文档视界 最新最全的文档下载
当前位置:文档视界 › 分子生物学试题及答案

分子生物学试题及答案

分子生物学试题及答案
分子生物学试题及答案

分子生物学试题及答案

一、名词解释

1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。

2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein )

4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制

性酶切位点。

5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。

6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我

催化的作用。

7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇

为类似的局部区域

8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。

9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核

苷酸序列。

10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产

生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是

鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。

11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA 序列,-10区的TATA、-35区的TGACA及增强子,弱化子等。12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。

13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。

15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。

16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解

生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。

17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。

18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去

除了5’ 3’外切酶活性

19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端

加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物

进行PCR扩增。

20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的

原基因蛋白与外源蛋白结合在一起所组成的蛋白质。

二、填空

1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。

2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。

3.原核生物中有三种起始因子分别是(IF-1)、( IF-2 )和(IF-3 )。4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅

助肽链折叠成天然构象的蛋白质)。

5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。

6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、( DNA重组技术)三部分。

7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。

8.hnRNA与mRNA之间的差别主要有两点:( hnRNA在转变为mRNA 的过程中经过剪接,)、

( mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。

9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的

影响)、(活性能够非常有效和迅速地被打开和被关闭)。

10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。

11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个

依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2 )开始,无G时转录从( S1 )开始。

12.DNA重组技术也称为(基因克隆)或(分子克隆)。最终目的是(把一个生物体中的遗传信息DNA转入另一个生物体)。典型的DNA 重组实验通常包含以下几个步骤:

①提取供体生物的目的基因(或称外源基因),酶接连接到另一DNA 分子上(克隆载体),形成一个新的重组DNA分子。

②将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化。

③对那些吸收了重组DNA的受体细胞进行筛选和鉴定。

④对含有重组DNA的细胞进行大量培养,检测外援基因是否表达。

13、质粒的复制类型有两种:受到宿主细胞蛋白质合成的严格控制的

称为(严紧型质粒),不受宿主细胞蛋白质合成的严格控制称为(松弛型质粒)。

14.PCR的反应体系要具有以下条件:

a、被分离的目的基因两条链各一端序列相互补的 DNA引物(约20个碱基左右)。

b、具有热稳定性的酶如:TagDNA聚合酶。

c、dNTP

d、作为模板的目的DNA序列

15.PCR的基本反应过程包括:(变性)、(退火)、(延伸)三个阶段。

16、转基因动物的基本过程通常包括:

①将克隆的外源基因导入到一个受精卵或胚胎干细胞的细胞核中;

②接种后的受精卵或胚胎干细胞移植到雌性的子宫;

③完成胚胎发育,生长为后代并带有外源基因;

④利用这些能产生外源蛋白的动物作为种畜,培育新的纯合系。

17.杂交瘤细胞系的产生是由(脾B)细胞与(骨髓瘤)细胞杂交产生的,由于(脾细胞)可以利用次黄嘌呤,(骨细胞)提供细胞分裂功能,所以能在HAT培养基中生长。

18.随着研究的深入第一代抗体称为(多克隆抗体)、第二代(单克隆抗体)、第三代(基因工程抗体)。

19.目前对昆虫病毒的基因工程改造主要集中于杆状病毒,表现在引入(外源毒蛋白基因);(扰乱昆虫正常生活周期的基因);(对病毒基因进行修饰)。

20.哺乳类RNA聚合酶Ⅱ启动子中常见的元件TATA、GC、CAAT所对应的反式作用蛋白因子分别是( TFIID )、( SP-1 )和( CTF/NF1 )。21.RNA聚合酶Ⅱ的基本转录因子有、TFⅡ-A、TFⅡ-B、TFII-D、TFⅡ-E 他们的结合顺序是:( D、A、B、E )。其中TFII-D的功能是(与TATA盒结合)。

22.与DNA结合的转录因子大多以二聚体形式起作用,转录因子与DNA结合的功能域常见有以下几种(螺旋-转角-螺旋)、(锌指模体)、(碱性-亮氨酸拉链模体)。

23.限制性内切酶的切割方式有三种类型分别是(在对称轴5' 侧切割产生5' 粘端)、(在对称轴3' 侧切割产生3' 粘端(在对称轴处切割产生平段)。

24.质粒DNA具有三种不同的构型分别是:( SC构型)、( oc构型)、( L构型)。在电泳中最前面的是( SC构型)。

25.外源基因表达系统,主要有(大肠杆菌)、(酵母)、(昆虫)和(哺乳类细胞表)。

26.转基因动物常用的方法有:(逆转录病毒感染法)、(DNA显微注射法)、(胚胎干细胞法)。

三、简答

1.分别说出5种以上RNA的功能?

转运RNA tRNA 转运氨基酸

核蛋白体RNA rRNA 核蛋白体组成成

信使RNA mRNA 蛋白质合成模板

不均一核RNA hnRNA 成熟mRNA的前体

小核RNA snRNA 参与hnRNA的剪接

小胞浆RNA scRNA/7SL-RNA 蛋白质内质网定位合成的信号识别体的组成成分

反义RNA anRNA/micRNA 对基因的表达起调节作用

核酶 Ribozyme RNA 有酶活性的RNA

2.原核生物与真核生物启动子的主要差别?

原核生物

TTGACA --- TATAAT------起始位点-35 -10

真核生物

增强子---GC ---CAAT----TATAA—5mGpp—起始位点

-110 -70 -25

3.对天然质粒的人工构建主要表现在哪些方面?

天然质粒往往存在着缺陷,因而不适合用作基因工程的载体,必须对之进行改造构建:

a、加入合适的选择标记基因,如两个以上,易于用作选择,通常是抗生素基因。

b、增加或减少合适的酶切位点,便于重组。

c、缩短长度,切去不必要的片段,提高导入效率,增加装载量。

d、改变复制子,变严紧为松弛,变少拷贝为多拷贝。

e、根据基因工程的特殊要求加装特殊的基因元件

4.举例说明差示筛选组织特异cDNA的方法?

制备两种细胞群体,目的基因在其中一种细胞中表达或高表达,在另一种细胞中不表达或低表达,然后通过杂交对比找到目的基因。

例如:在肿瘤发生和发展过程中,肿瘤细胞会呈现与正常细胞表达水

平不同的mRNA,因此,可以通过差示杂交筛选出与肿瘤相关的基因。

也可利用诱导的方法,筛选出诱导表达的基因。

5.杂交瘤细胞系的产生与筛选?

脾B细胞+骨髓瘤细胞,加聚乙二醇(PEG)促进细胞融合,HAT培养基中培养(内含次黄嘌呤、氨基蝶呤、T)生长出来的脾B-骨髓瘤融合细胞继续扩大培养。

细胞融合物中包含:

脾-脾融合细胞:不能生长,脾细胞不能体外培养。

骨-骨融合细胞:不能利用次黄嘌呤,但可通过第二途径利用叶酸还原酶合成嘌呤。氨基蝶呤对叶酸还原酶有抑制作用,因此不能生长。

骨-脾融合细胞:在HAT中能生长,脾细胞可以利用次黄嘌呤,骨细

胞提供细胞分裂功能。

6、利用双脱氧末端终止法(Sanger法)测定DNA一级结构的原理与方法?

原理是采用核苷酸链终止剂—2,,3,-双脱氧核苷酸终止DNA的延长。由于它缺少形成3/5/磷酸二脂键所需要的3-OH,一旦参入到DNA链中,此DNA链就不能进一步延长。根据碱基配对原则,每当DNA聚合酶需要dNMP参入到正常延长的DNA链中时,就有两种可能性,一是

参入ddNTP,结果导致脱氧核苷酸链延长的终止;二是参入dNTP,使DNA链仍可继续延长,直至参入下一个ddNTP。根据这一方法,就可

得到一组以ddNTP结尾的长短不一的DNA片段。

方法是分成四组分别为ddAMP、ddGMP、ddCMP、ddTMP反应后,聚丙烯酰胺凝胶电泳按泳带可读出DNA序列。

7、激活蛋白(CAP)对转录的正调控作用?

环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein),cAMP 与CRP结合后所形成的复合物称激活蛋白CAP(cAMPactivated protein )。当大肠杆菌生长在缺乏葡萄糖的培养基中时,CAP合成量增加,CAP具有激活乳糖(Lac)等启动子的功能。一些依赖于CRP 的启动子缺乏一般启动子所具有的典型的-35区序列特征(TTGACA)。因此RNA聚合酶难以与其结合。

CAP的存在(功能):能显著提高酶与启动子结合常数。主要表现以

下二方面:

①CAP通过改变启动子的构象以及与酶的相互作用帮助酶分子正确

定向,以便与-10区结合,起到取代-35区功能的作用。

②CAP还能抑制RNA聚合酶与DNA中其它位点的结合,从而提高与其特定启动子结合的概率。

8、典型的DNA重组实验通常包括哪些步骤?

a、提取供体生物的目的基因(或称外源基因),酶接连接到另一DNA 分子上(克隆载体),形成一个新的重组DNA分子。

b、将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这

个过程称为转化。

c、对那些吸收了重组DNA的受体细胞进行筛选和鉴定。

d、对含有重组DNA的细胞进行大量培养,检测外援基因是否表达。

9、基因文库的构建对重组子的筛选举出3种方法并简述过程。

抗生素抗性筛选、抗性的插入失活、兰-白斑筛选或PCR筛选、差式筛选、DNA探针

多数克隆载体均带有抗生素抗性基因(抗氨苄青霉素、四环素)。当质粒转入大肠杆菌中后,该菌便获得抗性,没有转入的不具有抗性。

但不能区分是否已重组。

在含有两个抗性基因的载体中,如果外源DNA片段插入其中一个基因并导致该基因失活,就可用两个分别含不同药物的平板对照筛选阳性

重组子。如pUC质粒含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。

10、说明通过胚胎干细胞获得转基因动物的基本过程?

胚胎干细胞(embryonic stem cell,ES):是胚胎发育期的胚细胞,可以人工培养增殖并具有分化成其它类型细胞的功能。

ES细胞的培养:

分离胚泡的内层细胞团进行培养。ES在无饲养层中培养时会分化为

肌细胞、N细胞等多种功能细胞,在含有成纤维细胞中培养时ES将保持分化功能。

可以对ES进行基因操作,不影响它的分化功能可以定点整合,解决

了随机整合的问题。向胚胎干细胞导入外源基因,然后植入到待孕雌鼠子宫,发育成幼鼠,杂交获得纯合鼠。

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

612生物化学与分子生物学

中科院研究生院硕士研究生入学考试 《生物化学与分子生物学》考试大纲 一、考试内容 1.蛋白质化学 考试内容 ●蛋白质的化学组成,20种氨基酸的简写符号 ●氨基酸的理化性质及化学反应 ●蛋白质分子的结构(一级、二级、高级结构的概念及形式) ●蛋白质一级结构测定的一般步骤 ●蛋白质的理化性质及分离纯化和纯度鉴定的方法 ●蛋白质的变性作用 ●蛋白质结构与功能的关系 考试要求 ●了解氨基酸、肽的分类 ●掌握氨基酸与蛋白质的物理性质和化学性质 ●了解蛋白质一级结构的测定方法(目前关于蛋白质一级结构测定的新方法和新思路很多,而教科书和教学中 涉及的可能不够广泛,建议只让学生了解即可) ●理解氨基酸的通式与结构 ●理解蛋白质二级和三级结构的类型及特点,四级结构的概念及亚基 ●掌握肽键的特点 ●掌握蛋白质的变性作用 ●掌握蛋白质结构与功能的关系 2.核酸化学 考试内容 ●核酸的基本化学组成及分类 ●核苷酸的结构 ●DNA和RNA一级结构的概念和二级结构要特点;DNA的三级结构 ●RNA的分类及各类RNA的生物学功能 ●核酸的主要理化特性 ●核酸的研究方法 考试要求 ●全面了解核酸的组成、结构、结构单位以及掌握核酸的性质 ●全面了解核苷酸组成、结构、结构单位以及掌握核苷酸的性质 ●掌握DNA的二级结构模型和核酸杂交技术 ●了解microRNA的序列和结构特点(近年来针对非编码RNA的研究越来越深入,建议增加相关考核) 3. 糖类结构与功能 考试内容 ●糖的主要分类及其各自的代表 ●糖聚合物及其代表和它们的生物学功能 ●糖链和糖蛋白的生物活性 考试要求 ●掌握糖的概念及其分类 ●掌握糖类的元素组成、化学本质及生物学功用 ●理解旋光异构 ●掌握单糖、二糖、寡糖和多糖的结构和性质 ●掌握糖的鉴定原理 4. 脂质与生物膜 考试内容

分子生物学笔记

分子生物学笔记 ? ?第一章基因的结构第一节基因和基因组 一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和, 基因组的大小用全部DNA的碱基对总数表示。 人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP) 基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。蛋白质组(proteome)和蛋白质组学(proteomics)

第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中DNA序列的分类? (一)高度重复序列(重复次数>lO5) 卫星DNA(Satellite DNA) (二)中度重复序列 1.中度重复序列的特点 ①重复单位序列相似,但不完全一样, ②散在分布于基因组中. ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为DNA标记. ⑤中度重复序列可能是转座元件(返座子), 2.中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments.)LINES ②短散在重复序列(Short interspersed repeated segments)SINES SINES:长度<500bp,拷贝数>105.如人Alu序列 LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl (三)单拷贝序列(Unique Sequence) 包括大多数编码蛋白质的结构基因和基因间间隔序列, 三、基因家族(gene family)

分子生物学题库

分子生物学备选考题 名词解释: 1.功能基因组学 2.分子生物学 3.epigenetics 4.C值矛盾 5.基因簇 6.间隔基因 7.基因芯片 8.基序(Motifs) 9.CpG岛 10.染色体重建 11.Telomerase 12.足迹分析实验 13.RNA editing 14.RNA干涉(RNA interference) 15.反义RNA 16.启动子(Promoter) 17.SD序列(SD sequence) 18.碳末端结构域(carboxyl terminal domain,CTD) 19.single nucleotide polymorphism,SNP 20.切口平移(Nick translation) 21.原位杂交 22.Expressing vector 23.Multiple cloning sites 24.同源重组 25.转座 26.密码的摆动性 27.热休克蛋白嵌套基因 28.基因家族增强子 29.终止子 30.前导肽RNAi 31.分子伴侣 32.魔斑核苷酸 33.同源域 34.引物酶 35.多顺反子mRNA 36.物理图谱、 37.载体(vector) 38.位点特异性重组 39.原癌基因(oncogene) 40.重叠基因、 41.母源影响基因、

42.抑癌基因(anti-oncogene)、 43.回文序列(palindrome sequence)、 44.熔解温度(melting temperature, Tm) 45.DNA的呼吸作用(DNA respiration) 46..增色效应(hyperchromicity)、 47.C0t曲线(C0t curve)、 48.DNA的C值(C value) 49.超螺旋(superhelix) 、 50.拓扑异构酶(topoisomerase)、 51.引发酶(primase) 、 52.引发体(primosome) 53.转录激活(transcriptional activation) 54.dna基因(dna gene)、 55.从头起始(de novo initiation) 、 56.端粒(telomere) 57.酵母人工染色体(yeast artificial chromosome, YAC)、 58.SSB蛋白(single strand binding protein)、 59.复制叉(replication fork)、 60.保留复制(semiconservative replication) 61.滚环式复制(rolling circle replication)、 62.复制原点(replication origin)、 63.切口(nick) 64.居民DNA (resident DNA) 65.有义链(sense strand) 66.反义链(antisense strand) 67.操纵子(operon) 、 68.操纵基因(operator) 69.内含子(内元intron) 70.外显子(外元exon) 、 71.突变子(muton) 、 72.密码子(codon)、、 73.同义密码(synonymous codons)、 74.GC盒(GC box) 75.增强子(enhancer) 76.沉默子(silencer) 77.终止子(terminator) 78.弱化子(衰减子)(attenuator) 79.同位酶(isoschizomers) 、 80.同尾酶(isocandamers) 81.阻抑蛋白(阻遏蛋白)(repressor) 82.诱导物(inducer)、 83.CTD尾(carboxyl-terminal domain ) 84.载体(vector)、 85.转化体(transformant)

生物化学与分子生物学问答题

机体是如何维持血糖平衡的(说明血糖的来源、去路及调节过程)? 血液中的葡萄糖称为血糖,机体血糖平衡是糖、脂肪、氨基酸代谢协调的结果,也是肝、肌、脂肪组织等器官代谢协调的结果(由于血糖的来源与去路保持动态平衡,血糖是组织、中枢神经、脑能量来源的主要保证)。 A.血糖来源(3分) 糖类消化吸收:食物中的糖类经消化吸收入血,这是血糖最主要的来源;肝糖原分解:短期饥饿后,肝中储存的糖原分解成葡萄糖进入血液;糖异生作用:在较长时间饥饿后,氨基酸、甘油等非糖物质在肝内异生合成葡萄糖;其他单糖转化成葡萄糖。 B.血糖去路(4分) 氧化供能:葡萄糖在组织细胞中通过有氧氧化和无氧酵解产生ATP,为细胞供给能量,此为血糖的主要去路。合成糖原:进食后,肝和肌肉等组织将葡萄糖合成糖原以储存。转化成非糖物质:可转化为甘油、脂肪酸以合成脂肪;可转化为氨基酸、合成蛋白质。转变成其他糖或糖衍生物(戊糖磷酸途径),如核糖、脱氧核糖、氨基多糖等。血糖浓度高于肾阈时可随尿排出一部分。 C.血糖的调节(2分) 胰岛素是体内唯一降低血糖的激素,但胰岛素分泌受机体血糖的控制(机体血糖升高胰岛素分泌减少)。胰岛素分泌增加,糖原合酶活性提高、糖原磷酸化酶活性降低,糖原分解降低、糖原合成提高,血糖降低。否则相反(胰岛素分泌减少,糖原合酶活性降低、糖原磷酸化酶活性提高,糖原分解提高、糖原合成降低,血糖提高)。胰高血糖素、肾上腺素作用是升高机体血糖。胰高血糖素、肾上腺素分泌增加,糖原合酶活性降低、糖原磷酸化酶活性提高,糖原分解提高、糖原合成降低,血糖提高。否则相反。 老师,丙酮酸被还原为乳酸后,乳酸的去路是什么 这个问题很重要。 肌组织产生的乳酸的去向包括:大量乳酸透过肌细胞膜进入血液,在肝脏进行糖异生转变为葡萄糖。大量乳酸进入血液,在心肌中经LDH1催化生成丙酮酸氧化供能;部分乳酸在肌肉内脱氢生成丙酮酸而进入到有氧氧化供能。大量乳酸透过肌细胞膜进入血液,在肾脏异生为糖或经尿排出体外。 下面问题你能回答出来不 1说明脂肪氧化供能的过程 (1)脂肪动员:脂肪组织中的甘油三酯在HSL的作用下水解释放脂酸和甘油。 (2)脂酸氧化:经脂肪酸活化、脂酰CoA进入线粒体、β-氧化、乙酰CoA进入三羧酸循环彻底氧化成H2O 和CO2并释放能量。 (3)甘油氧化:经磷酸化、脱氢、异构转变成3-磷酸甘油醛,3-磷酸甘油醛循糖氧化分解途径彻底分解生成H2O 和CO2并释放能量。 1.丙氨酸异生形成葡萄糖的过程 答:(1)丙氨酸经GPT催化生成丙酮酸。(2)丙酮酸在线粒体内经丙酮酸羧化酶催化生成草酰乙酸,后者经苹果酸脱氢酶催化生成苹果酸出线粒体,在胞液中经苹果酸脱氢酶催化生成草酰乙酸,后者在磷酸烯醇式丙酮酸羧激酶作用下生成磷酸烯醇式丙酮酸。(3)磷酸烯醇式丙酮酸循糖酵解途径至1,6-双磷酸果糖。1,6-双磷酸果糖经果糖双磷酸酶催化生成6-磷酸果糖,再异构成6-磷酸葡萄糖。6-磷酸葡萄糖在葡萄糖-6-磷酸酶作用下生成葡萄糖。

分子生物学笔记完全版

分子生物学笔记第一章基因的结构 第一节基因和基因组 一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR) ④调控 序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene) ,外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划( human genome project, HGP ) 基因组学( genomics ),结构基因组学( structural genomics )和功能基因组学( functional genomics )。 蛋白质组( proteome )和蛋白质组学( proteomics ) 第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2 —>% ), 三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因. 可能由某一共同祖先基因(ancestral gene) 经重复(duplication) 和突变产生。 基因家族的特点: ①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如 rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生 有功能的基因产物,这种基因称为假基因(Pseudogene) . ¥ a1表示与a1相似的假基因. 四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同. 第四节细菌和病毒基因组 一、细菌基因组的特点。 1 .功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构,2.结构基因中没有内含子,也无重叠现象。 3 .细菌DNA大部分为编码序列。 二、病毒基因组的特点 1 .每种病毒只有一种核酸,或者DNA,或者RNA ; 2 .病毒核酸大小差别很大,3X10 3 一3X106bp ; 3.除逆病毒外,所有病毒基因都是单拷贝的。 4 .大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成. 5. 真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子. 6. 有重叠基因. 第五节染色质和染色体 (二)组蛋白(histone): 一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力. (二).端粒(telomere) :真核生物线状染色体分子末端的DNA 区域端粒DNA的特点: 1、由富含G的简单串联重复序列组成(长达数kb). 人的端粒DNA重复序列:TTAGGC。

分子生物学基础知识要点

Northern blot:是DNA/RNA的杂交,它是一项用于检测特异性RNA的技术,RNA混合物首先按照它们的大小和相对分子量通过变性琼脂糖凝胶电泳加以分离,凝胶分离后的RNA 通过southern印迹转移到尼龙膜或硝酸纤维素膜上,再与标记的探针进行杂交反应,通过杂交结果分析可以对转录表达进行定量或定性。它是研究基因表达的有效手段。与Southern blot 相比,它的条件更严格些,特别是RNA容易降解,前期制备和转膜要防止Rnase的污染。实验步骤:1.用具的准备2.用RNAZaP去除用具表面的RNase酶污染3.制胶4. RNA样品的制备5.电泳6.转膜7.探针的制备8.探针的纯化及比活性测定9.预杂交10.探针变性11.杂交12.洗膜13.曝光14.去除膜上的探针15.杂交结果 半定量PCR要求比普通PCR更严格一些,另外往往通过转膜后的同位素杂交检测或凝胶成像后的灰度测定比较样品间的差异。 半定量RT-PCR一般是在没有条件做实时PCR 的情况下使用,用于测定体内目的基因的表达增加减少与否,即通过目的基因跑出来的电泳带与管家基因(如β-actin)的电泳带的相对含量比较,观测目的基因表达增减,另外还要做一个β-actin的内参照对照。 实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 1.实时荧光定量PCR无需内标 2.内标对实时荧光定量PCR的影响 Sybr green(荧光染料掺入法)和Taqman probe(探针法) 检测两种蛋白质相互作用方法 1共纯化、共沉淀,在不同基质上进行色谱层析 2蛋白质亲和色谱基本原理是将一种蛋白质固定于某种基质上(如Sepharose),当细胞抽提液经过改基质时,可与改固定蛋白相互作用的配体蛋白被吸附,而没有吸附的非目标蛋白则随洗脱液流出。被吸附的蛋白可以通过改变洗脱液或者洗脱条件而回收下来。 3免疫共沉淀免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用的蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高4 Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。缺点是转膜前需要将蛋白复性。 1.酵母双杂交 2.GSTpull-down实验 3.免疫共沉淀 4.蛋白质细胞内定位 RACE是基于PCR技术基础上由已知的一段cDNA片段,通过往两端延伸扩增从而获得完整的3'端和5'端的方法 1.此方法是通过PCR技术实现的,无须建立cDNA文库,可以在很短的时间内获得有 利用价值的信息 2.节约了实验所花费的经费和时间。 3.只要引物设计正确,在初级产物的基础上可以获得大量的感兴趣基因的全长 基因特异性引物(GSPs)应该是: 23-28nt 50-70%GC Tm值≥65度,Tm值≥70度可以获得好的结果 注意事项 1.cDNA的合成起始于polyA+RNA。如果使用其它的基因组DNA或总RNA,背景会很高

关于分子生物学试题及答案

分子生物学试题(一) 一.填空题(,每题1分,共20分) 一.填空题(每题选一个最佳答案,每题1分,共20分) 1. DNA的物理图谱是DNA分子的()片段的排列顺序。 2. 核酶按底物可划分为()、()两种类型。 3.原核生物中有三种起始因子分别是()、()和()。 4.蛋白质的跨膜需要()的引导,蛋白伴侣的作用是()。5.真核生物启动子中的元件通常可以分为两种:()和()。6.分子生物学的研究内容主要包含()、()、()三部分。 7.证明DNA是遗传物质的两个关键性实验是()、()。 8.hnRNA与mRNA之间的差别主要有两点:()、()。 9.蛋白质多亚基形式的优点是()、()、()。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP-CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP-CRP的启动子S1对高水平合成进行调节。有G时转录从(S2 )开始,无G时转录从(S1 )开始。 12.DNA重组技术也称为(基因克隆)或(分子克隆)。最终目的是(把一个生物体中的遗传信息DNA转入另一个生物体)。典型的DNA重组实验通常包含以下几个步骤: ①提取供体生物的目的基因(或称外源基因),酶接连接到另一DNA分子上(克隆载体),形一个新的重组DNA分子。 ②将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化。 ③对那些吸收了重组DNA的受体细胞进行筛选和鉴定。 ④对含有重组DNA的细胞进行大量培养,检测外援基因是否表达。 13、质粒的复制类型有两种:受到宿主细胞蛋白质合成的严格控制的称为(严紧型质粒),不受宿主细胞蛋白质合成的严格控制称为(松弛型质粒)。 14.PCR的反应体系要具有以下条件: a、被分离的目的基因两条链各一端序列相互补的 DNA引物(约20个碱基左右)。 b、具有热稳定性的酶如:TagDNA聚合酶。 c、dNTP d、作为模板的目的DNA序列 15.PCR的基本反应过程包括:(变性)、(退火)、(延伸)三个阶段。 16、转基因动物的基本过程通常包括: ①将克隆的外源基因导入到一个受精卵或胚胎干细胞的细胞核中; ②接种后的受精卵或胚胎干细胞移植到雌性的子宫;

分子生物学试题库

第2章染色体与DNA 名词解释 原癌基因:细胞内与细胞增殖相关的正常基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。 复制:以亲代DNA或RNA为模板,根据碱基配对的原则,在一系列酶的作用下,生成与亲代相同的子代DNA或RNA的过程。 转座子 (transposon 或 transposable element):位于染色体DNA上可自主复制和位移的基本单位。包括插入序列和复合转座子。 半保留复制:以亲代DNA双链为模板以碱基互补方式合成子代DNA,这样新形成的子代DNA 中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式叫半保留复制。 染色体:染色体是遗传信息的载体,由DNA、RNA和蛋白质构成,其形态和数目具有种系的特性。在细胞间期核中,以染色质形式存在。在细胞分裂时,染色质丝经过螺旋化、折叠、包装成为染色体,为显微镜下可见的具不同形状的小体。 核小体:是构成真核生物染色体的基本单位,是DNA和蛋白质构成的紧密结构形式,包括200bp左右的DNA和9个组蛋白分子构成的致密结构。 填空题 1.真核细胞核小体的组成是 DNA和蛋白 2.天然染色体末端不能与其他染色体断裂片段发生连接,这是因为天然染色体末端存在端粒结构。 3.在聚合酶链反应中,除了需要模板DNA外,还需加入引物、DNA聚合酶、dNTP和镁离子。 4.引起DNA损伤的因素有自发因素、物理因素、化学因素。 5.DNA复制时与DNA解链有关的酶和蛋白质有拓扑异构酶Ⅱ、解螺旋酶、单链DNA结合蛋白。 6.参与DNA切除修复的酶有DNA聚合酶Ⅰ、DNA连接酶、特异的核酸内切酶。 7.在真核生物中DNA复制的主要酶是DNA聚合酶δ。在原核生物中是DNA聚合酶Ⅲ。 8.端粒酶是端粒酶是含一段RNA的逆转录酶。 9.DNA的修复方式有错配修复、碱基切除修复、核苷酸切除修复、DNA的直接修复。 选择题 1.真核生物复制起点的特征包括(B) A. 富含G-C区 B. 富含A-T区 C. Z-DNA D. 无明显特征 2.插入序列(IS)编码(A) A.转座酶 B.逆转录酶 C. DNA合成酶 D.核糖核酸酶 3.紫外线照射对DNA分子的损伤主要是(D) A.碱基替换 B.磷酸脂键断裂 C。碱基丢失 D.形成共价连接的嘧啶二聚体 4.自然界中以DNA为遗传物质的大多数生物DNA的复制方式(C) A.环式 B.D环式 C.半保留 D.全保留 5.原核生物基因组中没有(A) A.内含子 B.外显子 C.转录因子 D.插入序列 6.关于组蛋白下列说法正确的是(D)

生物化学与分子生物学试题库完整

“生物化学与分子生物学” 题库 第二军医大学基础医学部 生物化学与分子生物学教研室编制 2004年7月

第一篇生物大分子的结构与功能 第一章蛋白质的结构与功能 一、单项选择题(A型题) 1.蛋白质的一级结构是指下面的哪一种情况?( ) A、氨基酸种类的数量 B、分子中的各种化学键 C、氨基酸残基的排列顺序 D、多肽链的形态和大小 E、氨基酸的连接方式 2.关于蛋白质分子三级结构的描述,其中错误的是:( ) A、天然蛋白质分子均有这种结构 B、具有三级结构的多肽链都有生物学活性 C、三级结构的稳定性主要是次级键维系 D、亲水基团多聚集在三级结构的表面 E、骨架链原子的空间排布 3、学习“蛋白质结构与功能”的理论后,我们认识到错误概念是()。 A、蛋白质变性是肽键断裂所致 B、蛋白质的一级结构决定其空间结构 C、肽键的键长较单键短,但较双键长 D、四级结构蛋白质必定由二条或二条以上多肽链组成 E、蛋白质活性不仅取决于其一级结构,还依赖于高级结构的正确 4、通过“蛋白质、核酸的结构与功能”的学习,认为错误的概念是()。 A、氢键是维系多肽链β-折叠的主要化学键 B、DNA分子的二级结构是双螺旋,维系其稳定的重要因素是碱基堆积力 C、蛋白质变性后可以恢复,但DNA变性后则不能恢复 D、谷氨酸、半胱氨酸和甘氨酸三者组成GSH E、蛋白质亚基具有三级结构,而tRNA三级结构呈倒L形 5、“蛋白质分子结构与功能”一章学习,告之我们以下概念不对的是()。 A、氢键不仅是维系β-折叠的作用力,也是稳定β-转角结构的化学键 B、活性蛋白质均具有四级结构 C、α-螺旋的每一圈包含3.6个氨基酸残基 D、亚基独立存在时,不呈现生物学活性的 E、肽键是不可以自由旋转的 6、关于蛋白质分子中α-螺旋的下列描述,哪一项是错误的?() A、蛋白质的一种二级结构 B、呈右手螺旋

!!分子生物学笔记完全版

列〃一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和 3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断 裂基因(split-gene),外显子不连续。二、基因组(genome) 一 特定生物体的整套(单倍体)遗传物质的总和,基因组的大小 用全部 DNA 的碱基对总数表示。 人基因组 3X1 09(30 亿 bp),共编码约 10 万个基因。 每种真核生物的单倍体基因组中的全部 DNA 量称为 C 值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。 蛋白质组(proteome)和蛋白质组学(proteomics) 第二节真核生物基因组一、真核生物基因组的特 点:, ①真核基因组 DNA 在细胞核内处于以核小体为基本单位的染色体结构中〃 ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中 DNA 序列的分类 &#8226; (一)高度重复序列(重复次数>lO5) 卫星 DNA(Satellite DNA) (二)中度重复序列 1〃中度重复序列的特点

①重复单位序列相似,但不完全一样, ②散在分布于基因组中〃 ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为 DNA 标记〃 ⑤中度重复序列可能是转座元件(返座子), 2〃中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments〃) LINES ②短散在重复序列(Short interspersed repeated segments) SINES SINES:长度<500bp,拷贝数>105〃如人 Alu 序列 LINEs:长

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了?脱氧核糖核苷酸的结构?的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

分子生物学zuq题库

问答题: 1 衰老与基因的结构与功能的变化有关,涉及到:(1)生长停滞;(2)端粒缩短现象;(3)DNA损伤的累积与修复能力减退;(4)基因调控能力减退。 2 超螺旋的生物学意义:(1)超螺旋的DNA比松驰型DNA更紧密,使DNA分子体积变得更小,对其在细胞的包装过程更为有利;(2)超螺旋能影响双螺旋的解链程序,因而影响DNA分子与其它分子(如酶、蛋白质)之间的相互作用。 3 原核与真核生物学mRNA的区别: 原核:(1)往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息(来自几个结构基因)。(2)5端无帽子结构,3端一般无多聚A尾巴。(3)一般没有修饰碱基,即这类mRNA分子链完全不被修饰。 真核:(1)5端有帽子结构(2)3端绝大多数均带有多聚腺苷酸尾巴,其长度为20-200个腺苷酸。(3)分子中可能有修饰碱基,主要有甲基化,(4)分子中有编码区与非编码区。 4 tRNA的共同特征: (!)单链小分子,含73-93个核苷酸。(2)含有很多稀有碱基或修饰碱基。(3)5端总是磷酸化,5末端核苷酸往往是pG。(4)3端是CPCPAOH序列。(5)分子中约半数的碱基通过链内碱基配对互相结合,开成双螺旋,从而构成其二级结构,开头类似三叶草。(6)三级结构是倒L型。 5 核酶分类:(1)异体催化的剪切型,如RNaseP;(2)自体催化的剪切型,如植物类病毒等;(3)内含子的自我剪接型,如四膜虫大核26SrRNA前体。 6 hnRNA变成有活性的成熟的mRNA的加工过程: (1)5端加帽;(2)3端加尾(3)内含子的切除和外显子的拼接;(4)分子内部的甲基化修饰作用,(5)核苷酸序列的编辑作用。 7 反义RNA及其功能: 碱基序列正好与有意义mRNA互补的RNA称为反意义或反义RNA,又称调节RNA,这类RNA是单链RNA,可与mRNA配对结合形成双链,最终抑制mRNA作为模板进行翻译。这是其主要调控功能,还可作为DNA复制的抑制因子,与引物RNA互补结合抑制DNA的复制,以及在转录水平上与mRNA5末端互补,阻止RNA合成转录。 8 病毒基因组分型:(1)双链DNA(2)单链正股DNA(3)双链RNA(4)单链负股RNA(5)单链正股RNA 9 病毒基因组结构与功能的特点: (1)不同病毒基因组大小相差较大;(2)不同病毒的基因组可以是不同结构的核酸。(3)病毒基因组有连续的也有不连续的;(4)病毒基因组的编码序列大于90%;(5)单倍体基因组,(6)基因有连续的和间断的,(7)相关基因丛集;(8)基因重叠(9)病毒基因组含有不规则结构基因,主要类型有:a几个结构基因的编码区无间隔;bmRNA没有5端的帽结构;c结构基因本身没有翻译起始序列。 10 原核生物基因组的结构的功能特点: (1)基因组通常仅由一条环状双链DNA分子组成。 (2)基因组中只有1个复制起点。 (3)具有操纵子结构。(4)编码顺序一般不会重叠。(5)基因是连续的,无内含子,因此转录后不需要剪切。(6)编码区在基因组中所占的比例(约占50%)远远大于真核基因组,但又远远小于病毒基因组。(7)基因组中重复序列很少(8)具有编码同工酶的基因。(9)细菌基因组中存在着可移动的DNA序列,包括插入序列和转座子。 (10)在DNA分子中具有多种功能的识别区域。 11??真核生物基因组结构与功能的特点:

分子生物学知识点归纳

分子生物学 1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。 2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。 4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。真核生物中的DNA甲基化则在基因表达调控中有重要作用。真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’. 5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。 6.DNA双螺旋结构模型要点: (1)DNA是反向平行的互补双链结构。 (2)DNA双链是右手螺旋结构。螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。每个碱基旋转角度为36度。DNA双螺旋分子表面 存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。(3)疏水力和氢键维系DNA双螺旋结构的稳定。DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。 7.核小体的组成: 染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。 8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。 9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。从一条mRNA只能翻译出一条多肽链。10.多顺反子(polycistron): 原核生物具有操纵子结构,几个结构基因转录在一条mRNA 链上,因而转录物为多顺反子。每个顺反子分别翻译出各自的蛋白质。 11.原核生物mRNA结构的特点: (1) 原核生物mRNA往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息。 (2)mRNA 5‘端无帽子结构,3‘端无多聚A尾。 (3)mRNA一般没有修饰碱基。 12.真核生物mRNA结构的特点: (1)5‘端有帽子结构。即7-甲基鸟嘌呤-三磷酸鸟苷m7GpppN。 (2)3‘端大多数带有多聚腺苷酸尾巴。 (3)分子中可能有修饰碱基,主要有甲基化。 (4)分子中有编码区和非编码区。 14.tRNA的结构特点 (1)tRNA是单链小分子。 (2)tRNA含有很多稀有碱基。 (3)tRNA的5‘端总是磷酸化,5’末端核苷酸往往是pG. (4)tRNA的3‘端是CCA-OH序列。是氨基酸的结合部位。 (5)tRNA的二级结构形状类似于三叶草,含二氢尿嘧啶环(D环)、T环和反密码子环。

最新现代分子生物学试题库

核酸结构与功能 一、填空题 1.病毒ΦX174及M13的遗传物质都是单链DNA 。 2.AIDS病毒的遗传物质是单链RNA。 3.X射线分析证明一个完整的DNA螺旋延伸长度为 3.4nm 。 4.氢键负责维持A-T间(或G-C间)的亲和力 5.天然存在的DNA分子形式为右手B型螺旋。 二、选择题(单选或多选) 1.证明DNA是遗传物质的两个关键性实验是:肺炎球菌在老鼠体内的毒性和T2噬菌体感染大肠杆菌。 这两个实验中主要的论点证据是(C )。 A.从被感染的生物体内重新分离得到DNA作为疾病的致病剂 B.DNA突变导致毒性丧失 C.生物体吸收的外源DNA(而并非蛋白质)改变了其遗传潜能 D.DNA是不能在生物体间转移的,因此它一定是一种非常保守的分子 E.真核心生物、原核生物、病毒的DNA能相互混合并彼此替代 2.1953年Watson和Crick提出( A )。 A.多核苷酸DNA链通过氢键连接成一个双螺旋 B.DNA的复制是半保留的,常常形成亲本-子代双螺旋杂合链 C.三个连续的核苷酸代表一个遗传密码 D.遗传物质通常是DNA而非RNA E.分离到回复突变体证明这一突变并非是一个缺失突变 3.DNA双螺旋的解链或变性打断了互补碱基间的氢键,并因此改变了它们的光吸收特性。以下哪些是对DNA的解链温度的正确描述?( CD ) A.哺乳动物DNA约为45℃,因此发烧时体温高于42℃是十分危险的 B.依赖于A-T含量,因为A-T含量越高则双链分开所需要的能量越少 C.是双链DNA中两条单链分开过程中温度变化范围的中间值 D.可通过碱基在260nm的特征吸收峰的改变来确定 E.就是单链发生断裂(磷酸二酯键断裂)时的温度 4.DNA的变性(ACE )。A.包括双螺旋的解链 B.可以由低温产生C.是可逆的D.是磷酸二酯键的断裂E.包括氢键的断裂 5.在类似RNA这样的单链核酸所表现出的“二级结构”中,发夹结构的形成(AD )。 A.基于各个片段间的互补,形成反向平行双螺旋 B.依赖于A-U含量,因为形成的氢键越少则发生碱基配对所需的能量也越少 C.仅仅当两配对区段中所有的碱基均互补时才会发生 D.同样包括有像G-U这样的不规则碱基配对 E.允许存在几个只有提供过量的自由能才能形成碱基对的碱基 6.DNA分子中的超螺旋(ACE )。

相关文档
相关文档 最新文档