文档视界 最新最全的文档下载
当前位置:文档视界 › 高中物理动量守恒定律的技巧及练习题及练习题(含答案)

高中物理动量守恒定律的技巧及练习题及练习题(含答案)

高中物理动量守恒定律的技巧及练习题及练习题(含答案)
高中物理动量守恒定律的技巧及练习题及练习题(含答案)

高中物理动量守恒定律的技巧及练习题及练习题(含答案)

一、高考物理精讲专题动量守恒定律

1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:

(1)A球与B球碰撞中损耗的机械能;

(2)在以后的运动过程中弹簧的最大弹性势能;

(3)在以后的运动过程中B球的最小速度.

【答案】(1);(2);(3)零.

【解析】

试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:

碰后A、B的共同速度

损失的机械能

(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大

根据动量守恒定律有:

三者共同速度

最大弹性势能

(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.

弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:

根据机械能守恒定律:

此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的

,故B

的最小速度为零 .

考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.

【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答

2.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角

o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)

(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.

【答案】(1)6/B v m s = (2)0.6P E J = 【解析】

试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2

cos 1sin 2

B

B B B

m gh m gh m v θμθ+?= ① (3分)

代入已知数据解得:6/B v m s = ② (2分)

(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:

222

0111()222

A B P A A B B

m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)

考点:本题考查了动能定理、动量守恒定律、能量守恒定律.

3.如图,足够大的光滑水平面上固定着一竖直挡板,挡板前L 处静止着质量m 1=1kg 的小球A ,质量m 2=2kg 的小球B 以速度v 0运动,与小球A 正碰.两小球可看作质点,小球与小球及小球与挡板的碰撞时间忽略不计,且碰撞中均没有机械能损失.求

(1)第1次碰撞后两小球的速度;

(2)两小球第2次碰撞与第1次碰撞之间的时间; (3)两小球发生第3次碰撞时的位置与挡板的距离.

【答案】(1)04

3

v 013v 方向均与0v 相同 (2)065L v (3)9L 【解析】 【分析】

(1)第一次发生碰撞,动量守恒,机械能守恒;

(2)小球A 与挡板碰后反弹,发生第2次碰撞,分析好位移关系即可求解;

(3)第2次碰撞过程中,动量守恒,机械能守恒,从而找出第三次碰撞前的初始条件,分析第2次碰后的速度关系,位移关系即可求解. 【详解】

(1)设第1次碰撞后小球A 的速度为1v ,小球B 的速度为2v ,根据动量守恒定律和机械能守恒定律:201122m v m v m v =+

222

201122111222

m v m v m v =+ 整理得:210122m v v m m =+,21

2012

m m v v m m -=+

解得1043v v =

,201

3

v v =,方向均与0v 相同. (2)设经过时间t 两小球发生第2次碰撞,小球A 、B 的路程分别为1x 、2x ,则有

11x v t =,22x v t =

由几何关系知:122x x L += 整理得:0

65L

t v =

(3)两小球第2次碰撞时的位置与挡板的距离:235

x L x L =-= 以向左为正方向,第2次碰前A 的速度04

3A v v =

,B 的速度为013

B v v =-,如图所示.

设碰后A 的速度为A v ',B 的速度为B v '

.根据动量守恒定律和机械能守恒定律,有

1212A B A B m v m v m v m v ''+=+; 222

212121

1112222A B A

B m v m v m v m v ''+=+ 整理得:12212()2A B A m m v m v v m m -+'=+,21112

()2B A

B m m v m v v m m -+'=+

解得:089A v v '=-,079

B v v '=

设第2次碰后经过时间t '发生第3次碰撞,碰撞时的位置与挡板相距x ',则

B x x v t '''-=,A x x v t '''+=

整理得:9x L '=

4.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。物体P 置于P 1的最右端,质量为2m 且可以看作质点。P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。P 与P 2之间的动摩擦因数为μ,求:

(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。

【答案】(1) 201v v =,4

302v v = (2)L g v x -=μ3220,1620

p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得2

1v v =

。 对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4

30

2v v =

(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从

P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律

)(2)2()2(212212212

22021x L mg u v m m m mv mv ++++=?+? 解得L g

v x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律

p 222021))(2()2(2

1221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能16

2

P mv E =

注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg

【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。中档题

5.如图所示,光滑水平直导轨上有三个质量均为m 的物块A 、B 、C ,物块B 、C 静止,物块B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A 以速度v 0朝B 运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短.那么从A 开始压缩弹簧直至与弹簧分离的过程中,求.

(1)A 、B 第一次速度相同时的速度大小; (2)A 、B 第二次速度相同时的速度大小; (3)弹簧被压缩到最短时的弹性势能大小 【答案】(1)v 0(2)v 0(3)

【解析】

试题分析:(1)对A 、B 接触的过程中,当第一次速度相同时,由动量守恒定律得,mv 0=2mv 1, 解得v 1=v 0

(2)设AB 第二次速度相同时的速度大小v 2,对ABC 系统,根据动量守恒定律:mv 0=3mv 2 解得v 2=v 0

(3)B 与C 接触的瞬间,B 、C 组成的系统动量守恒,有:

解得v 3=v 0 系统损失的机械能为

当A 、B 、C 速度相同时,弹簧的弹性势能最大.此时v 2=v 0 根据能量守恒定律得,弹簧的最大弹性势能.

考点:动量守恒定律及能量守恒定律

【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选

择研究的系统,运用动量守恒进行求解。

6.如图,质量分别为m1=1.0kg和m2=2.0kg的弹性小球a、b,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v0=0.10m/s沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t=5.0s后,测得两球相距s=4.5m,则刚分离时,a球、b球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.

【答案】①0.7m/s, -0.2m/s ②0.27J

【解析】

试题分析:①根据已知,由动量守恒定律得

联立得

②由能量守恒得

代入数据得

考点:考查了动量守恒,能量守恒定律的应用

【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题

7.如图所示,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:

①小球脱离弹簧时的速度大小;

②在整个过程中,小车移动的距离。

【答案】(1)3m/s (2)0.1m

【解析】

试题分析:(1)除锁定后弹簧的弹性势能转化为系统动能,根据动量守恒和能量守恒列出等式得

mv1-Mv2=0

22

12

1122

P E mv Mv =

+ 代入数据解得:v 1=3m/s v 2=1m/s (2)根据动量守恒和各自位移关系得12x x

m M t t

=,x 1+x 2=L 代入数据联立解得:24

L

x =

=0.1m 考点:动量守恒定律;能量守恒定律.

8.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作,已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞。

(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;

(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E 。

【答案】(1)9J (2)10m/s <v 1<14m/s 17J 【解析】

试题分析:(1)由于P 1和P 2发生弹性碰撞,据动量守恒定律有:

碰撞过程中损失的动能为:

(2)

解法一:根据牛顿第二定律,P 做匀减速直线运动,加速度a=

设P 1、P 2碰撞后的共同速度为v A ,则根据(1)问可得v A =v 1/2 把P 与挡板碰撞前后过程当作整体过程处理 经过时间t 1,P 运动过的路程为s 1,则 经过时间t 2,P 运动过的路程为s 2,则

如果P 能在探测器工作时间内通过B 点,必须满足s 1≤3L≤s 2

联立以上各式,解得10m/s<v1<14m/s

v1的最大值为14m/s,此时碰撞后的结合体P有最大速度v A=7m/s

根据动能定理,

代入数据,解得E=17J

解法二:从A点滑动到C点,再从C点滑动到A点的整个过程,P做的是匀减速直线。

设加速度大小为a,则a=μg=1m/s2

设经过时间t,P与挡板碰撞后经过B点,[学科网则:

v B=v-at,,v=v1/2

若t=2s时经过B点,可得v1="14m/s"

若t=4s时经过B点,可得v1=10m/s

则v1的取值范围为:10m/s<v1<14m/s

v1=14m/s时,碰撞后的结合体P的最大速度为:

根据动能定理,

代入数据,可得通过A点时的最大动能为:

考点:本题考查动量守恒定律、运动学关系和能量守恒定律

9.卢瑟福用α粒子轰击氮核发现质子。发现质子的核反应为:。已知氮核质量为m N=14.00753u,氧核的质量为m O=17.00454u,氦核质量m He=4.00387u,质子(氢核)质量为m p=1.00815u。(已知:1uc2=931MeV,结果保留2位有效数字)求:(1)这一核反应是吸收能量还是放出能量的反应?相应的能量变化为多少?

(2)若入射氦核以v0=3×107m/s的速度沿两核中心连线方向轰击静止氮核。反应生成的氧核和质子同方向运动,且速度大小之比为1:50。求氧核的速度大小。

【答案】(1)吸收能量,1.20MeV;(2)1.8×106m/s

【解析】

(1)这一核反应中,质量亏损:△m=m N+m He-m O-m p=14.00753+4.00387-17.00454-1.00815=-0.00129u

由质能方程,则有△E=△m c2=-0.00129×931=-1.20MeV

故这一核反应是吸收能量的反应,吸收的能量为1.20MeV

(2)根据动量守恒定律,则有:m He v0=m H v H+m O v O

又:v O:v H=1:50

解得:v O=1.8×106m/s

10.一列火车总质量为M,在平直轨道上以速度v匀速行驶,突然最后一节质量为m的车厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时,前面火车的速度大小为多少?

【答案】Mv/(M-m) 【解析】 【详解】

因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒. 取列车原来速度方向为正方向.由动量守恒定律,可得()0Mv M m v m =-'+? 解得,前面列车的速度为Mv

v M m

'=

-;

11.如图所示,光滑平行金属导轨的水平部分处于竖直向下的B=4T 的匀磁场中,两导轨间距L=0.5m ,导轨足够长金属棒a 和b 的质量都为m=1kg ,电阻1a b R R ==Ω.b 棒静止于轨道水平部分,现将a 棒从h=80cm 高处自静止沿弧形轨道下滑,通过C 点进入轨道的水平部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求a 、b 两棒的最终速度大小以及整个过程中b 棒中产生的焦耳热(已知重力加速度g 取10m/s 2)

【答案】 2m/s 2J 【解析】

a 棒下滑至C 点时速度设为v 0,则由动能定理,有: 2

0102

mgh mv =

- (2分) 解得v 0=4m/s ; (2分)

此后的运动过程中,a 、b 两棒达到共速前,两棒所受安培力始终等大反向,因此a 、b 两棒组成的系统动量守恒,有:

()0m v m m v =+ (2分)

解得a 、b 两棒共同的最终速度为v =2m/s ,此后两棒一起做匀速直线运动; 由能量守恒定律可知,整个过程中回路产生的总的焦耳热为: ()22011

22

Q mv m m v =

-+ (2分) 则b 棒中的焦耳热1

2

b Q Q =

(2分) 联立解得:Q b =2J (2分)

12.如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小

木块A ,m <M,A 、B 间粗糙,现给A 和B 以大小相等、方向相反的初速度v0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求:

(1)A 、B 最后的速度大小和方向;

(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.

【答案】(1)

0M m

v M m

-+(2)2022M m v Mg μ- 【解析】

试题分析:(1)由A 、B 系统动量守恒定律得: Mv0—mv0=(M +m )v ① 所以v=v0

方向向右

(2)A 向左运动速度减为零时,到达最远处,设此时速度为v′,则由动量守恒定律得:

Mv0—mv0="Mv′"00

Mv mv v M

-'=

方向向右 考点:动量守恒定律;

点评:本题主要考查了动量守恒定律得直接应用,难度适中.

高中物理-动量守恒定律测试题

高中物理-动量守恒定律测试题 一、动量守恒定律 选择题 1.在采煤方法中,有一种方法是用高压水流将煤层击碎而将煤采下.今有一采煤用水枪,由枪口射出的高压水流速度为v .设水的密度为ρ,水流垂直射向煤层表面,若水流与煤层作用后速度减为零,则水在煤层表面产生的压强为( ) A .2v ρ B .2 2v ρ C .2 v ρ D .22v ρ 2.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( ) A .木板A 获得的动能为2J B .系统损失的机械能为2J C .A 、B 间的动摩擦因数为0.1 D .木板A 的最小长度为2m 3.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( ) A .小球在半圆槽内第一次由A 到最低点 B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰ C .小球第一次在半圆槽的最低点B 时对槽的压力为133 mg D .物块最终的动能为 15 mgR 4.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( ) A .1木块相对静止前,木板是静止的

高中物理解题技巧:图像法

高物理解题技巧:图像法1 物理规律可以用文字描述,也可以用数函数式表示,还可以用图象描述。图象作为表示物理规律的方法之一,可以直观地反映某一物理量随另一物理量变化的函数关系,形象地描述物理规律。在进行抽象思维的同时,利用图象视觉感知,有助于对物理知识的理解和记忆,准确把握物理量之间的定性和定量关系,深刻理解问题的物理意义。应用图象不仅可以直接求或读某些待求物理量,还可以用探究某些物理规律,测定某些物理量,分析或解决某些复杂的物理过程。 图象的物理意义主要通过“点”、“线”、“面”、“形”四个方面体现,应从这四方面入手,予以明确。 1、物理图象“点”的物理意义:“点”是认识图象的基础。物理图象上的“点”代表某一物理状态,它包含着该物理状态的特征和特性。从“点”着手分析时应注意从以下几个特殊“点”入手分析其物理意义。 (1)截距点。它反映了当一个物理量为零时,另一个物理的值是多少,也就是说明确表明了研究对象的一个状态。如图1,图象与纵轴的交点反映当I=0时,U=E即电的 电动势;而图象与横轴的交点反映电的短路电流。这可通过图象的数表达式 得。 (2)交点。即图线与图线相交的点,它反映了两个不同的研究对象此时有相同的物理量。如图2的P点表示电阻A接在电B两端时的A两端的电压和通过A的电流。

(3)极值点。它可表明该点附近物理量的变化趋势。如图3的D点表明当电流等于时,电有最大的输功率。 (4) 拐 点。通常反映物理过程在该点发生突变,物理量由量变到质变的转折点。拐点分明拐点和暗拐点,对明拐点,生能一眼看其物理量发生了突变。如图4的P点反映了加速度方向发生了变化而不是速度方向发生了变化。而暗拐点,生往往察觉不到物理量的突变。如图5P点看起是一条直线,实际上在该点速度方向发生了变化而加速度没有发生变化。 2、物理图象“线”的物理意义:“线”:主要指图象的直线或曲线的切线,其斜率通常 具有明确的物理意义。物理图象的斜率代表两个物理量增量之比值,其大小往往 代表另一物理量值。如-t图象的斜率为速度,v-t图象的斜率为加速度,Φ-t图象的斜率为感应电动势(n=1的情况下),电U-I图象(如图1)的斜率 为电的内阻(从图象的数表达式也一目了然)等。 3、物理图象“面”的物理意义:“面”:是指图线与坐标轴所围的面积。有些物理图象的图线与横轴所围的面积的值常代表另一个物理量的大小.习图象时,有意识地利用求面积的方法,计算有关问题,可使有些物理问题的解答变得简便,如v-t图象所围面积 代表位移,F-图象所围面积为力做的功,P-V图象所围面积为 气体压强做的功等。 4、物理图象“形”的物理意义:“形”:指图象的形状。由图线的形状结合其斜率找其隐含的物理意义。例如在v-t图象,如果是一条与时间轴平行的直线,说明物体做匀速直线运动;若是一条斜的直线,说明物体做匀变速直线运动;若是一条曲线,则可根据其斜率变化情况,判断加速度的变化情况。在波的图象,可通过微小的平移能够判断各质点在该时刻的振动方向;在研究小电珠两端的电压U与电流I关系时,通过实验测在

高一物理计算题(含答案)

高一物理计算题 1、在距地面10m高处,以10m/s的速度抛出一质量为1kg的物体,已知物体落地时的速度为16m/s,求:(g取10m/s2)(1)抛出时人对物体做功为多少?(2)飞行过程中物体克服阻力做的功是多少? 2、汽车的质量为4×10 3㎏,额定功率为30kW,运动中阻力大小为车重的0.1倍。汽车在水 平路面上从静止开始以8×10 3 N的牵引力出发,求: (1)经过多长的时间汽车达到额定功率。 (2)汽车达到额定功率后保持功率不变,运动中最大速度多大? (3)汽车加速度为0.5 m/s2 时速度多大? 3、如图2所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在使斜面体向右水平匀速移动距离l,求: (1)摩擦力对物体做的功。 (2)斜面对物体的弹力做的功。 (3)斜面对物体做的功。 图2 4、如图所示,半径R=0.4m的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A.一质量m=0.1kg的小球,以初速度v0=7m/s在水平地面上向左作加速度a=3m/s2的匀减速直线运动,运动4.0m后,冲上竖直半圆环,最后小球落在C点。求A、C之间的距离(g=10 m/s2)

5、AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。一小球自A 点起由静止开始沿轨道下滑。已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。求 (1)小球运动到B 点时的动能 (2)小球下滑到距水平轨道的高度为1 2 R 时的速度大小 (3)小球经过圆弧轨道的B 点和水平轨道的C 点时, 所受轨道支持力N B 、N C 各是多大? 6、如图所示,在光滑水平桌面上有一辆质量为M 的小车,小车与绳子的一端相连,绳子另一端通过滑轮吊一个质量为m 的砝码,砝码离地h 高。若把小车静止开始释放,则在砝码着地瞬间,求:(1)小车的速度大小。 (2)在此过程中,绳子拉力对小车所做的功为多少? 7、如图,斜面倾角30θ=?,另一边与地面垂直,高为H ,斜面顶点有一个定滑轮,物块A 和B 的质量分别为1m 和2m ,通过一根不可伸长的细线连结并跨过定滑轮,开始时两物块都位于距地面的垂直距离为1 2 H 的位置上,释放两物块后,A 沿斜面无摩擦地上滑,B 沿斜面 的竖直边下落,且落地后不反弹。若物块A 恰好能到达斜面 的顶点,试求1m 和2m 的比值。(滑轮质量、半径及摩擦均忽略) O m A B C R A B H 2 30?

河南省固始县一中高中物理-动量守恒定律测试题

河南省固始县一中高中物理-动量守恒定律测试题 一、动量守恒定律 选择题 1.如图所示,足够长的光滑水平面上有一质量为2kg 的木板B ,质量为1kg 的木块C 叠放在B 的右端点,B 、C 均处于静止状态且B 、C 之间的动摩擦因数为μ = 0.1。质量为1kg 的木块A 以初速度v 1 = 12m/s 向右滑动,与木板B 在极短时间内发生碰撞,碰后与B 粘在一起。在运动过程中C 不从B 上滑下,已知g = 10m/s 2,那么下列说法中正确的是( ) A .A 与 B 碰撞后A 的瞬时速度大小为3m/s B .A 与B 碰撞时B 对A 的冲量大小为8N ?s C .C 与B 之间的相对位移大小为6m D .整个过程中系统损失的机械能为54J 2.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则 A .子弹刚穿出木块时,木块的速度为 0() m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒 C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒 D .木块上升的最大高度为22 02mv mv Mg - 3.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m l =,现有质量 20.2kg m =可视为质点的物块,以水平向右的速度0v 从左端滑上小车,最后在车面上某处与 小车保持相对静止.物块与车面间的动摩擦因数0.5μ=,取2 g=10m/s ,则( ) A .物块滑上小车后,系统动量守恒和机械能守恒 B .增大物块与车面间的动摩擦因数,摩擦生热不变 C .若0 2.5m/s v =,则物块在车面上滑行的时间为0.24s D .若要保证物块不从小车右端滑出,则0v 不得大于5m/s 4.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高中物理磁场经典计算题训练 人教版

高中物理磁场经典计算题训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值? 3.在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q , 质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小. a b c d A C F D (a ) (b )

高中物理第16章《动量守恒定律》测试题

高中精品试题 《动量守恒定律》测试题 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100,考试时间60分钟。 第Ⅰ卷(选择题 共40分) 一、选择题(本题共10小题,每小题4分,共40分。在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分。) 1.某人站在静浮于水面的船上,从某时刻开始从船头走向船尾,不计水的阻力,那么在这段时间内人和船的运动情况是( ) A .人匀速走动,船则匀速后退,且两者的速度大小与它们的质量成反比 B .人匀加速走动,船则匀加速后退,且两者的加速度大小一定相等 C .不管人如何走动,在任意时刻两者的速度总是方向相反,大小与它们的质量成反比 D .人走到船尾不再走动,船则停下 解析:以人和船构成的系统为研究对象,其总动量守恒,设v 1、v 2分别为人和船的速 率,则有0=m 人v 1-M 船v 2,故有v 1v 2=M 船 m 人 可见A 、C 、D 正确。 人和船若匀加速运动,则有 F =m 人a 人,F =M 船a 船 所以a 人a 船=M 船 m 人 ,本题中m 人与M 船不一定相等,故B 选项错误。 答案:A 、C 、D 2.如图(十六)-1甲所示,在光滑水平面上的两个小球发生正碰。小球的质量分别为m 1和m 2。图(十六)-1乙为它们碰撞前后的x -t 图象。已知m 1=0.1 kg ,由此可以判断( ) 图(十六)-1 ①碰前m 2静止,m 1向右运动 ②碰后m 2和m 1都向右运动 ③由动量守恒可以算出m 2=0.3 kg ④碰撞过程中系统损失了0.4 J 的机械能 以上判断正确的是( ) A .①③ B .①②③ C .①②④ D .③④ 解析:由图象知,①正确,②错误;由动量守恒m 1v =m 1v 1+m 2v 2,将m 1=0.1 kg ,v =4 m/s ,v 1=-2 m/s ,v 2=2 m/s 代入可得m 2=0.3 kg ,③正确;ΔE =12 m 21-????12m 1v 21+12m 2v 22

物理解题技巧高中对称法

物理解题技巧高中对称法 物理解题技巧高中自然界和自然科学中,普遍存在着优美和谐的对称现象.对称性就是事物在变化时存在的某种不变性.物理中对称现象比比皆是,对称的结构、对称的作用、对称的电路、对称的物和像等等.一般情况下对称表现为研究对象在结构上的对称性、物理过程在时间上和空间上的对称性、物理量在分布上的对称性及作用效果的对称性等.利用对称性解题时有时能一眼看出答案,大大简化解题步骤.从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称性解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径. 静力学问题解题的思路和方法 确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 认识物体的平衡及平衡条件 对于质点而言,若该质点在力的作用下保持静止或匀速直线运

动,即加速度为零,则称为平衡,欲使质点平衡须有∑F=0。若将各力正交分解则有:∑FX=0,∑FY=0。 这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F=0可以引伸得出以下结论: 这三个力矢量组成封闭三角形。 任何两个力的合力必定与第三个力等值反向。 对物体受力的分析及步骤 明确研究对象 分析物体或结点受力的个数和方向,如果是连结体或重叠体,则用“隔离法” 作图时力较大的力线亦相应长些 每个力标出相应的符号(有力必有名),用英文字母表示 用正交分解法解题列动力学方程 受力不平衡时 一些物体的受力特征:轻杆或弹簧对物体可以有压力或者拉力。绳子或橡皮筋可受拉力不能受压力,同一绳放在光滑滑轮或光滑挂钩上,两侧绳子受力大小相等,当三段以上绳子在交点打结时,各段绳受力大小一般不相等。 受力分析步骤: 判断力的个数并作图:重力;接触力(弹力和摩擦力);场力(电场力、磁场力) 判断力的方向:

高考物理复习高中物理解题方法归类总结高中物理例题解析,原来还有这么巧妙的方法!

高考物理复习高中物理解题方法归类总结 (高中物理例题解析) 方法一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义

在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I 短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 3.挖掘交点的潜在含意

一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示. 从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A 站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽

高中物理计算题,中难附答案

动量计算题 1.(2012年广州调研)两个质量不同的物体,如果它们的 A .动能相等,则质量大的动量大 B .动能相等,则动量大小也相等 C .动量大小相等,则质量大的动能小 D .动量大小相等,则动能也相等 1.答案:AC 解析:由动能与动量的关系式p=2k mE 可知,动能相等,则质量大的动量大,选项A 正确B 错误;由动能与动量的关系式E k =p 2/2m 可知,动量大小相等,则质量大的动能小,选项C 正确D 错误。 2.(2012年重庆期末)如题21图所示,光滑圆形管道固定在竖直面内.直径略小 于管道内径可视为质点的小球A 、B 质量分别为m A 、m B ,A 球从管道最高处由静止开始沿管道下滑,与静止于管道最低处的B 球相碰,碰后A 、B 球均能刚好达到与管道圆心O 等高处,关于两小球质量 比值B A m m 的说法正确的是: A .B A m m =2+1 B .B A m m =2-1 C .B A m m =1 D . B A m m =2 2.答案:A 解析:A 球从管道最高处由静止开始沿管道下滑,由机械能守恒定律, m A g2R=2 1m A v 2,到最低点速度v=2R g ,A 球与B 球碰撞,动量守恒,m A v= m B v B +m A v A ;根据碰后A 、B 球均能刚好达到与管道圆心O 等高处,由机械能守恒定律,mgR=2 1mv 2,解得v B =v A =R 2g ,联立解得:B A m m =2+1,选项A 正确。 3.(2012年北京房山期末)如图所示,放在光滑水平面上的矩形滑块是由不同材 料的上下两层粘在一起组成的。质量为m 的子弹以速度v 水平射向滑块,若击中上层,则子弹刚好不穿出;如图a 若击中下层,则子弹嵌入其中,如图b,比较上述两种情况,以下说法中不正确... 的是 A .两次滑块对子弹的阻力一样大 B .两次子弹对滑块做功一样多 C .两次滑块受到的冲量一样大

高中物理动量测试题经典.doc

高中物理动量测试题 1.以下说法中正确的是: A.动量相等的物体,动能也相等; B.物体的动能不变,则动量也不变; C.某力F对物体不做功,则这个力的冲量就为零; D.物体所受到的合冲量为零时,其动量方向不可能变化. 2.一个笔帽竖立在桌面上平放的纸条上,要求把纸条从笔帽下抽出,如果缓慢拉动纸条笔帽必倒;若快速拉纸条,笔帽可能不倒。这是因为 A.缓慢拉动纸条时,笔帽受到冲量小; B.缓慢拉动纸条时,纸条对笔帽的水平作用力小; C.快速拉动纸条时,笔帽受到冲量小; D.快速拉动纸条时,纸条对笔帽的水平作用力小。 3.两辆质量相同的小车置于光滑的水平面上,有一个人静立在a车上。当此人从a车跳到b 车上,接着又跳回a车,则a车的速率: A.为0 ; B.等于b车速率; C.大于b车速率; D.小于b车速率。 4.恒力F作用在质量为m的物体上,如图18所示,由于地面对物体的 摩擦力较大,没有被拉动,则经时间t,下列说法正确的是 A.拉力F对物体的冲量大小为零 B.拉力F对物体的冲量大小为Ft 图18 C.拉力F对物体的冲量大小是Ft cosθ D.合力对物体的冲量大小为零 5.为了模拟宇宙大爆炸初的情境,科学家们使两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞,若要碰撞前的动能尽可能多地转化为内能,应该设法使两个重离子在碰撞前的瞬间具有 A.相同的速率; B.相同大小的动量; C.相同的动能; D.相同的质量。 6.在光滑水平面上,动能为E0、动量的大小为P0的小钢球1与静止小钢球2发生碰撞,碰撞 前后球1的运动方向相反。将碰撞后球1的动能和动量的大小分别记为E1、P1,球2的动能和动量的大小分别记为E2、P2,则不可能有: 精选

高中物理大题技巧

高考物理解答题规范化要求 物理计算题可以综合地考查学生的知识和能力,在高考物理试题中,计算题在物理部分中的所占的比分很大(60%),单题的分值也很高。一些考生考后感觉良好但考分并不理想,一个很重要的原因便是解题不规范导致失分过多。在高考的物理试卷上对论述计算题的解答有明确的要求:“解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位。”具体地说,物理计算题的解答过程和书写表达的规范化要求,主要体现在以下几个方面。 一、文字说明要清楚 必要的文字说明是指以下几方面内容: ①说明研究的对象 ①对字母、符号的说明。题中物理量有给定符号的,必须严格按题给符号表示,无需另设符号; 题中物理量没有给定符号的,应该按课本习惯写法(课本原始公式)形式来设定。 ②对物理关系的说明和判断。如在光滑水平面上的两个物体用弹簧相连,"在两物体速度相等时弹簧的弹性势能最大","在弹簧为原长时物体的速度有极大值。" ③说明研究对象、所处状态、所描述物理过程或物理情境要点,关健的条件作必要的分析判断。题目中的隐含条件,临界条件等。即说明某个方程是关于"谁"的,是关于"哪个状态或过程"的。 ④说明所列方程的依据及名称,规定的正方向、零势点及所建立的坐标系. 这是展示考生思维逻辑严密性的重要步骤。 ⑤选择物理规律的列式形式;按课本公式的“原始形式”书写。 ⑥诠释结论:说明计算结果中负号的物理意义,说明矢量的方向。 ⑦对于题目所求、所问的答复,说明结论或者结果。 文字说明防止两个倾向:①过于简略而显得不完整,缺乏逻辑性。②罗嗦,分不清必要与必不要。 答题时表述的详略原则是物理方面要祥,数学方面要略.书写方面,字迹要清楚,能单独辨认.题解要分行写出,方程要单列一行,绝不能连续写下去,切忌将方程、答案淹没在文字之中. 二、主干方程要突出(在高考评卷中,主干方程是得分的重点) 主干方程是指物理规律、公式或数学的三角函数、几何关系式等 (1) 主干方程式要有依据,一般表述为:依xx 物理规律得;由图几何关系得,根据……得等。 (2) 主干方程列式形式得当,字母、符号的书写规范,严格按课本“原始公式”的形式列式,不能以变形的结果式代替方程式;(这是相当多考生所忽视的). 要全部用字母符号表示方程,不能字母、符号和数据混合,不要方程套方程;要用原始方程组联立求解,不要用连等式 如:带电粒子在磁场的运动应有R v m qvB 2 =,而不是其变形结果qB m v R =. (3) 列方程时,物理量的符号要用题目中所给符号,不能自己另用字母符号表示, 若题目中没有给定物理量符号,应该先设定,设定也有要求(按课本形式设定), 如:U 表示两点间的电压,?表示某点的电势,E 表示电动势,ε表示电势能 (4) 主干方程单独占一行,按首行格式放置;式子要编号,号码要对齐。 (5) 对所列方程式(组)进行文字(符号)运算,推导出最简形式的计算式,不是关键环节不计算结果。 具体推导过程只在草稿纸上演算而不必写在卷面上。如果题目有具体的数值运算,则只在最简形式的计算式中代入数值算出最后结果,切忌分步进行代数运算。 (6) 要用原始公式联立求解,分步列式,并用式别标明。不要用连等式,不断地用等号连等下去。 因为这样往往因某一步的计算错误会导致整个等式不成立而失分。 三、书写布局要规范 (1) 文字说明的字体要书写公整、版面布局合理整齐、段落清晰、美观整洁。详略得当、言简意赅、逻辑

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

高中物理选修计算题

(2009年高考宁夏理综卷) 34. [物理——选修3-3](15分) (2)(10分)图中系统由左右连个侧壁绝热、底部、截面均为S的容器组成。左容器足够高,上端敞 开,右容器上端由导热材料封闭。两个容器的下端由可忽略容积的细管连通。 容器内两个绝热的活塞A、B下方封有氮气,B上方封有氢气。大气的压强p0,温度为T0=273K,连个活塞因自身重量对下方气体产生的附加压强均为0.1 p0。系统平衡时,各气体柱的高度如图所示。现将系统的底部浸入恒温热水槽中,再次平衡时A上升了一定的高度。用外力将A缓慢推回第一次平衡时的位置并固定,第三次达到平衡后,氢气柱高度为0.8h。氮气和氢气均可视为理想气体。求 (i)第二次平衡时氮气的体积; (ii)水的温度。 6.(2012全国新课标).[物理——选修3-3](15分) (1)(6分)关于热力学定律,下列说法正确的是_________ (填入正确选项前的字母,选对1个给3分,选对2个给4分,选对3个给6分,每选错1个扣3分,最低得分为0分)。 A.为了增加物体的内能,必须对物体做功或向它传递热量 B.对某物体做功,必定会使该物体的内能增加 C.可以从单一热源吸收热量,使之完全变为功 D.不可能使热量从低温物体传向高温物体 E.功转变为热的实际宏观过程是不可逆过程 (2)(9分)如图,由U形管和细管连接的玻璃泡A、B和C浸泡在温度均为0°C的水槽中,B的容积是A的3倍。阀门S将A和B两部分隔开。A内为真空,B和C内都充有气体。U形管内左边水银柱比右边的低60mm。打开阀门S,整个系统稳定后,U形管内左右水银柱高度相等。假设U形管和细管中的气体体积远小于玻璃泡的容积。 (i)求玻璃泡C中气体的压强(以mmHg为单位) (ii)将右侧水槽的水从0°C加热到一定温度时,U形管内左右水银柱高度差又为60mm,求加热后右侧水槽的水温。15、(2013年海南物理)如图,一带有活塞的气缸通过底部的水平细管与一个上端开口的竖直管相连,气缸与竖直管的横截面面积之比为3:1,初始时,该装置的底部盛有水银;活塞与水银面之间有一定量的气体,气柱高度为l(以cm为单位);竖直管内的水银面比气缸内的水银面高出3l/8。现使活塞缓慢向上移动11l/32,这时气缸和竖直管内的水银面位于同一水平面上,求初始时气缸内气体的压强(以cmHg 为单位) 16、(2013年新课标Ⅰ卷) 如图,两个侧壁绝热、顶部和底部都导热的相同气缸直立放置,气缸底部和顶部均有细管连通,顶部的细管带有阀门K.两气缸的容积均为V0气缸中各有一个绝热活塞(质量不同,厚度可忽略)。开始时K关闭,两活塞下方和右活塞上方充有气体(可视为理想气体),压强分别为P o和P o/3;左活塞在气缸正中间,其上方为真空; 右活塞上方气体体积为V0/4。现使气缸底与一恒温热源接触,平衡后左活塞升至气缸顶部,且与顶部刚好没有接触;然后打开K,经过一段时间,重新达到平衡。已知外界温度为T0,不计活塞与气缸壁间的摩擦。求: (i) 恒温热源的温度T; (ii) 重新达到平衡后左气缸中活塞上方气体的体积V x。 17、(2013年新课标Ⅱ卷)如图,一上端开口、下端封闭的细长玻璃管竖直放置。玻璃管的下部封有长l1=25.0cm的空气柱,中间有一段长为l2=25.0cm的水银柱,上部空气柱的长度l3=40.0cm。已知大气压强为P0=75.0cmHg。现将一活塞(图中未画出)从玻璃管开口处缓缓往下推,使管下部空气柱长度变为l1’=20.0cm。假设活塞下推过程中没有漏气,求活塞下推的距离。 3l/8 l

高二物理动量单元测试题 新课标 人教版

高二物理动量单元测试题 一、选择题 1.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的a块的速度方向仍沿原来的方向,则 [ ] A.b的速度方向一定与原速度方向相反 B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大 C.a、b一定同时到达水平地面 D.在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等 2.质量为1.0kg的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为5.0m,小球与软垫接触的时间为1.0s,在接触时间内小球受到合力的冲量大小为(空气阻力不计,g取10m/s2) [ ] A.10N·s B.20N·s C.30N·s D.40N·s 3.质量为M的小车中挂有一单摆,摆球质量为m ,小车(和单摆)以恒定的速度 v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪个或哪些说法是可能发生的? [ ] 4.竖直上抛一质量为m的小球,经t秒小球重新回到抛出点,若取向上为正方向,那么小球的动量变化为 [ ] A.-mgt B。mgt C。0 D。-mgt/2 5.质量为m的物体做竖直上抛运动,从开始抛出到落回抛出点用时间为t,空

气阻力大小恒为f。规定向下为正方向,在这过程中物体动量的变化量为 [ ] A.(mg+f)t B.mgt C.(mg-f)t D.以上结果全不对 6.质量为m的物体,在受到与运动方向一致的外力F的作用下,经过时间t 后物体的动量由mv 1增大到mv 2 ,若力和作用时间改为,都由mv 1 开始,下面说法中 正确的是 [ ] A.在力2F作用下,经过2t时间,动量增到4mv 2 B.在力2F作用下,经过2t时间,动量增到4mv 1 C.在力F作用下,经过2t时间,动量增到2(mv 2-mv 1 ) D.在力F作用下,经过2t时间,动量增到2mv 2 7.一质量为m的小球,从高为H的地方自由落下,与水平地面碰撞后向上弹起。设碰撞时间为t并为定值,则在碰撞过程中,小球对地面的平均冲力与跳起高度的关系是 [ ] A.跳起的最大高度h越大,平均冲力就越大 B.跳起的最大高度h越大,平均冲力就越小 C.平均冲力的大小与跳起的最大高度h无关 D.若跳起的最大高度h一定,则平均冲力与小球质量正比

高中物理解题方法整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两 环再次 A O B P Q

(新)高一物理-运动学计算题

人教版高一物理必修1运动学计算题测试 1、一辆汽车以90km/h的速率在学校区行驶。当这辆违章超速行驶的汽车经过警车时,警车立即从静止开始以2.5m/s2的加速度匀加速度追去。 ⑴警车出发多长时间后两车相距最远? ⑵警车何时能截获超速车? ⑶警车截获超速车时,警车的速率为多大?位移多大? 2、如图所示,公路上一辆汽车以v1=10 m/s的速度匀速行驶,汽车行至A点时,一人为搭车,从距公路30 m的C 处开始以v2=3 m/s的速度正对公路匀速跑去,司机见状途中刹车,汽车做匀减速运动,结果车和人同时到达B点,已知AB=80 m,问:汽车在距A点多远处开始刹车?刹车后汽车的加速度有多大? 3、一辆汽车从A点由静止出发做匀加速直线运动,用t=4s的时间通过一座长x=24m的平桥BC,过桥后的速度是 v c=9m/s.求: (1)它刚开上桥头时的速度v B有多大? (2)桥头与出发点相距多远? 4、一辆汽车以72km/h的速度匀速行驶,现因故障紧急刹车并最终停止运动.已知汽车刹车过程加速度的大小为5m/s2,试求: (1)从开始刹车经过3s时的瞬时速度是多少? (2)从开始刹车经过30m所用的时间是多少? (3)从开始刹车经过5s,汽车通过的距离是多少? 5、汽车刹车前以5m/s的速度做匀速直线运动,刹车获得加速度大小为0.4m/s2,求: (1)汽车刹车开始后10s末的速度; (2)汽车刹车开始后20s内滑行的距离;

6、A、B两车在同一直线上运动,A在后,B在前。当它们相距x0=8 m时,A在水平拉力和摩擦力的作用下,正以v A= 8 m/s的速度向右做匀速运动,而物体B此时速度v B=10m/s向右,它在摩擦力作用下以a = -2 m/s2做匀减速运动,求: (1)A未追上B之前,两车的最远距离为多少? (2)经过多长时间A追上B? (3)若v A=3m/s,其他条件不变,求经过多长时间A追上B? 7、如图所示,A、B两个物体相距7 m时,A在水平拉力和摩擦力的作用下,以v A=4 m/s向右做匀速直线运动,而物体B此时的速度是v B=10 m/s,方向向右,它在摩擦力作用下做匀减速直线运动,加速度大小是2 m/s2,从图示位置开始计时,经过多少时间A追上B? 8、物体在斜坡顶端以1 m/s的初速度和0.5 m/s2的加速度沿斜坡向下作匀加速直线运动,已知斜坡长24米,求:(1) 物体滑到斜坡底端所用的时间。(2) 物体到达斜坡中点速度。 9、汽车前方120m有一自行车正以6m/s的速度匀速前进,汽车以18m/s的速度追赶自行车,若两车在同一条公路不同车道上作同方向的直线运动,求: (1)经多长时间,两车第一次相遇? (2)若汽车追上自行车后立即刹车,汽车刹车过程中的加速度大小为2m/s2,则再经多长时间两车第二次相遇?10、A、B两列火车,在同一轨道上同向行驶,A车在前,其速度,B车在后,其速度, 因大雾能见度低,B车在距A车时才发现前方有A车,这时B车立即刹车,但B车要经过180才能停止,问:B车刹车时A车仍按原速率行驶,两车是否会相撞?若会相撞,将在B车刹车后何时相撞?若不会相撞,则两车最近距离是多少? 11、如图所示,一小物块从静止沿斜面以恒定的加速度下滑,依次通过A,B,C三点,已知AB=12 m,AC=32 m,小球通过AB,BC所用的时间均为2 s,求: (1)小物块下滑时的加速度? (2)小物块通过A,B,C三点时的速度分别是多少?

相关文档
相关文档 最新文档