文档视界 最新最全的文档下载
当前位置:文档视界 › 不连续双斜向内肋管换热器换热性能研究

不连续双斜向内肋管换热器换热性能研究

不连续双斜向内肋管换热器换热性能研究
不连续双斜向内肋管换热器换热性能研究

纯凝结段盘管式换热器热力水力计算

纯凝结段换热器热力水力计算 (盘管式) 一.原始数据 给水压力w P (MPa ) 给水流量G (s kg /) 给水进口焓1h (kg kJ /)或给水进口温度1t (℃) 给水出口焓2h (kg kJ /)或给水出口温度2t (℃) 蒸汽压力s P (MPa )或蒸汽饱和温度s T (℃) 蒸汽进口焓1H (kg kJ /) 蒸汽温度1T (℃) 疏水出口焓2H (kg kJ /) 二.选用数据 1.管子直径i o d d /(m m /) 螺旋管式高加常取略大的管径,约φ18~32mm ,壁厚2.5~5mm 左右。腰圆管的壁厚最薄至2.5mm ,实践表明2mm 壁厚者寿命不长。 螺旋形以及腰圆形等的管子,当壁厚在2.5~3mm 以上时,可以拼焊,但须注意拼接质量。 2.管内水速w (s m /) N d G w i 2 4 πυ = 在额定满负荷运行工况下,流经管内的给水流速按平均温度不超过下列数值,平均温度可按进口和出口温度的算术平均值或按热力计算的数据取用: 不锈钢、蒙乃尔合金(monel )、因科镍(inconel )管子为3s m / 铜镍合金(70-30,80-20,90-10)管子为2.7s m / 碳钢管子为2.4s m / 在平均温度下的额定满负荷工况下的碳钢管和铜管的合适给水速度推荐 为1.85s m /,或在1.85~2s m /之间,不得已时可略超过2s m /,但不应超过2s m /;螺旋管式高压加热器的碳钢螺旋管内给水速度推荐为2s m / 三.计算 1.传热量Q (W )

()31210?-=h h G Q 2.核算蒸汽量D (s kg /) ()98 .0103 21??-= H H Q D 3.对数平均温差m t ?(℃) 2 11 2t T t T In t t t s s m ---= ? 4.给水平均温度f t (℃) m s f t T t ?-= 5.汽侧壁温w t (℃) m s w t T t ?-=4.0 6.汽液膜平均温度M t (℃) ()w s M t T t +=2 1 7.系数B ,查表 8.汽化潜热r (kg kJ /) 根据s P 查汽水性质表 9.换热管数量N (根) w d G N i 24 υ =

热管换热器的性能比较

热管换热器的性能比较 发布时间:2011-3-25 随着我国经济实力的增长和人民物质文化生活水平的不断提高;高层建筑的迅速发展,高气密化、高隔热化影响到人们的工作和生活环境,人们对室内空气品质的要求也越来越高,都渴望拥有一个健康、舒适的室内环境,特别是经历了SARS的袭击,人们越来越注重室内空气品质,对引进室外新风换气提出了更高的要求,但是换气必然会带来能量的损失,引入新风需要消耗更多的能量,因此需要考虑一种有效的节能方法,通过热回收装置使新风和排风进行热交换。热交换器是空气调节和余热回收的关键装置。 一、各类热交换器的性能与利用分析 目前的热交换器有显热和全热回收两种形式。不同形式的性能、效率和利用方式,设备费的高低、维护保养的难易也各不相同,它们的综合比较如下表所示: 热回收方式 效 率设 备 费 维护 保养 辅 助 设 备 占 用 空 间 交 叉 污 染 自 身 耗 能 接 管 灵 活 抗冻 能力使用 寿命 转轮换热器高高中无大有有差差中 热管换热器较 高中易无中无无中好优 板式显热换热器低低中无大有无差中良 板翅式全热换热 器较 高 中中无大有无差中中 中间热媒式低低中有中无多好中良下面介绍几种常用的热交换器。 1. 转轮式全热换热器 转轮式换热器的表面为蜂窝状,涂上一层吸附材料作干燥剂。将转轮置于风道之间,使其分成两部分。来自空调房间的排风从一侧排出,室外空气以相反的方向从另一侧进入。为加大换热面积,轮子缓慢旋转(10~12转/分)。轮子的一半从较热空气中吸收存储热量,旋转到另一侧时,释放热量,使热量发生转移。附着表面的干燥剂将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收,旋转到另一侧时,将湿气释放到低湿度的气流里,这个过程将潜热转移。 换热器旋转体的两侧设有隔板,使新风与排风逆向流动。转轮芯片用特殊的纸或铝箔制成,其表面涂上吸湿性涂层,形成热、湿交换的载体,它以10-12r/min的速度旋转,先把排风中的冷热量收集在蓄热体(转轮芯)里,然后传递给新风,空气以2.5-3.5m/s的流速通过蓄热体,靠新风与排风的温差和蒸汽分压差来进行热湿交换。所以,既能回收显热,又能回收潜热。 1) 转轮换热器的功能与适用范围 功能适用范围

换热器性能综合测试实验

第一章实验装置说明 第一节系统概述 一、装置概述 目前我国传热元件的结构形式繁多,其换热性能差异较大,在合理选用和设计换热器的过程中,传热系数是度量其性能好坏的重要指标。本装置通过以应用较为广泛的间壁式换热器(共有套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器四种)为实验对象,对其传热性能进行测试。。 二、系统特点 1.采用四种不同结构的换热器(分别为套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器)作为实验对象,对其进行性能测量。 2.实验装置可测定换热器总的传热系数、对数传热温差和热平衡误差等,并能根据不同的换热器对传热情况和性能进行比较分析。 3.实验装置采用工业现场的真实换热器部件,与实际应用接轨。 三、技术性能 1.输入电源:三相五线制 AC380V±10% 50Hz 2.工作环境:温度-10℃~+40℃;相对湿度<85%(25℃);海拔<4000m 3.装置容量:<4kVA 4.套管式换热器:换热面积0.14m2 5.螺旋板式换换热器:换热面积1m2 6.列管式换热器:换热面积0.5m2 7.钎焊板式换热器:0.144m2 8.电加热器总功率:<3.5kW 9.安全保护:设有电流型漏电保护、接地保护,安全符合国家标准。 四、系统配置 1.被控对象系统:主要由不锈钢钢架、热水箱、热水泵、冷水箱、冷水泵、涡轮流量计、PT100温度传感器、板式换热器、列管式换热器、套管式换热器、螺旋板式换热器、冷凝器、电加热棒、电磁阀、电动球阀、黄铜闸阀以及管道管件等。 2.控制系统:主要由电源控制箱、漏电保护器、温度控制仪、流量显示仪、调压模块、开关电源以及开关指示灯等。 第二节换热器的认识 一、换热器的形式 能使热流体向冷流体传递热量,满足工艺要求的装置称为换热器。换热器的形式有很多,

热管及热管式换热器的研究

热管及热管式换热器的研究 天津裕能环保科技有限公司李兴 能源是发展国民经济的重要物质基础,是人类赖以生存的必要条件,能源的开发和利用程度直接影响着国民经济的发展和人民物质文化生活水平的提高,余热回收是合理利用能源、节约能源、提高能源利用率等方面不可忽视的问题。热管是一种具有高效传热性能的元件,它可利用很小的截面积远距离传输大量热量而无需外加动力。热管式换热器具有输热能力大、均温性能优良、传热方向可逆、热流密度可变、适应环境能力较强、阻力损失较小等优点,所以热管式换热器能较大限度的回收利用低品位余热。 1热管及热管式换热器的发展 1.1热管工作原理及特点 热管是依靠自身内部工作液体相变来实现传热的元件,一般由管壳、吸液芯、工质组成,管壳通常由金属制成,两端焊有端盖,管壳内壁装有一层由多孔性物质构成的管芯(若为重力式热管则无管芯),管内抽真空后注入某种工质,然后密封。热管可分为蒸发段、绝热段和冷凝段三个部分,当热源在蒸发段对其供热时,工质自热源吸热汽化变为蒸汽,蒸汽在压差的作用下沿中间通道高速流向另一端,蒸汽在冷凝段向冷源放出潜热后冷凝成液体;工质在蒸发段蒸发时,其气液交界面下凹,形成许多弯月形液面,产生毛细压力,液态工质在管芯毛细压力和重力等的回流动力作用下又返回蒸发段,继续吸热蒸发,如此循环往复,工质的蒸发和冷凝便把热量不断地从热端传递到冷端。 由于热管是利用工质的相变换热来传递热量,因此热管具有很大的传热能力和传热效率。另外,热管还具有优良的等温性、热流密度可变性、热流方向的可逆性、热二极管与热开关性、恒温特性以及对环境的广泛适应性等一

系列优点。 1.2热管分类 热管按其工作温度可分为:低温、中温及高温热管,选用热管时必须根据热管的工作温度来选用管内的工质。低温热管的工质有丙酮、氨、氟里昂等;中温热管的常用工质有:水、萘等,水的工作温度为90~250oC,萘的工作温度为280~400℃;高温热管的常用工质有:钠、钾等液态金属,工作温度一般在450℃以上。热管按工质回流的动力可分为:吸液芯热管、重力热管或两相闭式热虹吸管、重力辅助热管、旋转式热管、分离型热管、电流体动力学热管、电渗透热管等。根据热管翅片与管壳的连接方式可分为:串片式热管、镍铬合金钎焊热管、高频绕焊热管 3种形式 1.3热管式换热器结构及分类 由于单根热管传热量有限,于是把单根热管集中起来,形成一束置于冷、热源之间,使热源中的热量通过热管束源源不断地传至冷源,这就是热管式换热器。热管式换热器中的热管元件可以呈错列三角形排列,也可以呈顺列矩形排列。热管式换热器由热管、箱体和中间隔板组成,隔板将箱体分为两部分,形成冷、热介质的流道,隔板保证两侧流体互不混淆,热管横穿隔板,一端与热流体接触,一端与冷流体接触,冷热两端可按需加装翅片以增大传热面积。热管式换热器的基本结构。 热管式换热器按照流体的不同种类可分为:气一气型热管式换热器,气一液型热管式换热器,液一液型热管式换热器;按照热管式换热器的结构型式可分为:整体式、分离式、回转式和组合式。 1.4热管式换热器的特性

换热器综合实验报告

实验四换热器综合实验报告 一、实验原理 换热器为冷热流体进行热量交换的设备。本次实验所用的均是间壁式换热器,热量通过 固体壁面由热流体传递给冷流体,包括:套管式换热器、板式换热器和管壳式换热器。针对上述三种换热器进行其性能的测试。其中,对套管式换热器、板式换热器和管壳式换热器可以进行顺流和逆流两种方式的性能测试。换热器性能实验的内容主要为测定换热器的总传热系数,对数传热温差和热平衡温度等,并就不同换热器,不同两种流动方式,不同工况的传热情况和性能进行比较和分析。 传热过程中传递的热量正比于冷、热流体间的温差及传热面积,即Q = KAΔT (1) 式中:A—传热面积,m2 (1)套管式换热器:0.45m2 (2)板式换热器:0.65m2 (3)管壳式换热器:1.05m2 电加热器:6kV ΔT—冷热流体间的平均温差,℃ K—换热器的传热系数,W/(m·℃) Q—冷热流体间单位时间交换的热量,W.冷热流体间的平均温差ΔT 常采用对数平均温差。对于工业上常用的顺流和逆流换热器,对数平均温差由下式计算 除了顺流和逆流按公式(2)计算平均温差以外,其他流动形式的对数平均温差,都可 以由假想的逆流工况对数平均温差乘上一个修正系数得到。修正系数的值可以由各种传热学书上或换热器手册上查得。 换热器实验的主要任务是测定传热系数K。实验时,由恒温热水箱中出来的热水经水泵

和转子流量计后进入实验换热器内管。在热水进出换热器处分别用热电阻测量水温。从换热 器内管出来的已被冷却的热水仍然回到热水箱中,经再加热供循环使用。冷却水由冷水箱经 水泵、转子流量计后进入换热器套管,在套管中被加热后的冷却水排向外界,一般不再循环 使用。套管外包有保温层,以尽量减少向外界的散热损失。冷却水进出口温度用热电阻测量。 通常希望冷热侧热平衡误差小于3%。 实验中待各项温度达到稳定工况时,测出冷、热流体进出口的温度和冷、热流体的流量, 就可以由下式计算通过换热面的总传热量 根据计算得到的传热量、对数平均温差及已知的换热面积,便可由公式(1)计算出传热系数K 。 换热器类型 方式 热进温度 热出温度 冷进温度 冷出温度 热流体流量 冷流体流量 板式 顺流 57.1 43.5 22.8 31.8 78 72 逆流 56.5 35.9 23.1 33.1 76 72 套管式 顺流 57.6 40.7 22.5 31.6 72 78 逆流 56.8 35.2 22.1 33 72 64 管壳式 顺流 57.1 40.5 22.5 31.3 76 72 逆流 57.2 41.1 22.6 32 74 65 计算传热系数K 和换热器效率 TA Q K ?=

盘管换热器相关计算

共享知识分享快乐 一、铜盘管换热器相关计算 条件:600kg水6小时升温30℃?单位时间内换热器的放热量为q q=GCΔT=600*4.2*10^3*30/(6*3600)= 3500 w 盘管内流速1m/s,管内径为0.007m,0.01m, 盘管内水换热情况: Re=10^4~1.2*10^5 湍流范围:物性参数: 40℃饱和水参数。 黏度—653.3*10^-6 运动黏度—0.659 *10^-6 普朗特数—4.31 导热系数—63.5*10^2 w/(m. ) ℃ 求解过程: 盘管内平均水温40℃为定性温度时 换热铜管的外径,分别取d1=0.014m d2=0.02m 努谢尔特准则为 0.80.40.80.4Pr023Re*0.2Nu?1.=143.4 (d1)=1.2*0.023*21244.31 4.31fff0.40.80.40.8Pr023Re*0.?Nu1.2 d2)=1.2*0.023*30349.014.31(=190.7 fff 管内对流换热系数为??Nu ff?h)d1 (=143.4*0.635/0.014=6503.39 i l??Nu ff h?)(d2 =190.7*0.635/0.02=6055.63 i l管外对流换热系数 格拉晓夫数准则为(Δt=10) 3232??/?tdGr?g)(=9.8*3.86*10^-4*10*.016=356781.6 /(0.659*10^-6)d13232??/Gr?g?td) (=9.8*3.86*10^-4*10*.022/(0.659*10^-6)d2=927492.9 其中g=9.8 N/kg ?为水的膨胀系数为386*10^-6 1/K 页眉内容. 共享知识分享快乐 自然对流换热均为层流换热(层流范围:Gr=10^4~5.76*10^8) 0.253???t?lg??w0.25Pr??Nu0.525d1)=18.48755 (=0.525(356781.6*4.31)?? w2???0.253???t?lg??w0.25Nu525Pr??0.)(d2=23.47504 =0.525(927492.9*4.31) ??w2???其中Pr普朗特数为4.31 对流换热系数为 ?Nu m??)(d1 =18.48755*0.635/0.014=838.5422 d?Nu m??)

热管、转轮、板式换热器热回收的比较

热管、转轮、板式换热器热回收的比较 随着我国经济实力的增长和人民物质文化生活水平的不断提高;高层建筑的迅速发展,高气密化、高隔热化影响到人们的工作和生活环境,人们对室内空气品质的要求也越来越高,都渴望拥有一个健康、舒适的室内环境,特别是经历了SARS的袭击,人们越来越注重室内空气品质,对引进室外新风换气提出了更高的要求,但是换气必然会带来能量的损失,引入新风需要消耗更多的能量,因此需要考虑一种有效的节能方法,通过热回收装置使新风和排风进行热交换。热交换器是空气调节和余热回收的关键装置。 一、各类热交换器的性能与利用分析 目前的热交换器有显热和全热回收两种形式。不同形式的性能、效率和利用方式,设备费的高低、维护保养的难易也各不相同,它们的综合比较如下表所示: 下面介绍几种常用的热交换器。 1. 转轮式全热换热器 转轮式换热器的表面为蜂窝状,涂上一层吸附材料作干燥剂。将转轮置于风道之间,使其分成两部分。来自空调房间的排风从一侧排出,室外空气以相反的方向从另一侧进入。为加大换热面积,轮子缓慢旋转(10~12转/分)。轮子的一半从较热空气中吸收存储热量,旋转到另一侧时,释放热量,使热量发生转移。附着表面的干燥剂将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收,旋转到另一侧时,将湿气释放到低湿度的气流里,这个过程将潜热转移。

换热器旋转体的两侧设有隔板,使新风与排风逆向流动。转轮芯片用特殊的纸或铝箔制成,其表面涂上吸湿性涂层,形成热、湿交换的载体,它以10-12r/min 的速度旋转,先把排风中的冷热量收集在蓄热体(转轮芯)里,然后传递给新风,空气以2.5-3.5m/s的流速通过蓄热体,靠新风与排风的温差和蒸汽分压差来进行热湿交换。所以,既能回收显热,又能回收潜热。 1)转轮换热器的功能与适用范围 2)转轮换热器的主要优缺点: 3) 影响转轮换热器效率的因素: a. 空气流速:空气流过转轮时的迎风面流速越大,效率越低,反之效率则高,推荐风速2~4m/s。 b. 转轮两侧气流入口处,需要加装空气过滤器。 c. 设计时,必须计算校核转轮上是否会出现结霜、结冰现象;必要时应在新风管上设空气预热器,或在热回收器后设温度自控装置,当温度达霜点,就发出信号关闭新风阀门或开启预热器。

盘管与夹套式热交换器

iani盘管与夹套式热交换器 一、实验目的 测定盘管式与夹套式热交换器的热总传系数。 二、实验原理 化学工厂常见的反应器、调料桶等都需要配备加热(或冷却)及搅拌装置,以便有效控制器内物料的温度,一般均以夹套或盘管式热交换器来达成目的。夹套与盘管可同时共有,也可单独装设,依实际需要而定。 (一)盘管式热交换器 盘管式热交换器包括一个圆柱形容器,在容器内可以装设机械搅拌,以便加强热传效果,其盘管则由铜管、钢管或其他合金管均匀地盘绕而成,使获得较大的传热面积。若以盘管盘绕方式来区分,则可分为平板盘管式(Plate coil)热交换器(图一)及螺旋盘管式(Helical coil)热交换器(图二)两种。平板管水平置于容器底部,藉由自然对流的方式传递热量,螺旋管则装在垂直圆柱容器内,两者皆可加装搅拌器,以提高热传效率。 图一平板盘管热交换器(a)侧视图(b)为不同盘绕方式的俯视图

图二 附挡板螺旋盘管式热交换器及其几何形状的建议值比率 盘管式热交换器具有如下的优点: (1)流体具有离心力,而增加传热效果。 (2)型态简单,有安定的流动,适于黏性流体的热交换。 (3)积垢性小,易清理。 (4)适于流量小或低比热的流体。 (5)安装容易,坚固耐用。 但它亦受以下的限制: (1)整体结构小,管的整修、接合比较困难。 (2)管外虽可用机械方式清理,但管内一定要以化学方式 处理。 以下各种热传系数经验式的介绍,皆以螺旋盘管式热交换器为例: 1.稳定状态下的传热 (1)总传热系数 如图三所示,若所供应热源为热水加热流体,当系统达稳定状态后,则热水所供应的热量为 ()hb ha h h h T T Cp m q -= (1) 冷水吸收热量为:

液-液换热器传热性能测试与计算方法( )

Q/SH1020 中国石化集团胜利石油管理局企业标准 Q/SH1020 ××××-×××× 液—液换热器传热性能测试 与计算方法 2005-××-××发布 2005-××-××实施中国石化集团胜利石油管理局发布

Q/SH1020××××-×××× 目次 前言 1 范围 (1) 2 规范性引用文件 (1) 3 总则 (1) 4 术语和定义 (1) 5 测试 (1) 6 换热器热负荷和传热性能指标计算 (2) 7 测试报告主要内容 (4) 附录A(资料性附录)测试计算数据综合表 (5) 附录B(资料性附录)测试数据汇总表 (6) 附录C(提示性附录)符号 (6) I

Q/SH1020××××-×××× 前言 本标准的附录A、附录B为资料性附录,附录C为提示性附录。 本标准由胜利石油管理局节能专业标准化委员会提出并归口。 本标准由中国石化集团胜利石油管理局批准。 本标准起草单位:中国石化胜利油田有限公司技术检测中心能源监测站。 本标准主要起草人:许涛、宋鑫、王强、王贵生、周长敬、李忠东、邓寿禄、冯国栋、郑召梅。 II

液-液换热器传热性能测试与计算方法 1 范围 本标准规定了液-液换热器传热性能的测试方法、技术要求、测试用仪器仪表、计算方法及测试报告主要内容。 本标准适用于液-液换热器(以下简称换热器)。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方,研究是否可使用这些文件的最新版本。 GB 151-1999 管壳式换热器 GB16409-1996 板式换热器 3 总则 3.1 换热器传热性能测试体系是由被测试换热器、冷热流体循环系统及测试仪表组成。 3.2 换热器型号表示方法符合GB 151-1999中3.10和GB16409-1996中3.5的规定。 3.3 换热器传热性能测试分级:一级测试为鉴定新投产换热器的测试,二级测试为换热器运行中的测试。 4 术语和定义 下列术语和定义适用于本标准。 4.1 液-液换热器 指水-水、水-油、油-油等以液体与液体之间进行热交换的换热器。 4.2 换热器一次侧 指热量的提供侧,即高温介质端。 4.3 换热器二次侧 指热量的接收侧,即低温介质端。 4.4 换热器传热性能指标 4.4.1 对数平均温差 指冷热流体平均温差的表示,表征换热器传热的动力。 4.4.2 传热效率 指实际传热量与最大理论传热量之比值。 4.4.3 传热面积 指从放热介质中吸收热量并传递给受热介质的表面积。 4.4.4 传热系数 指单位传热面积上,冷热流体的平均温差为1℃时,两流体通过换热器所传递的热量。 4.5 额定热负荷 指换热器使用设计的介质流体,在设计参数下运行,即在规定的介质流量、温差和一定的传热效率下连续运行时,单位时间的传热量。 4.6 运行热负荷 指在换热器连续运行工况下,单位时间的传热量。 4.7 热平衡相对误差 指一次侧热负荷与二次侧热负荷之差值与一次侧热负荷之比。 4.8 传热系数误差 指在额定热负荷工况下测试两次所得的传热系数,两值之差与其中较大的传热系数之比。 5 测试 5.1 测试技术要求 1

换热器性能试验大纲

换热能力验证 1、试验目的 验证换热器的换热性能流体阻力特性。 2、实验依据 JB/T 10379-2002 换热器热工性能和流体阻力特性通用测定方法。 3、试验单位资质 ISO17025 4、实验条件 4.1试验地点 4.2 试验对象 4.3 实验设备 序号名称数 量型号测试厂家鉴定单位合格证 到期日期 1 涡轮流量传 感器 1 LWGY-40 2 压力传感器 1 DW115DP0-500Kpa 3 水银温度计 2 50-100 4 温度传感器 6 PT100 5 风速仪 1 VT100 6 压力传感器 1 475-0 MARK III 4.4状态要求 乙二醇溶液额定流量15 l/min 冷风额定流量0,475 m3/s 乙二醇溶液配比48/52%(体积比)

4.5环境要求 测试环境温度为20 .....+45 ℃左右 5、试验步骤 5.1 换热量测试—变冷介质流量(在100%通风面积和90%通风面积两种条件下分别测试) 5.1.1 将换热器按照JB/T 10379-2002 图2安装到测试台上。 5.1.2 冷介质进口温度为环境温度a℃ 5.1.3 热介质进口温度为a+20℃。 5.1.4 调节热介质在15 l/min 5.1.5 将冷却介质(冷却风)分别调节到0.5m3/s,0.9m3/s,1.3m3/s,1.76m3/s,2.2m3/s, 2.64m3/s, 5.1.6 按照JB/T10379-2002 记录各项测试参数值。 5.1.7 计算换热量 冷介质热流量 热介质热流量 平均换热量 热平衡误差 5.2 换热量测试-变热介质流量

5.2.1 将换热器按照JB/T10379-2002 要求安装到测试台上。 5.2.2 冷介质进口温度为环境温度a ℃ 5.2.3 热介质进口温度为a+20℃ 5.2.4 按照下表调节冷热测流量 5.2.5 按照JB/T10379-2002 记录各项测试参数值 5.2.6 计算换热量 冷介质热流量 热介质热流量 平均换热量 热平衡相对误差 5.3 风侧阻力曲线 5.3.1 换热面积100% 5.3.1.1 将换热器按照JB/T10379-2002 图2要求安装到测试台上 5.3.1.2 冷风测试温度:环境温度20-45℃ 5.3.1.3 控制热介质(乙二醇溶液)在15 l/min 5.3.1.4 控制热介质(乙二醇溶液进口温度为75℃,进出口平均温度72℃。 5.3.1.5 冷风变化范围0.15m3/s-0.6 m3/s(0.15,0.25,35,0.475,0.6) 5.3.1.6 记录不同介质流量下对应的压降 5.3.2 换热面积90% 5.3.2.1 将换热器按照JB/T10379-2002 图2要求安装到测试台上 5.3.2.2 冷风测试温度:环境温度20-45℃ 5.3.2.3 控制热介质(乙二醇溶液)在15 l/min 5.3.2.4 控制热介质(乙二醇溶液进口温度为75℃,进出口平均温度72℃。 5.3.2.5 冷风变化范围0.5m3/s-2.64 m3/s(0.5,0.9,01.3,1.76,2.2,2.64) 5.3.2.6 记录不同介质流量下对应的压降 5.4 热侧(乙二醇溶液)阻力曲线 5.4.1将换热器按照JB/T10379-2002 图2要求安装到测试台上

盘管换热器相关计算精编版

一、铜盘管换热器相关计算 条件:600kg 水 6小时升温30℃ 单位时间内换热器的放热量为q q=GC ΔT=600*4.2*10^3*30/(6*3600)= 3500 w 盘管内流速1m/s ,管内径为0.007m ,0.01m , 湍流范围:Re=10^4~1.2*10^5 物性参数: 40℃饱和水参数。 黏度—653.3*10^-6 运动黏度—0.659 *10^-6 普朗特数—4.31 导热系数—63.5*10^2 w/(m. ℃) 求解过程: 盘管内平均水温40℃为定性温度时 换热铜管的外径,分别取d1=0.014m d2=0.02m 努谢尔特准则为 0.4 f 8.0f f Pr 023Re .0*2.1Nu ==1.2*0.023*21244.310.84.310.4=143.4 (d1) 0.4 f 8.0f f Pr 023Re .0*2.1Nu ==1.2*0.023*30349.010.84.310.4=190.7 (d2) 管内对流换热系数为 l Nu h f f i λ?= =143.4*0.635/0.014=6503.39 (d1) l Nu h f f i λ?= =190.7*0.635/0.02=6055.63 (d2) 管外对流换热系数 格拉晓夫数准则为(Δt=10) 23/υβtd g Gr ?==9.8*3.86*10^-4*10*.0163/(0.659*10^-6)2=356781.6 (d1) 23/υβtd g Gr ?==9.8*3.86*10^-4*10*.0223/(0.659*10^-6)2=927492.9(d2) 其中g=9.8 N/kg β为水的膨胀系数为386*10^-6 1/K

翅片式换热器的设计及计算

制冷剂系统翅片式换热器设计及计算 制冷剂系统的换热器的传热系数可以通过一系列实验关联式计算而得,这是因为在这类换热器中存在气液两相共存的换热过程,所以比较复杂,现在多用实验关联式进行计算。之前的传热研究多对于之前常用的制冷剂,如R12,R22,R717,R134a等,而对于R404A和R410A的,现在还比较少。按照传热过程,换热器传热量的计算公式为: Q=KoFΔtm (W) Q—单位传热量,W Ko—传热系数,W/(m2.C) F—传热面积,m2 Δtm—对数平均温差,C Δtmax—冷热流体间温差最大值,对于蒸发器,是入口空气温度—蒸发温度,对于冷凝器,是冷凝温度—入口空气温度。 Δtmin—冷热流体间温差最小值,对于蒸发器,是出口空气温度—蒸发温度,对于冷凝器,是冷凝温度—出口空气温度。 传热系数K值的计算公式为: K=1/(1/α1+δ/λ+1/α2) 但换热器中用的都是圆管,而且现在都会带有肋片(无论是翅片式还是壳管式),换热器表面会有污垢,引入污垢系数,对于蒸发器还有析湿系数,在设计计算时,一般以换热器外表面为基准计算传热,所以对于翅片式蒸发器表述为: Kof--以外表面为计算基准的传热系数,W/(m2.C) αi—管内侧换热系数,W/(m2.C) γi—管内侧污垢系数,m2.C/kW δ,δu—管壁厚度,霜层或水膜厚度,m λ,λu—铜管,霜或水导热率,W/m.C ξ,ξτ—析湿系数,考虑霜或水膜使空气阻力增加系数,0.8-0.9(空调用亲水铝泊时可取1)αof—管外侧换热系数,W/(m2.C) Fof—外表面积,m2 Fi—内表面积,m2 Fr—铜管外表面积,m2 Ff—肋片表面积,m2 ηf—肋片效率, 公式分析: 从收集的数据(见后表)及计算的结果来看,空调工况的光滑铜管内侧换热系数在2000-4000 W/(m2.C)(R22取前段,R134a取后段,实验结果表明,R134a的换热性能比R22高)之间。因为现在蒸发器多使用内螺纹管,因此还需乘以一个增强因子1.6-1.9。 下面这个计算公式来自《制冷原理及设备》(第二版,1996,吴业正主编):

换热器性能综合测试实验教学内容

换热器性能综合测试 实验

第一章实验装置说明 第一节系统概述 一、装置概述 目前我国传热元件的结构形式繁多,其换热性能差异较大,在合理选用和设计换热器的过程中,传热系数是度量其性能好坏的重要指标。本装置通过以应用较为广泛的间壁式换热器(共有套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器四种)为实验对象,对其传热性能进行测试。。 二、系统特点 1.采用四种不同结构的换热器(分别为套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器)作为实验对象,对其进行性能测量。 2.实验装置可测定换热器总的传热系数、对数传热温差和热平衡误差等,并能根据不同的换热器对传热情况和性能进行比较分析。 3.实验装置采用工业现场的真实换热器部件,与实际应用接轨。 三、技术性能 1.输入电源:三相五线制 AC380V±10% 50Hz 2.工作环境:温度-10℃~+40℃;相对湿度< 85%(25℃);海拔<4000m 3.装置容量:<4kVA 4.套管式换热器:换热面积0.14m2 5.螺旋板式换换热器:换热面积1m2 6.列管式换热器:换热面积0.5m2 7.钎焊板式换热器:0.144m2 8.电加热器总功率:<3.5kW 9.安全保护:设有电流型漏电保护、接地保护,安全符合国家标准。 四、系统配置 1.被控对象系统:主要由不锈钢钢架、热水箱、热水泵、冷水箱、冷水泵、涡轮流量计、PT100温度传感器、板式 __________________________________________________

换热器、列管式换热器、套管式换热器、螺旋板式换热器、冷凝器、电加热棒、电磁阀、电动球阀、黄铜闸阀以及管道管件等。 2.控制系统:主要由电源控制箱、漏电保护器、温度控制仪、流量显示仪、调压模块、开关电源以及开关指示灯等。 第二节换热器的认识 一、换热器的形式 能使热流体向冷流体传递热量,满足工艺要求的装置称为换热器。换热器的形式有很多,用途也很广泛。诸如为高炉炼铁提供热风的热风炉,就是一座大型蓄热式陶土换热器;热电厂锅炉上的高温过热器是以辐射为主的高温换热器,而省煤器是以对流为主的交叉流换热器;冶金工厂安装在高温烟道中的热回收装置常用片状管式、波纹管式、插件式等型式换热器;制冷系统上的冷凝器、蒸发器属于有相变流体的换热器,这类换热器无所谓顺流或逆流;内燃机的冷却水箱属于交叉流间壁式换热器的一种。 二、几种主要的换热器 1.列管式换热器(图1) 列管式换热器是目前化工及酒精生产上应用最广的一种换热器。它主要由壳体、管板、换热管、封头、折流挡板等组成。列管式换热器可以采用普通碳钢、紫铜或不锈钢进行制作。在进行换热时,一种流体由封头的连结管处进入,在管道中流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。 列管式换热器有多种结构形式,常见的有固定管板式换热器、浮头式换热器、填料函式换热器及U型管式换热器。 2.螺旋板式换热器(图2) __________________________________________________

当前国内浮动盘管型换热器的一些基本形式

1 当前国浮动盘管型换热器的一些基本形式 1.1盘管型式 1.1.1立式螺旋型 其基本构造是几个不同旋转直径的竖向螺旋管组成一级管束。但其组合分配型式有较大差异,按管束末端的构造又可分为下述两种类型。 (1)末端为自由浮动的分配器(也称之为惰性块)见图1、图2。 图形1、图2中的分配器具有两个功能:其一,使热媒在各管束较均匀的分配,增大流程,以利充分换热;其二,起阴尼作用,防止共振破坏。图2所示带有两个惰性块,还可起诱导振动的受体作用,能提高传热效率。 (2)盘管始、末端采用分、集水短管连接,如图3所示。国大部分生产浮动盘管型换热器的厂家均采用这种做法。 1.1.2水平螺旋型 它是由一根根水平螺旋管组成,按其分水与集水立管的位置也分为两种类型:分水立管、集水立管边置型,如图4所示;分水立管、集水立管中置型,如图5所示。 1.2换热器的型式 1.2.1半即热式 典型产品是热高牌半即热式换热器 1.2.2容积式 这是近几年来国生产厂家发展较快,品种繁杂的产品。据初步了解,大概有如图6所示的产品。2、浮动盘管型换热器的优点 浮动盘管型换热器与U型管换热器相比,在换热性能上的优越性,主要体现在如下两个方面。 2.1传热系数K值有所提高 工业大学程林教授在他发表的“弹性管束换热器的发展与应用”一文中提到:“与一般的管束式换热器相比,在相同流速条件下,弹性管束汽水热交换器的传热系数提高了200%,同时,弹性管束亦比浮动盘管的传热系数提高40%。 笔者也做过几次浮动盘管型容积式换热器的热工性能测试。其结果及它与我在前几年研制的RV系列容积式换热器、HRV系列半容积式换热器在水-水换热工况下的性能曲线比较见图7。 从图7可以看出:在水-水换热时,相同热媒流速条件下,DFRV浮动盘管换热器的K平均值分别为R V-03、RV-04、HRV-01、HRV-02的1.40、1.31与1.12倍。 需说明的是图7的比较是粗浅的,因为它只固定了热媒流速一个因素。传热系数的基本公式为: 1/K=1/α1+δ/λ+1/α2 式中:K----传热系数; α1----热媒向换热管壁的放热系数; α2----换热管外壁向被加热水的放热系数; 壁厚、水垢和铁锈的总厚度; δ----- λ----管壁、水垢、铁锈等的导热系数。 图7中的关系只反映了K与α1(因与α1热媒流速V1成正比)的关系。由于容积式换热器被加热水流速V2很低,又很难计算确定,并且对于生活热水换热器来说,换热器的产热量主要是满足规定温度下的设计耗热量即可。因此,我们没有做更深入的工作,作出相应不同热媒流速V1,被加热水流速V2的对应K 值的关系曲线。也就是说,图7中的关系线未反映出K与V2即α2之关系。另外RV、HRV系列换热器测

热管的缺点

热管的缺点 热管换热器有几种类别,举个例子气-气型热管换热器这个产品,从自身的冷热物流体各自的温度跨度是相当的大,每当沿着气流的方面进行换热过程时候,必须要保证各排热管的工作温度也尽量不要相同.热管内采用的液体工质不同,它的管材也随之不同。所以从这些方面我们就可以猜想这种换热器产品具有的缺点了,归纳为以下几点: 1,达到温度最佳回应条件还未实现到,国内的热管管材还不成熟;2,换热设备投资成本相对高,由其是热管的生产成本; 3,国内的热管换热器还没有得到真正的标准化定义与模式; 4,目前的热管还未完善化,对管质上的标准还未得到最新的技术,从而导致热管换热产品寿命短,必须要尽快采用最新的解决方法去提管管质的兼容性以及热管的真空度,以保证工作温度对应。 铸铁省煤器应用广泛,其优点是:耐用、承压(给水泵可装在省煤器入口),价格低;缺点是:重量大、外形尺寸较大、容易堵灰、结构复杂(由肋片管及铸铁弯头连接而成)。热管省煤器耐低温腐蚀性能好,在同样烟气温度条件下,壁温较高,结构紧凑、体积小、重量轻,烟气侧阻力可以设计得较小;其缺点是:价格较高,通常水侧为常压。 热管式体积要小,整体重量要轻,占地小;其缺点是热管有自然失效的可能,还有部分会因工质与热管钢壳反应产生部分不凝结气体,或发生爆管,导致热管失效,须更换。使用寿命一般为1~2年。 热管空气预热器具有这么多的优点,但多年的应用也发现它存在一些比较严重的缺点。首先是由于钢水化学不相容性而导致热管的工作寿命不够长,性能不够稳定的缺点。工业上使用的热管,其外壳由碳钢制成,管中工质主要使用水,俗称钢水热管。这种热管在一定温度下,其工质水和钢管壳将发生电化反应生成四氧化三铁和氢气。生成的氢气积累在热管内,妨碍热管的传热以至最后使热管失效。目前,人们使用多种办法来克服热管的钢水化学不相容现象,取得了一定的效果。但钢水热管的工作寿命一般仍然只有 2-3年,远不能满足工程实践的要求。

盘管换热器相关计算

条件:600kg 水 6小时升温30℃单位时间内换热器的放热量为q q=GC ΔT=600**10^3*30/(6*3600)= 3500 w 盘管内流速1m/s ,管内径为0.007m ,0.01m , 盘管内水换热情况: 定性温度40℃ 定性温度50℃ 管径0.014m Re Re 管径0.20m Re Re 物性参数: 40℃饱和水参数。 黏度—*10^-6 运动黏度— *10^-6 普朗特数— 导热系数—*10^2 w/(m. ℃) 求解过程: 盘管内平均水温40℃为定性温度时 换热铜管的外径,分别取d1=0.014m d2=0.02m 努谢尔特准则为 0.4 f 8.0f f Pr 023Re .0*2.1Nu ==** (d1) 0.4 f 8.0f f Pr 023Re .0*2.1Nu ==** (d2) 管内对流换热系数为 l Nu h f f i λ?= =*= (d1) l Nu h f f i λ?= =*= (d2) 管外对流换热系数 格拉晓夫数准则为(Δt=10) 23/υβtd g Gr ?==**10^-4*10*.0163/*10^-6)2= (d1) 23/υβtd g Gr ?==**10^-4*10*.0223/*10^-6)2=(d2) 其中g= N/kg β为水的膨胀系数为386*10^-6 1/K 自然对流换热均为层流换热(层流范围:Gr=10^4~*10^8) 25 .023 w w Pr t g l 525.0Nu ? ?? ? ????=να=*= (d1)

25 .023w w Pr t g l 525.0Nu ??? ? ????=να=*= (d2) 其中Pr 普朗特数为 对流换热系数为 d Nu m λ α= =*= (d1) d Nu m λ α= =*= (d2) 其中λ为(m. ℃) .传热系数U λ δ++=o i h 1h 1U 1=1/+1/+1/393= U= (d1) λ δ++=o i h 1h 1U 1=1/+1/+1/393= U= (d2) h i -螺旋换热器内表面传热系数 J/㎡·s ·℃ h o -螺旋换热器外表面传热系数 J/㎡·s ·℃ δ-螺旋换热器管壁厚 m δ=1m λ-管材的导热系数 J/m ·s ·℃ λ=393W/m ℃ k o -分别为管外垢层热阻的倒数(当无垢层热阻时k o 为1) J/㎡·s ·℃ 自来水 k o =㎡℃/W 换热器铜管长度 d q l απ70==3500/10/= (d1) A= d q l απ70= =3500/10/= (d2) A= 二、集热面积的相关计算(间接系统) 条件:加热600kg 水,初始水温10℃,集热平面太阳辐照量17MJ/㎡以上,温升30℃,

壳盘管换热器PK壳管换热器

壳盘管换热器PK壳管换热器,换热效率谁更厉害 大家看到‘换热器’这三个字,大家的第一反应是什么呢?肯定有很多人想到是下面图1型号壳管式换热器,那壳盘管式换热器是什么东西?小伙伴们直接懵了,接下来小编就要为大家讲述下壳盘管式换热器,如图2壳盘管式换热器,两者在外表有明显区别的。 图1壳管式换热器 图2壳盘管式换热器 我们就拿市场上杭州沈氏换热器的两款主流产品换热器产品来比较,沈氏130K W壳管和钢塑壳盘管。 沈氏壳管换热器一般用于冷热水机组、模块机等机组的蒸发器和冷凝器;采用7m m传热管升级、螺旋折流板优化、并组合使用多项沈氏专利 分配器,换热效率高;沈氏壳管严格按照G B150,151标准设计和制造、氟侧封头采用激光焊,承压高,无传统密封垫的泄漏风险、换热管为整 体成型,无拼接,无焊点与水接触、抗冻性能强、可靠性强;氟侧封头 专利优化设计,节约材料成本、小传热管用小壳体,紧凑度高,用料省

体积小。 沈氏钢塑壳盘管式换热器是由内螺纹管弯制成Ω形与带折流板的壳体组成的一种换热器;结合了壳管式换热器和板式换热器的特点;壳体是由塑料内胆(P A6)、发泡保温层和钢制外壳组成。内管布置方式具有原创性技术发明专利。 图3壳盘管式换热器构造 壳盘管式换热器有自己特色,一方面由于采用内芯Ω结构,具有良好收缩弹性,能有效抗冻,另外还能加强流体的扰流,能有效加强换热;另一方面由钢制外壳与工程塑料内胆之间填充发泡材料,减少了换热器的漏热,用户无需额外对外壳表面进行保温。

图4壳管式换热器参数 图5壳盘管技术参数 从两者内部结构来看,壳盘管式换热器内部构造更复杂,在内芯材质相同情况下,从各自技术参数比较,双方都能用作蒸发器和冷凝器,壳盘管式换热器做冷凝器单位面积换热量会比壳管式换热器高些,但壳盘管式换热器做蒸发器单位面积换热量会比壳管式换热器差些. 所以比较两者谁的换热效率高就要看是双方是做蒸发器还是冷凝器。

板翅式换热器和热管换热器的比较

板翅式换热器 铝制板翅式换热器是用铝合金波形翅片为传热元件的新颖换热器,具有传热效率高、结构紧凑、适应性大、重量轻、经济性好,并可设计成多股流体同时换热等特点,其单位体积传热面积可达1500m2/m3 。 主要用作主换热器、切换式换热器、冷凝器、蒸发器、冷凝蒸发器、预冷器、过冷器、液化器、冷却器等。适合于气-气、气-液、液-液间热交换场合。 铝制板翅式换热器的结构型式很多,但其基本结构是相同的,即由波形翅片、封条和隔板组成一层通道。翅片主要起传热作用,封条使每一层翅片形成通道。各种流道形式是取决于封条与翅片的布置。隔板是双面涂有钎料的薄钣,主要起分隔作用。 热管换热器 热管是一种高效传热元件。把一支金属管的两端密封起来,向管内注入适量的工作液,抽成真空,就形成一支热管。当热源对其一端加热时,工作液吸热而汽化,蒸汽在压差作用下,高速流向另一端,向冷源放出潜热而凝结,凝结液体从冷源返回到热源,如此循环,就把热量不断从热源传冷源。其形式主要有重力热管,分离式热管,吸液芯热管。热管管壳可焊成螺旋翅片或纵向直翅片。 热管换热器分为整体型和分离型两种,整体型热管换热器传输距离较短,但其结构简单,拆装方便;分离型热管换热器适用于冷热源之间距离较远,并可用来同时加热(或冷却)多种介质,布置比较自由。概括起来,热管具有如下优良性能: ――输送能力强 ――均温性能好 ――热流密度可控,管壁温度可调 ――对环境的适应能力强 ――无外加辅助动力设备 ――结构简单,工作可靠 正是由于热管具有上述优良特性,热管及热管换热器已在电力、冶金、石化、玻陶、电子、轻工等行业的余热回收、加热、均温、散热、干燥等方面获得了广泛应用。 热管的性能的确很好~~~ 而且价格也不贵~~~ 但是热管的致命弱点就是必须是下热上冷才能很好地工作~~~ 反过来,甚至平行的效率则低得多~~~ 而且热管的均温性能仅体现在它的内部~~~ 相对于它的外部两端工质的热量交换帮助不大~~~ 再者如果用热管制作热交换器,其体积大,投资大,但热交换效率没怎么提高~~~~ 它只是在较长距离(1~2米)的输送热量中得到较广泛应用(例如川藏铁路的地基)~~~ 所以热管的应用领域还很窄~~~

相关文档