工艺、安全运行工况以及经济性问题。 3、表面式换热器的强化传热途径有哪些? (1)增大平均传热温差以强化传热;(2)增加换热面积以强化传热;(3)提高传热系数以强化传热。 4、何为有功和无功强化传热技术?包括哪些方法? 从提高传热系数的各种强化传热技术分,则可分为有功强化传热技术和无功强化传热技术两类。前者也称主动强化传热技术、有源强化技术、后者也称为被动强化技术、无源强化技术。有功强化传热技术需要应用外部能量来达到强化传热的目的;无功传热强化技术则无需应用外部能量即能达到强化传热的目的。有功强化传热技术包括机械强化法、震动强化、静电场法和抽压法等;无功强化传热技术包括表面特殊处理法、粗糙表面法、扩展表面法、装设强化元件法、加入扰动流体法等。 5、单项流体管内强制对流换热时,层流和紊流的强化有何不同? 当流体做层流运动时,流体沿相互平行的流线分层流动,各层流体间互不掺混,垂直于流动方向上的热量传递只能依靠流体内部的导热进行,因而换热强度较低。因此,对于强化层流流动的换热,应以改变流体的流动状态为主要手段。当流体做湍流运动时,流体的传热方式有两种:在层流底层区的热量传递主要依靠导热;而在底层以外的湍流区,除热传导以外,主要依靠流体微团的混合运动。除液态金属以外,一般流体导热率都很小,湍流换热时的主要热阻在层流地层区。因此对于强化湍流流动的换热,主要原则应是减薄层流底层的厚度。 6、管式换热器一般采用圆管还是矩形通道?为什么? 在管子数目、工质流量及管道横截面周界均给定的情况下,圆形管道的流通截面积最大,矩形的最小,而流速恰好相反。在个管道中温度条件相同时,矩形管道能增加换热系数,但同时阻力也剧增,这就是管式换热器一般采用圆管而不用换热效果横好的矩形管道的原因。 7、采用扩张-收缩管式如何强化传热的? 流体在扩张段中产生的强烈漩涡被流体带入收缩段时得到了有效利用,从而增强了传热。此外,在收缩段中由于流体流过收缩截面时流速增高,使流体边界层中流速也相应增高,从而也增进了传热效应。

换热器的研究发展现状

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2009年第28卷增刊·338· 化工进展 换热器的研究发展现状 支浩,汤慧萍,朱纪磊 (西北有色金属研究院,陕西西安 710055) 摘要:随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。 换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。随着经济的发展,各种不同结构和种类的换热器发展很快,新结构、新材料的换热器不断涌现。换热器又称热交换器,是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。本文主要介绍了现有换热器的分类,各种换热器的特点工作原理及应用情况,对目前换热器的存在问题和发展趋势进行分析。 关键词:换热器;强化换热;研究现状 随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现[1-4]。 1 换热器的分类方式 随着科学和生产技术的发展,各种换热器层出不穷,难以对其进行具体、统一的划分。虽然如此,所有的换热器仍可按照它们的一些共同特征来加以区分[5-6],具体如下。 按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。 按照制造热交换器的材料来分:金属的、陶瓷的、塑料的、石墨的、玻璃的等。 按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。 按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。 按照传送热量的方法来分:间壁式、混合式、蓄热式等三大类。其中间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。 间壁式换热器根据传热面的结构不同可分为管式和板面式。管式换热器以管子表面作为传热面,包括套管式换热器和管壳式换热器等;板面式换热器以板面作为传热面,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等。 2 管式换热器 管式换热器主要有套管式换热器和管壳式换热器两种。 2.1套管式换热器 套管式换热器是将不同直径的两根管子套成的同心套管作为元件、然后把多个元件加以连接而成的一种换热器,工作时两种流体以纯顺流或纯逆流方式流动。套管式换热器的优点是:结构简单,适用于高温、高压流体,特别是小容量流体的传热。另外,只要做成内管可以抽出的套管,就可清除污垢,所以它也使用于易生污垢的流体。他的主要缺点是流动阻力大;金属消耗量多;管间接头较多,易发生泄露;而且体积大,占地面积大,故多用于传热面积不大的换热器[5,7]。 2.2管壳式换热器 管壳式换热器又称为列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器,结构一般由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。目前,国内外工业生产中所用的换热设备中,管壳式换热器仍占主导地位,虽然它在换热效率、结构紧凑性和金属材料消耗等方面,

简析强化传热技术及一些典型的应用应

简析强化传热技术及一些典型的应用 论文摘要:本文阐明了强化传热技术的重要性及其发展趋势;包括强化传热的分类、强化传热的途径、强化传热的应用场合等;列举了一些强化传热的典型应用,包括表面增强型蒸发管、采用波纹换热管管内强化传热、采用超声波抗垢强化传热技术、采用螺旋槽管的强化传热技术、采用小热管的强化传热技术等。通过分析得出强化传热应注意的一些问题。 论文关键词:强化传热典型应用 由于生产和科学技术发展需要强化传热从80年代起就引起了广泛的重视和发展。表现在设计和制造各类高性能热设备,航空,航天及核聚变等尖端技术,计算机里密集布置电子元件的有效冷却。正是上述原因促使人们对强化传热进行及为广泛的研究和探讨,从80年代到现在近20多的时间里,世界各国的科学领域里,有关强化传热研究报告举不胜数。 一、强化传热技术的分类 (一)导热过程的强化 导热是热量传递的三种基本方式之一,它同样也存在着强化问题。导热是依靠物体中的质童(分子,原子,或自由电子)运动来传递能量。固体内部不同温度层之间的传热就是一种典型的导热过程,但固体之间接触存在着接触热阻,降低了能量的传递,在高热流场合下,为了尽快导出热量必须设法降低接触热阻,一般可采用以下方法: 1、提高接触面之间光洁度或增加物体间的接触压力以增加接触面积 2、在接触面之间填充导热系数较高的气体(如氦气) 3、在接触面上用电化学方法添加软金属涂层或加软技术垫片 (二)辐射换热的强化 辐射换热普遍存在于自然界和许多生产过程中,只要物体温度高于绝对零度,它就能依靠电磁波向外发射能量,所以物体之间总是存在着辐射换热,在物之间温度差别不是很大的情况下,辐射换热可以忽略,但在高温设备中辐射却是换热的主要方式。而影响辐射换热的因素主耍有:表面粗糙度,固体微粒,材料。 (三)对流换热强化 对流强化传热与流体的物理特性,流动状态,流道几何形状,有无相变发生以及传热壁面的表而状况等许多因素有关。其中对流换热的有源强化又可分为:利用机械搅动加强流体与壁面间的传热,流体脉动和传热面震动时的对流换热,电磁场作用下的对流换热,经过多孔壁有质量透过时的壁面换热。而对流换热的无源换热又可分为:管内插入物对传热的增强,涡旋流动的强化传热,添加物对流换热,流化床与埋管间的传热,射流冲击。 二、强化传热的途径 在热设备中应用强化传热技术的目的一般有:(1)增加输热量;(2)减少换热面积和缩小设备体积;(3)降低载热剂输送功率的消耗;(4)降低高温部件的温度。在表面式换热器中,单位时间内的换热量Q与冷热流体的温度差At及传热面积F成正比,即Q=KFAt,式中K为传热系数,是反映传热强弱

内螺纹管沸腾换热的数值模拟

内螺纹管沸腾换热的数值模拟 【摘要】建立沸腾换热数学模型和内螺纹管三维物理模型,运用fluent中UDF对三种不同螺距的内螺纹管沸腾换热进行数值模拟,从换热系数h、管内气相含量、阻力系数f三个方面对内螺纹管的沸腾传热和流动特性进行了对比研究,得出结论:在低雷诺数层流状态下(Re=1200),当内径为12mm的内螺纹管的螺距从100mm减小为30mm时,管内扰动增强有利于换热但阻力增大,气相含量从31%增加到45%不利于换热但阻力减小,而气相含量的影响明显大于扰动的影响,使得总的换热系数基本不变,而阻力系数从1.3左右减小到了0.8左右,综合换热性能变好。 【关键词】内螺纹管;沸腾换热;数值模拟;UDF 1.前言 在能源危机日益严重的当今,强化换热正被越来越多的人所研究。内螺纹管作为一种有效的强化换热手段,具有换热系数高、易加工、造价低等优点。对不同形状的内螺纹管,已有不少人从实验和数值模拟的角度进行了一定的研究。张定才(1)对螺纹管内流动换热进行了数值模拟,从螺旋角和螺纹牙数两方面对对流换热的影响做了研究,结果表明,螺旋角越大,换热效果越好,螺纹牙数对换热影响不大。程立新等(2)分别对水在垂直上升内螺纹管和光管中的流动沸腾传热进行了实验。结果表明,内螺纹管中的流动沸腾换热系数为光管的 1.62 倍,而且内螺纹管中的起始沸点小于光管中的起始沸点。Shome和Jensen(3)分别通过计算和实验系统地研究了螺纹管内层流流动与换热特性,发现高肋管阻力较光管增大50%,而低肋管则增大了10%-15%。熊少武等(4)应用FLUENT 软件对制冷剂R134a在光管和横纹槽管水平管外沸腾传热进行三维数值模拟,得到其饱和泡状沸腾过程中体积含气率的分布规律,并比较了它们的换热系数。 由于螺纹对流体的扰动使管内产生复杂的二次流,对流体边界层和污垢层的形成产生很强的冲刷作用,致使管内流体的换热系数得到显著提到,这是螺纹管能强化换热的主要原因。关于螺纹管内流动换热的实验很多,模拟却很少,对沸腾换热的数值模拟更少,所以本文对内螺纹管中的沸腾换热进行数值模拟,探索其流动换热规律。 2.物理模型与数学模型 2.1物理模型 螺纹管内流体模型的主要参数为螺纹管内径d、螺纹肋的螺距l、螺纹肋的牙数Ns和螺纹肋的高度e。螺纹肋的几何参数为肋顶夹角a、肋顶厚度t1和肋底厚度t2。其中,d=12mm、l=100mm、60mm、30mm;Ns=20;e=0.3mm;a=40°;t1=0.3mm。文中取100mm长的管子进行模拟研究。

强化传热技术

强化传热技术研究进展 1概述 由于生产和科学技术发展的需要,强化传热技术从上世纪80年代以来获得了广泛的重视和发展。 首先,随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。设计和制造各类高性能换热设备是经济地开发和利用能源的最重要手段,这对于动力、冶金、石油、化工、制冷及食品等工业部门有着极为重要的意义。 其次,随着航空、航天及核聚变等高顶尖技术的发展,各种设备的运行时的温度也不断升高为了保证各设备有足够长的工作寿命及在高温下安全运行,必须可靠经济的解决高温设备的冷却问题。 最后,随着计算机的迅速发展,密集布置的大功率电子元件在电子设备中的释能密度日益增加。电子元件的有效冷却,是电子设备性能和工作寿命的必要保证。 正是基于以上原因促使人们对强化换热进行了极为广泛的研究和探讨,力图从理论上解释各种强化传热技术的机理,从大量的实验资料中总结其规律性,以便在工业上加以推广应用,并发现新的更为经济实用的强化传热技术,因此近40年来在世界各国强化传热技术如雨后春笋般不断涌现出来。 20世纪80年代以来,我国经济发展迅速而能源生产的发展相对要滞后得多。面对改革开放带来的经济高速发展态势,能源供应难以满足迅速增长的需求,节能成为关系到能否可持续发展的重大问题,近年来我国也在节能领域取得了显著的成绩。1980年到2000年中国经济年平均增长9.7% 而能源消耗的年增长仅为4.6% 节能降耗年平均达5%。“九五”期间我国每万元国内生产总值GDP能耗1990年价由1995年的3.97吨标准煤下降到2000年的2.77 吨标准煤累计节约和少用能源达4.1亿吨标准煤;主要耗能产品单位能耗均有不同程度下降。按“九五”期间直接节能量计算节约的能源价值约660亿元;节约和少用能源相当于减排二氧化硫820万吨二氧化碳计1.8亿吨。当前中国在能源利用效率、能耗等方面与世界先进国家相比还存在较大差距,能源节约还有很大的潜力。 纵观强化传热技术的发展传热强化的研究自始至终有着明确的目标和广泛的应用背景表现出高速度、实用性以及不断迎接高技术发展的挑战等三个突出特点。现代科学技术的飞速发展和能源的严重短缺对传热强化不断提出新的要求,使得研究深度和广度日益扩大并向新的领域渗透和发展,甚至成为某些高新科技中的关键。随着世界能源出现短缺和人们环保意识的增强,节能已成为经济可持续发展的重大需求。我国的节能技术的应用远落后于发达国家,实用的高效强化传热技术,在工业应用中具有广阔的前景。强化传热技术在石油、化工和能源等领域的应用,将带来巨大的经济和社会效益。在未来的几十年,能源环境、微电子和生物技术等领域必将成为传热强化研究和应用的重要舞台。 2强化传热技术研究现状 Bergles在总结强化技术及其发展时,将强化换热技术划分为三代。从19世纪末开始,人们开始关注传热强化的研究,但是由于当时的工业生产水平对传热强化的要求不是很迫切,所以对于强化传热的研究基本上属于实验科学,还很不成熟,相应的传热强化技术属于第一代。从20世纪70年代石油危机开始,国际传热界加强了传热传质过程的机理研究,

强化沸腾传热的方法

沸腾传热强化技方法及比较 摘要针对强化沸腾传热方法,本文主要主要对粉末烧结法、喷涂法进行了介绍,分析了各种方法的优缺点, 并对各种方法的强化传热效果进行了比较。 关键词沸腾传热;强化传热;喷涂多孔表面;粉末多孔表面 Boiling heat transfer enhancement techniques and comparison Abstract:To the enhanced boiling heat transfer method, this paper mainly focuses on introducing the powder sintering method, spray method .analyzing the advantages and disadvantages of various methods, and comparing the various methods of heat transfer enhancement effect. Key words: Boiling heat transfer Heat transfer enhancement Spraying porous surface Powder porous surface 1 前言 在常规能源不断减少, 节约和有效使用能源的要求不断提高的形势下, 强化传热技术已经成为传热研究领域的一个重要课题. 强化传热研究, 特别是强化沸腾传热研究, 对提高能源的有效利用率, 新能源开发和高热负荷下材料的热保护等有重要意义. 目前强化沸腾传热的主要方法是改善传热表面结构。常用的表面结构有各种形状的沟槽、肋片和多孔表面。其中自20 世纪60 年代发展起来的多孔表面换热器以其高效沸腾换热、低温差沸腾、高临界热流密度和良好的反堵塞能力, 已成为一种工业应用前景广泛的换热装置。本文主要进行喷涂多孔表面、粉末多孔表面等沸腾传热研究, 分析了各种方法的优缺点, 并对各种方法的强化传热效果进行了比较。 2沸腾强化传热技术 对汽泡的成因和运动规律的研究是掌握沸腾原理和探讨沸腾传热强化方法的基础, 已有的研究表明, 影响汽泡状沸腾传热的主要因素有: ( 1) 流体特性参数的影响汽体压力增高能使汽化核心增多, 汽泡脱离频 率增大, 因而能使沸腾传热增强。流体与换热表面的接触角小, 则汽泡脱离频率增高, 因而能增强沸腾传热。 ( 2) 换热面特性的影响换热面的加工方法、表面粗糙度、材料特性以及新旧程度都能影响沸腾传热的强弱。试验表明, 同一液体在抛光壁面上沸腾传热时, 其传热系数比在粗糙壁面上沸腾传热时低,这主要是由于光洁表面上汽化核心较少的缘故。液体在新的换热面上沸腾时, 传热系数较高, 随着运行时间增长, 一部分汽化核心丧失了汽化能力, 于是传热系数逐渐下降到某一稳定值。传热面材料能否被液体湿润, 对传热系数也有相当影响, 同样条件下, 液体和材料特性组

食品工程原理(修订版)

复习题: 1 简述食品工程原理在食品工业中的作用和地位。 2 何为绝对压力、表压和真空度它们之间有何关系 3 何为不可压缩流体和可压缩流体 4 写出流体静力学基本方程式,说明该式应用条件。 5 简述静力学方程式的应用。 6 说明流体的体积流量、质量流量、流速(平均流速)及质量流速的定义及相互关系。 7 何为稳定流动和不稳定流动 8 写出连续性方程式,说明其物理意义及应用。 9 分别写出理想流体和实际流体的伯努利方程式,说明各项单位及物理意义。 10应用伯努利方程可以解决哪些问题 11应用伯努利方程式时,应注意哪些问题如何选取基准面和截面 12简述流体粘度的定义、物理意义及粘度的单位。 13写出牛顿粘性定律,说明式中各项的意义和单位。 14何为牛顿型流体和非牛顿型流体 15 Re的物理意义是什么如何计算 16流体的流动类型有哪几种如何判断 17简述离心泵的工作原理及主要部件。 18气缚现象和汽蚀现象有何区别 19什么叫汽蚀现象如何防止发生汽蚀现象 20离心泵在启动前为什么要在泵内充满液体 21何为管路特性曲线何为工作点 22离心泵的主要性能参数有哪些各自的定义和单位是什么 23离心泵流量调节方法有哪几种各有何优缺点 24何为允许吸上真空度和汽蚀余量如何确定离心泵的安装高度 25扬程和升扬高度是否相同 26 简述泵的有效功率小于轴功率的原因(有哪几种损失) 27比较往复泵和离心泵,各有何特点

28简述混合均匀度的的判断依据以及混合机理 29影响乳化液稳定性的主要因素有哪些 30何为均相物系何为非均相物系 31 影响沉降速度的因素有哪些各自含义是什么 32简述板框压滤机的工作过程。 33过滤有几种方式 34离心沉降与重力沉降相比,有什么特点 35什么叫离心分离因数其值大小说明什么 36旋风分离器的工作原理 37 沉降室(降尘室)的工作原理。 38传热的基本方式有几种 39什么是热传导、对流传热和热辐射分别举出2-3个实例。 40说明傅里叶定律的意义,写出其表达式。 41导热中的热阻、推动力概念,单层平壁和多层平壁导热时如何计算其热阻和推动力42为什么住宅中采用双层窗能起到保温作用 43气温下降,应添加衣服,把保暖性好的衣服穿在里面好,还是穿在外面好为什么44保温瓶(热水瓶)在设计和使用过程中采取了哪些防止热损失的措施 45总传热系数K的意义,它包含了哪几个分热阻 46如何计算传热面积如何计算壁温 47列管式换热器的结构及其选型。 48强化传热的途径。 49何为单效蒸发,何为多效蒸发,多效蒸发与单效蒸发比较有什么优缺点 50在蒸发过程中,为提高蒸汽利用率,你以为可采取哪些措施 51蒸发中提高传热速率的途径有哪些 52与常压蒸发相比真空蒸发有哪些优点。 53常用的机械制冷方式有哪些 54 简述理想蒸汽压缩式制冷的组成及工作过程。 55分析冻结速率对食品质量的影响。 56常用的去湿方法按作用原理分哪几类 57湿空气湿度大,则其相对湿度也大,这种说法对吗为什么

管壳式换热器强化传热综述

管壳式换热器强化传热综述 摘要根据国内外强化侍热技术的研究现状,着重介绍了管壳式换热嚣在壳程强化待热方面开展的工作及取得的成果。 关键词管壳式换热器壳程强化传热 Abstract In the light of the present statns of study of the technology for intensification of heat transfer both at home and abroad.The work on the intensification of heat transfer in the shell side of the shell and tube heat exchanger is mainly presented as well as the result obtained.Keywords shell and tube heat exchanger shell side intensification of heat transfer 中图分类号:TE965文献标识码:A 随着现代工业的快速发展,对能源的需求越来越大.而利用高效换热器可以吸收化工、石油生产过程中存在的大量余热,既节约了能源,又减少了污染。与板式、板翅式换热器相比,管壳式换热器由于其适用性广、坚固耐用、密封性较好以及其结构简单、清洗方便是石油、化工等领域应用最普遍的一种换热器(占整个换热器设备的70%以上)[1]。因此.如何最大限度地利用热能和回收热能,强化管壳式换热器成为人们所研究的重点之一。 (一)强化传热的途径 单位时间内的换热量Q与冷热流体的温差△t及传热面积F成正比,即:Q=k·F·△t.可见强化传热可以通过增加传热面积F、加大传热温差△t,提高传热系数K3个途径来实现。 1.1增加传热面积F 增加传热面积不应理解为单一扩大设备体积或台数,而应是采用改变传热表面结构或材料性能合理提高设备单位体积的传热面积.使设备高效、紧凑、轻巧。如采用螺旋螺纹管、翅片管、波纹管、粗糙表面管、异形管等方法都能使传热面积增加。 1.2加大传热温差△t 在考虑到实际工艺或设备是否允许的情况下,改变冷热流体温度或改变换热流体同的流动方式如逆流、错流等,就可改变传热温差血,但这种方法受生产工艺、设备条件、环境条件及经济性等方面限制,实际操作时有一定局限性。 1.3提高传热系数k 提高传热系数小的一侧传热面之传热系数.就可使设备总传热系数大幅度提高。当今世界上强化传热研究的重点就是提高传热系数,有一种趋势是改善流体自身流动状态,加强湍

食品工程原理习题解答

食品工程原理习题解答公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

第五章习题解答 1. 什么样的溶液适合进行蒸发 答:在蒸发操作中被蒸发的溶液可以是水溶液,也可以是其他溶剂的溶液。只要是在蒸发过程中溶质不发生汽化的溶液都可以。 2. 什么叫蒸发为什么蒸发通常在沸点下进行 答:使含有不挥发溶质的溶液沸腾汽化并移出蒸汽,从而使溶液中溶质浓度提高的单元操作称为蒸发。在蒸发操作过程中物料通常处于相变状态,故蒸发通常在沸点下进行。 3. 什么叫真空蒸发有何特点 答:真空蒸发又称减压蒸发,是在低于大气压力下进行蒸发操作的蒸发处理方法。将二次蒸汽经过冷凝器后排出,这时蒸发器内的二次蒸汽即可形成负压。操作时为密闭设备,生产效率高,操作条件好。 真空蒸发的特点在于: ①操作压力降低使溶液的沸点下降,有利于处理热敏性物料,且可利用低压强的蒸汽或废蒸汽作为热源; ②对相同压强的加热蒸汽而言,溶液的沸点随所处的压强减小而降低,可以提高传热总温度差;但与此同时,溶液的浓度加大,使总传热系数下降; ③真空蒸发系统要求有造成减压的装置,使系统的投资费和操作费提高。

4. 与传热过程相比,蒸发过程有哪些特点 答:①传热性质为壁面两侧流体均有相变的恒温传热过程。 ②有些溶液在蒸发过程中有晶体析出、易结垢或产生泡沫、高温下易分解或聚合;溶液的浓度在蒸发过程中逐渐增大、腐蚀性逐渐增强。二次蒸汽易挟带泡沫。 ③在相同的操作压强下,溶液的沸点要比纯溶剂的沸点高,且一般随浓度的增大而升高,从而造成有效传热温差减小。 ④减少加热蒸汽的使用量及再利用二次蒸汽的冷凝热、冷凝水的显热是蒸发操作过程中应考虑的节能问题。 5. 单效蒸发中,蒸发水量、生蒸气用量如何计算 答:蒸发器单位时间内从溶液中蒸发出的水分质量,可用热负荷来表示。也可作物料衡算求得。 在蒸发操作中,加热蒸汽冷凝所放出的热量消耗于将溶液加热至沸点、将水分蒸发成蒸汽及向周围散失的热量。蒸汽的消耗量可通过热量衡算来确定。 6. 何谓温度差损失温度差损失有几种 答:溶液的沸点温度t往往高于二次蒸汽的温度T’,将溶液的沸点温度t与二次蒸汽的温度T'之间的差值,称为温度差损失。 蒸发操作时,造成温度差损失的原因有:因蒸汽压下降引起的温度差损失'?、因蒸发器中液柱静压强而引起的温度差损失''?和因管路流体

新型换热技术

换热器最新换热技术 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可缺少的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化传热元件诞生。随着研究的深入,工业应用取得了令人瞩目的成果,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T形翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张状况。 换热器的种类繁多,有多种分类方法。 一、按原理分类: 1、直接接触式换热器 这类换热器的主要工作原理是两种介质经接触而相互传递热量,实现传热,接触面积直接影响到传热量,这类换热器的介质通常一种是气体,另一种为液体,主要是以塔设备为主体的传热设备,但通常又涉及传质,故很难区分与塔器的关系,通常归口为塔式设备,电厂用凉水塔为最典型的直接接触式换热器。 2、蓄能式换热器(简称蓄能器),这类换热器用量极少,原理是热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之到达传热量的目的。 3、间壁式换热器 这类换热器用量非常大,占总量的99%以上,原理是热介质通过金属或非金属将热量传递给冷介质,这类换热器我们通常称为管壳式、板式、板翅式或板壳式换热器。 二、按传热种类分类 1、无相变传热 一般分为加热器和冷却器。 2、有相变传热 一般分为冷凝器和重沸器。重沸器又分为釜式重沸器、虹吸式重沸器、再沸器、蒸发器、蒸汽发生器、废热锅炉。 三、按传热元件分类 1、管式传热元件: (1)浮头式换热器 (2)固定管板式换热器 (3)填料函式换热器 (4)U型管式换热器 (5)蛇管式换热器 (6)双壳程换热器 (7)单套管换热器 (8)多套管换热器 (9)外导流筒换热器 (10)折流杆式换热器

浅谈管壳式换热器强化传热

浅谈管壳式换热器强化传热 热能1303梁皓天20132586 随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。 管壳式换热器又称谓列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器,结构一般由管箱、壳体、管束、管板、折流板等部件组成。目前,国内外工业生产中所用的换热设备中,管壳式换热器仍占主导地位,虽然它在换热效率、结构紧凑性和金属材料消耗等方面,不如其他新型换热设备,但它具有结构坚固,操作弹性大,适应性强,可靠程度高,选材范围广,处理能力大,能承受高温高压等特点,所以在工程中仍得到广泛应用。管壳式热器固然有其优点,并为产业节能方面做出了巨大的贡献,但在新的节能减排形势下,其缺点(压降大、流动死区、易结垢、震动、传热效果差)严重的限制了其发展和生存的空间,为了节能降耗,提高换热器的传热效率,需要研发能够满足多种工业生产过程要求的高效节能换热器。因此,近年来,高效节能换热器的研发一直受到人们的普遍关注,国内外先后推出了一系列新型高效换热器。 目前传统强化换热的方法大体上可以分为三类,管程强化传热,壳程强化传热,整体强化传热。 管程强化换热主要有两种方式,一是改变管子形状或者提高换热面积,如:螺旋槽管、旋流管、波纹管、缩放管、螺纹管等;二是增强管内的湍流程度,例如,管内设置各种形状的插入物。其中,改变换热管设计的方式,如改变换热管形状,或加大管程流体的湍流程度、传热面积,具体的设计对象包括波纹管、伸缩管、翅片管等。而另一种类型包括管内插物的设计,及通过管内绕丝花环、纽带等,实现管程的湍流程度;相比较来说,在管内插物的形式执行简单、效果较好、投资较少,是目前主要应用的管程强化传热形式。 下面详细介绍一下主要管程强化传热的换热器特点。 (1)螺旋槽管是通过专用轧管设备将圆管在其表面滚压出螺旋线形的凹槽,管子内部形成螺旋线形凸起,如图1所示,管内介质流动时受螺旋线型槽纹的导向使靠近管壁的部分介质沿槽纹方向螺旋流动,这就使得边界层的厚度较大程度的减薄,提高换热的效果;部分介质沿着壁面纵向运动,经过槽纹凸起处产生纵向漩涡,促使边界层分层,加速边界层中介质质点的运动,进而加快了管壁处介质与主体介质的热量传递。 (2)波纹管是将管子加工成内外均呈连续波纹曲线的一种强化管,如图2所示,使管子的纵向截面呈波形,由相切的大小圆弧构成,管内流体的流动状态不断变化,使流体的湍流程度增加从而强化传热。主要适用于管内外介质有加热、冷却热交换的场合,其特点为传热效率高,这一特点是依靠独特的传热元件—波纹管来实现的。波纹管特殊的波峰与波谷设计,使流体在关内外形成强烈扰动,大大提高了换热管的传热系数,其传热系数比传统管式换热器高2~3倍。波纹管在工作过程中,一方面管内外介质始终处于高

沸腾传热

沸腾传热 开放分类:物理、热量 沸腾传热 boiling heat transfer 热量从壁面传给液体,使液体沸腾汽化的对流传热过程。化工生产中常用的蒸发器、再沸器和蒸气锅炉,都是通过沸腾传热来产生蒸气的。 类型按液体所处的空间位置,沸腾可以分为:①池内沸腾。又称大容器内沸腾。液体处于受热面一侧的较大空间中,依靠汽泡的扰动和自然对流而流动。如夹套加热釜中液体的沸腾。②管内沸腾。液体以一定流速流经加热管时所发生的沸腾现象。这时所生成的汽泡不能自由上浮,而是与液体混在一起,形成管内汽液两相流。如蒸发器加热管内溶液的沸腾。 机理沸腾传热与汽泡的产生和脱离密切相关。汽泡形成的条件是:①液体必须过热;②要有汽化核心。这些条件是由汽泡与周围液体的力平衡和热平衡所决定的。根据表面张力,可算出汽泡内的蒸气压力pv 为: 式中pe为周围液体的压力,忽略液柱静压时,即为饱和蒸气压ps;σ为汽液界面张力;R为汽泡半径。由于pv>ps,汽泡内蒸气的饱和温度Tv必然大于与ps对应的饱和温度Ts。汽泡周围的液体若要汽化进入汽泡,则它的温度Te必须大于或至少等于汽泡内蒸气的饱和温度,即Te≥Tv。从上式可知,当R=0时,pv将趋于无限大。因此在一个绝对光滑的平面上是不可能产生汽泡的,必须有汽化核心。加热表面上的划痕或空穴中含有的气体或蒸气,都可作为汽化核心。紧贴这些核心的液体汽化后,形成汽泡并逐渐长大,然后脱离表面,接着又有新的汽泡形成。在汽泡形成与脱离表面时造成液体对壁面的强烈冲击和扰动,所以对同一种液体来说,沸腾传热的传热分系数要比无相变时大得多。常压下水沸腾时的传热分系数一般为1700~51000W/(m2·K)。 沸腾曲线池内沸腾根据过热度(加热壁面温度TW与液体饱和温度Tm之差,ΔT=TW-Tm)的大小,分为泡核沸腾和膜状沸腾(见图)。当过热度很小时,传热取决于单相液体的自然对流。当过热度增大时,汽泡不断在壁面上产生,并在液体中上升和长大,这对液体对流起着显著作用,称为泡核沸腾。此阶段中传热分系数h,随ΔT增大而明显上升。当过热度超过某临界值时,汽泡大量产生,在壁面连结成汽膜,称为膜状沸腾。在此阶段初期,汽膜不稳定,随时破裂变成大汽泡,离开加热面。随过热度的增大,汽膜渐趋稳定。由于汽膜的热导率很低,使传热分系数下降。当过热度很大时,辐射传热起了重要作用,使传热分系数重新上升。由于泡核沸腾具有传热分系数大和壁温低的优点,故工业设备中的沸腾传热多在此状况下进行。 影响沸腾传热的因素影响沸腾传热过程的因素很多,包括液体和蒸气的性质、加热面的表面物理性质和粗糙程度,尤其重要的是液体对表面的润湿性以及操作压力和温度差。在泡核沸腾范围内,温度差越大,传热分系数也越大。加热壁面粗糙和能被液体润湿时,也能使传热分系数增大。据此,将细小金属颗粒沉积于金属板或管上,制成金属多孔表面,可使沸腾传热分系数提高十几倍至几十倍。

食品工程原理重点知识讲解

食品工程原理复习 第一章 流体力学基础 1.单元操作与三传理论的概念及关系。 不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉 碎、乳化萃取、吸附、干燥 等。这些基本的物理过程称为 单元 操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。凡是遵循流体流动基本规律的单元操作, 均可用动量传递的理论去研究。 热量传递 : 物体被加热或冷却的过程也称为物体的传热过程。凡 是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。 质量传递 : 两相间物质的传递过程即为质量传递。凡是遵循传质 基本规律的单元操作,均可用质量传递的理论去研究。 单元操作与三传的关系 “三传理论”是单元操作的理论基础,单元操作是“三传理论” 的具体应用。 同时,“三传理论”和单元操作也是食品工程技术的理论和实践 基础 2.粘度的概念及牛顿内摩擦(粘性)定律。牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。 μ比例系数,其值随流体的不同而异,流体的黏性愈大,其值愈 大。所以称为粘滞系数或动力粘度,简称为粘度 3.理想流体的概念及意义。 理想流体的粘度为零,不存在内摩擦力。理想流体的假设,为工 程研究带来方便。 4.热力体系:指某一由周围边界所限定的空间内的所有物质。边

界可以是真实的,也可以是虚拟的。边界所限定空间的外部称为 外界。 5.稳定流动:各截面上流体的有关参数(如流速、物性、压强) 仅随位置而变化,不随时间而变。 6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的截面流向总能量小的截面。 7.1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。 8. 实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项。 柏努利方程的三种表达式 p1/ρ+gz1+u12/2 = p2/ρ+gz2+u22/2 p1/ρg+z1+u12/2g = p2/ρg+z2+u22/2g p1+ρgz1+ρu12/2 = p2 +ρgz2+ρu22/2 9.管中稳定流动连续性方程:在连续稳定的不可压缩流体的流动中,流体流速与管道的截面积成反比。截面积愈大之处流速愈小,反之亦然。对于

换热器的强化传热三因素

换热器的强化传热 所谓换热器传热强化或增强传热是指通过对影响传热的各种因素的分析与计算,采取某些技术措施以提高换热设备的传热量或者在满足原有传热量条件下,使它的体积缩小。换热器传热强化通常使用的手段包括三类:扩展传热面积(F );加大传热温差;提高传热系数(K )。 1 换热器强化传热的方式 1.1 扩展传热面积F 扩展传热面积是增加传热效果使用最多、最简单的一种方法。在扩展换热器传热面积的过程中,如果简单的通过单一地扩大设备体积来增加传热面积或增加设备台数来增强传热量,不光需要增加设备投资,设备占地面积大、同时,对传热效果的增强作用也不明显,这种方法现在已经淘汰。现在使用最多的是通过合理地提高设备单位体积的传热面积来达到增强传热效果的目的,如在换热器上大量使用单位体积传热面积比较大的翅片管、波纹管、板翅传热面等材料,通过这些材料的使用,单台设备的单位体积的传热面积会明显提高,充分达到换热设备高效、紧凑的目的。 1.2 加大传热温差Δt 加大换热器传热温差Δt是加强换热器换热效果常用的措施之一。 在换热器使用过程中,提高辐射采暖板管内蒸汽的压力,提高热水采暖的热水温度,冷凝器冷却水用温度较低的深井水代替自来水,空气冷却器中降低冷却水的温度等,都可以直接增加换热器传热温差Δt。 但是,增加换热器传热温差Δt是有一定限度的,我们不能把它作为增强换热器传热效果最主要的手段,使用过程中我们应该考虑到实际工艺或设备条件上是否允许。例如,我们在提高辐射采暖板的蒸汽温度过程中,不能超过辐射采暖允许的辐射强度,辐射采暖板蒸汽温度的增加实际上是一种受限制的增加,依靠增加换热器传热温差Δt只能有限度的提高换热器换热效果;同时,我们应该认识到,传热温差的增大将使整个热力系统的不可逆性增加,降低了热力系统的可用性。所以,不能一味追求传热温差的增加,而应兼顾整个热力系统的能量合理使用。 1.3 增强传热系数(K)

换热器的强化传热

换热器的强化传热 0前言 换热器是工业生产领域中应用十分广泛的热量交换设备。如在化工厂用于换热设备的费用约占设备总费用的10%~20%;在炼油厂中换热设 备约占全部工艺设备的35%~40%;其它如动力、原子能、冶金、食品、交通、家电等工业部门也有着广泛的应用。对一个传热过程而言,初投资与传热面积大小相关,因此,如何节约传热面积,研究换热器的强化传热技术 十分重要。所谓强化传热技术就是当高温流体与低温流体在某一传热面两侧流动时,使单位时间内2种流体间交换的热量Q尽可能增大。由传热速率方程Q=KAmΔtm可知:增加传热面积Am、增大传热温差Δtm、提高总传热系数K均可以提高传热速率。 1增大传热温差Δtm 增大传热的平均温差Δtm是强化传热的一种有效手段。由Δtm =(Δt1-Δt2)/ln(Δt1/Δt2)可知:要提高Δtm就要增加Δt1,减小Δt2。由于流体的进、出口温度主要由生产工艺条件决定,要增加Δt1减小Δt2,其主要措施是:对无相变的流体,使冷、热流体逆流或接近逆流。这样不但可以增大传热温差,还有助于减少结构中的温差应力。 2增加传热面积Am 增加传热面积不应靠加大设备外部尺寸来实现,应从设备内部结构考虑,提高换热器的紧凑性。一般通过下述途径来增加单位体积设备的有效传热面积:(1)采用最合适的内外导流筒结构,最大限度地消除管壳式换热器

挡板处的传热不活跃区。(2)热传递面采用扩展表面,尽可能增加它的有效传热面积,如在对流传热系数较少一侧的传热壁面上装翅片、筋片、销钉等。 (3)改良热传递表面性能,将管子内、外表面扎制成各种不同的表面形状, 增加管内、外表面传热面积,如螺纹管、横纹管、周向波纹管、表面多孔管。 (4)采用螺旋式、板式等结构紧凑的新型换热器。 3提高总传热系数K (1/K)=A2/(α1×A1)+Rs1×(A2/A1)+(b/λ)×(A2/Am)+Rs2+1/α2 式中:A1———管内壁传热面积;A2———管外壁传热面积;α1———管内侧对流传热系数;α2———管外侧对流传热系数;RS1———管内侧污垢热阻;RS2———管外侧污垢热阻;λ———管壁材料的导热系数;b———管壁厚度。从上式中可知:要提高传热系数,就必须减少各项热阻。如尽可能减少管子壁厚b,管子选用导热系数λ大、抗腐蚀性的材料,增大对流传热系数α,减小污垢热阻Rs。 (1)选用高强度限和屈服限、抗腐蚀性能高、导热性能好的材料,如渗铝管换热器、镀锌管换热器。热管是一种新型传热元件,具有效率高、压降小、结构简单、紧凑性好等优点,发展较为迅速。 (2)增大对流传热系数α。通过有源强化(即利用外部能量的机械和流体 振动,电场、磁场冲击的办法改善流动状态而强化传热)和非源强化(即 改变传热元件本身的表面形状和表面处理方法获得粗糙表面的扩展表面,

相关文档