文档视界 最新最全的文档下载
当前位置:文档视界 › 二硫化钼地润滑特性

二硫化钼地润滑特性

二硫化钼地润滑特性
二硫化钼地润滑特性

二硫化钼的润滑特性

摘要

二硫化钼不仅在常规环境,而且能在重载荷、高真空或低温、高速或低速、强辐射等恶劣环境里,充分发挥出低摩擦系数、高磨损寿命和润滑可靠等优点,而被广泛应用。

主题词:二硫化钼润滑特性抗报压真空润滑

1.二硫化钼的理化特性:

分子式:MoS2

分子量:16008

颜色:兰-灰到黑色

密度α/cm3:或、

熔点℃:约1500℃(或大于1800℃、1185℃)

硬度:(或knnop12--60)

显微硬度:基础面×102Mpa,棱面×103Mpa

表面能:基础面×10-2J/M2,棱面×10-1J/M2

热胀系数:10-7×10-6/K

温度稳定性:空气中-184~400℃(或-180℃~400℃400℃、399℃、450℃)。真空或惰性气体中,大于1100℃(或1200℃、1800℃)摩擦系数:约(或,没有气体吸附层时为)

承载能力,大于×103Mpa(或大于×103Mpa)。

化学稳定性:

氧化:干燥空气中,从417℃(750F)(或370℃、400℃、399℃、

350℃、450℃)开始氧化后。560℃后(或540℃)剧烈氧化。潮湿空气中,室温即发现有氧化,但很微弱,在湿度与酸值都很高时,氧化才变得明显。氧化产物为MoO3与So2,氧化系放热反应H=mol。

分解:真空或惰性气体里,1100℃(或1200℃、真空982~1093℃、氩气中1350~1472℃)后开始分解。分解产物为Mo与S。

能耐除王水,热而浓的盐酸、硫酸、硝酸外的任何酸,在氟、氯中可分解,但在无水HF中不分解,能与液氧相容。

能腐蚀碱金属(如Li、Na、K、Rb、Cs、Fe等)。

在水、石油制品和各种合成润滑剂中不溶解,能按任意比例混合使用。

2、二硫化钼与载荷

工件表面微观是不平整的,一旦彼此间发生滑动,真是接触仅局限于一些很小的高点上。用电阻法或其他方法估测,真实接触面还不到表观面积的万分之一。因而,即使施以很小载荷,接触点局部压强也会很大,载荷加大,会因压强过大而升温,甚至熔化。润滑目的即在于防止工件间直接接触。

油脂润滑时,当载荷过大,润滑膜会被“压破”或温度上升润滑油流失,这将导致润滑膜破裂,工建直接接触而发生黏着(熔合)磨损。

用二硫化润滑,当载荷上升时,润滑效果非旦不下降,还会提高。即使超过了钢铁屈服压强的重载荷×103Mpa下,润滑依旧。

二硫化钼良好抗报压润滑作用

Milne在多种条件下,对多种二硫化钼润滑膜作了深入研究,当载荷有上升至时,摩擦系数却由~下降至~或更低。Bielak等人测定,二硫化钼在×103Mpa下,摩擦系数仅。

Boyn和Rober等人在大气,室温里,对比多种润滑材料在×103Mpa重载荷下的摩擦系数,发现二硫化钼比其他润滑材料摩擦系数都要低。

西村元在对比二硫化钼、铝、聚四氟乙烯等涂层的磨损过程后发现,无论在哪种气氛下,二硫化钼的磨损都非常少,摩擦系数也最低。

汉沽石油化学厂用四球机测定,当锂基脂中添加3%的MoS2后,PB值由40kg上升到66kg以上。

重载荷下,二硫化钼不仅具有很高的稳定性,极低的摩擦系数,还具有很高的磨损寿命。

Magie测定二硫化钼在×102Mpa下,磨损寿命(往复周期)达13万次,二硫化钼复合油脂可达159万次,二硫化钼树脂黏结膜可达986万次。Stupp亦对比了几种常用固体润滑材料的磨损寿命,氮化硼360次。磨损寿命依然数二硫化钼最高。

高稳定性,低摩擦系数,高磨损寿命,使二硫化钼成为最佳“抗报压”润滑材料。

二硫化钼抗报压机理探讨

Barrg、Binkelman发现,只有当环境中湿度较大时,才出现载荷加大,二硫化钼摩擦系数下降的现象。湿度较低,起始摩擦系数就很低,随着载荷上升而下降的趋势就变得不甚明显。

Karpe、Gansheimer、Solomon等人指出:随载荷加大,二硫化钼吸附水蒸气层减少甚至消失,其摩擦系数亦下降,更接近无吸附的最低点。

3、二硫化钼与真空

真空,尤其真空高温环境中,二硫化钼显示出比它在大气中更优良的润滑效果,使它在六十年代勃起的宇宙航行中崭露头角。

油脂和石墨对真空润滑的局限性

润滑油脂的基础油是用减压升温蒸馏法生产的。所以,它在真空,尤其真空高温环境下,它会因汽水逸失而变质。而且,油蒸汽还会污染仪表和宇航器极有限的空间。

润滑油允许的极限蒸发率为10-7g/cm2。

真空中,石墨虽无数蒸发之虑。但石墨的润滑,滑动主要发生在晶体间的蒸汽吸附层内,真空使它失去了赖以滑动的蒸汽,摩擦系数也猛升到。

显然,油脂或石墨都不适宜真空润滑。

二硫化钼良好的真空稳定性

真空中,二硫化钼既不会蒸发,亦不会因失去蒸汽而润滑恶化。真空中二硫化钼变质的原因为“热分解”。

能使二硫化钼热分解的温度很高,真空里为982~1093℃,惰性气体中为1350~1470℃。低于该温度,二硫化钼是相当稳定的。

二硫化钼良好的真空润滑性

与石墨相反,真空中的二硫化钼,其摩擦系数明显下降。

表一石墨与二硫化钼润滑特性对比表

显然,真空里的二硫化钼不仅温度适应范围大,而且很稳定,低于800℃时,摩擦系数不随温度升高而提高,高于1000℃后,摩擦系数才开始随温度升高而举证,润滑开始劣于石墨。

Brewel测出在10-9Pa高真空里的二硫化钼摩擦涂膜润滑的滚动轴承,摩擦系数仅;而10-6Pa、3000r/min、2kg负荷下,二硫化钼溅射膜润滑的轴承,工作寿命已超过1500时。

二硫化钼真空润滑机理探讨

二硫化钼的润滑与它显微变化一致:Flom在光学显微镜下观测到,二硫化钼在真空中的劈开面光滑,在大气中的劈开面不光滑,津合裕子用电镜发现,摩擦都会使二硫化钼晶体微观晶化,而真空中微晶化程度远比大气中低得多。不难理解,真空中二硫化钼润滑比大气中时好得多。

再深入探讨,许多学者将这些现象又归结到湿度的影响,气压境地,二硫化钼表面水蒸气吸附层减少甚至消失,水蒸气对润滑干扰随

之降低或消失,真空润滑效果自然会提高。

4.二硫化钼与环境温度

环境温度对润滑剂稳定性和润滑效果影响很大。真空中温度影响前已做了阐述,下边主要讲大气中温度的影响。

油脂对润滑温度的局限性

太低的温度会使油脂冻结。而高温下润滑油会因蒸发、氧化、极性变化而变质,润滑脂亦会因凝缩分油而变质。

事实上,在远高于冻结温度或远低于变质温度之前,温度已通过粘度变化干扰到油脂的润滑效果。温度下降,油脂黏度上升而变得粘稠;温度上升,油脂黏度下降而变得稀薄。

当温度升高到稀薄的油脂无法保持完整的润滑膜;或者,当温度下降到粘稠的油脂无法形成连续的润滑膜时,都将使润滑失败。

常规里,润滑油允许使用的温度上限,应低于他闪点20-30℃,温度下限应高于它凝点约5-10℃。实用中,用于-45℃(高级冷冻机油)到250℃(高级航空硅油)间。润滑脂低温范围很严,更易凝固,温度上限应低于其滴点20-30℃。实用中,钙基脂≤80℃、钡基脂≤120℃、锂基脂≤120℃。在高于上限或低于下限的温度范围里,油脂将无法正常润滑。

二硫化钼良好的温度稳定性

二硫化钼无汽水、黏度之虑。温度对它的干扰仅体现在热分解与氧化上。热分解温度比氧化温度高。大气中,不待热分解已氧化完了。所以,大气中以氧化为主,真空中也以热分解为主。

低温只能延缓二硫化钼的氧气,所以,它的低温稳定性很好。即使-184℃仍润滑自如。

大气中,二硫化钼随温度上升,氧化加剧,它受温度和空气流量变化影响很大。

干燥空气中,二硫化钼在400℃以下是比较稳定的。400℃开始氧化,540℃后氧化加剧。对湿度、酸度较高的环境,起始氧化温度要低的多。但是,轻微的氧化对二硫化钼润滑的影响并不大。

二硫化钼良好高温润滑作用

大气中,二硫化钼的摩擦系数与温度,摩擦时间的关系。显然,实践证明,加二硫化钼后的摩擦系数远比没润滑剂的干摩擦好得多。当温度低于350℃时,二硫化钼的摩擦系数随温度升温而下降,或随摩擦时间延长而下降,润滑更有效。当温度高于350℃后,摩擦系数随温升和时间延长而上升,润滑开始恶化;温度高于400℃,该变化明显;温度高于540℃后,变化显著,润滑明显恶化。

Lancaster也指出,二硫化钼与石墨不同,在温度不太高时,润滑几乎不随摩擦时间的延长而变化。

5、二硫化钼与速度

在很低速度或设备启动时,润滑油脂出现“黏滑”与“冷焊”。Stribeck曲线和相应方程看出:当滑动速度ω→0时,摩擦系数μ显著升高。(k-轴承参数,n-黏度,p-载荷),轴承处于混合摩擦状态出现磨损。速度ω过高,摩擦系数也开始上升,直至超出工作范围上限。

二硫化钼对超低或特别高速干扰不明显,适应性很强。各种二硫化钼膜对应速度变化,摩擦系数互不同,但低速(ω→0)时的值不太高,而高速(30~40m/s)时值很低,使二硫化钼对速度适应范围大大拓展开来。

另外,已形成的二硫化钼膜,其磨损寿命很高,对低速和高速环境工作的可靠性良好。这是油脂润滑无法比拟的。

6 二硫化钼与幅照

幅照之下,润滑油脂会变质,粘度指数和酸值也将发生变化。这与放射线使其不饱和键或极性键交联、氧化有关。冈野测定了不同机油耐幅照能力。使其黏度或酸值变化25%所需的放射量分别为:聚苯5000×106rad,矿油或甲苯硅油100×106rad,烷基双酯油50×106rad,烷基硅油或烯烃5×106rad。他发现,随辐射量的增加,磨损也明显增加。

强幅照下,二硫化钼表现出远比润滑油高得多的稳定性。在7×108R(×105c/kg)照辐射前后,二硫化钼的摩擦与磨损并无明显变化。

表二幅照对MoS2润滑的影响

甚至摩擦系数远比幅照前低。

对于照辐射状态的原子反应堆,要求维修周期长、润滑可靠。因

而常选用二硫化钼作润滑。比如:英国“龙”高温气冷核反应堆的转动密闭在充氮干套管中,其轴承喷绘二硫化钼后,摩擦系数保持唉,磨损也很小,西德AVR高温球床核反应堆。美国高温气核反应堆的转动机械也都采用二硫化钼对轴承进行可靠的润滑。

二硫化钼以其良好的润滑特性,从六十年代以来,发展迅猛,一直雄踞“固体润滑之王”而被普遍应用。

二硫化钼地润滑特性

二硫化钼的润滑特性 摘要 二硫化钼不仅在常规环境,而且能在重载荷、高真空或低温、高速或低速、强辐射等恶劣环境里,充分发挥出低摩擦系数、高磨损寿命和润滑可靠等优点,而被广泛应用。 主题词:二硫化钼润滑特性抗报压真空润滑 1.二硫化钼的理化特性: 分子式:MoS2 分子量:16008 颜色:兰-灰到黑色 密度α/cm3:4.8-5.0(或4.85 --5.0、4.8) 熔点℃:约1500℃(或大于1800℃、1185℃) 硬度:mosh1--1.5(或knnop12--60) 显微硬度:基础面3.136×102Mpa,棱面8.82×103Mpa 表面能:基础面2.4×10-2J/M2,棱面7.0×10-1J/M2 热胀系数:10-7×10-6/K 温度稳定性:空气中-184~400℃(或-180℃~400℃400℃、399℃、450℃)。真空或惰性气体中,大于1100℃(或1200℃、1800℃)摩擦系数:约0.05--6.10(或0.04,没有气体吸附层时为0.03--0.06)承载能力,大于2.8×103Mpa(或大于3.45×103Mpa)。 化学稳定性: 氧化:干燥空气中,从417℃(750F)(或370℃、400℃、399℃、

350℃、450℃)开始氧化后。560℃后(或540℃)剧烈氧化。潮湿空气中,室温即发现有氧化,但很微弱,在湿度与酸值都很高时,氧化才变得明显。氧化产物为MoO3与So2,氧化系放热反应H=-266.7kcal/mol。 分解:真空或惰性气体里,1100℃(或1200℃、真空982~1093℃、氩气中1350~1472℃)后开始分解。分解产物为Mo与S。 能耐除王水,热而浓的盐酸、硫酸、硝酸外的任何酸,在氟、氯中可分解,但在无水HF中不分解,能与液氧相容。 能腐蚀碱金属(如Li、Na、K、Rb、Cs、Fe等)。 在水、石油制品和各种合成润滑剂中不溶解,能按任意比例混合使用。 2、二硫化钼与载荷 工件表面微观是不平整的,一旦彼此间发生滑动,真是接触仅局限于一些很小的高点上。用电阻法或其他方法估测,真实接触面还不到表观面积的万分之一。因而,即使施以很小载荷,接触点局部压强也会很大,载荷加大,会因压强过大而升温,甚至熔化。润滑目的即在于防止工件间直接接触。 油脂润滑时,当载荷过大,润滑膜会被“压破”或温度上升润滑油流失,这将导致润滑膜破裂,工建直接接触而发生黏着(熔合)磨损。 用二硫化润滑,当载荷上升时,润滑效果非旦不下降,还会提高。即使超过了钢铁屈服压强的重载荷3.45×103Mpa下,润滑依旧。

电机轴承润滑脂型号

交流、直流、高压电机润滑脂 交流电机(160-355)轴承润滑脂基本有以下几种: 一、3号锂基润滑脂 最常用的油脂。主要用于常规Y、Y2及其派生系列。 二、美国加德士高速润滑脂RPM Grease SRI 2 耐高温油脂,耐温-30~+150℃,颜色为绿色。 主要用于环境温度比较高的供柳州富达YLF160~355,IP54电机,还有供戚墅铁路机车电机NTP365T-4等。 三、埃索美孚宝力达润滑脂Polyrex EM 耐高温油脂,耐温-40~+150℃,颜色为蓝色。 主要用于用户特殊要求的地方。如供出口美国的尼玛N250~580电机,目前供大连的NTP184~284T电机上。 四、道康宁润滑脂Molykoto fs-3451 耐高温油脂,耐温-40~+200℃,颜色为白色。 目前只用于大连机车冷却风机外转子电机JY470-16/8的下端轴承的上侧(只加在外面)。 五、德国克鲁勃Kluberquiet BQH72-102高温油脂 耐高温油脂,耐温-40~+200℃,目前仅在柳州富达出口日本压缩机配套的YLF200~225,200V,50Hz和200~220V,60Hz电机上使用过。

直流电机轴承润滑脂 除一小部分铁路电机轴承用L-XEGEB2锂基润滑脂(如:ZPT-62KG、ZTP-63GY、ZTP-63DG、ZTP-180GY)外,其余直流电机均用3号锂基脂。 高压电机轴承润滑油 H355~710 4级~12级(滚动轴承):锂基润滑脂L-XBCHA3 H355~450 2级(滚动轴承):用特级高速轴承润滑脂SR12 H450~630 2级(滑动轴承):汽轮机油L-TSA32# H710以下(滑动轴承):汽轮机油L-TSA46#

二硫化钼的润滑机理

二硫化钼的润滑机理 一种固体润滑材料若愈能成为优良的润滑剂。起码应具备两种特性: 1.该材料晶体内剪切强度低,有许多良好的天然滑移面。 2.该材料应能牢固附着于底材金属表面上。 只有当该材料与金属底材面间的附着力大于晶体内剪切强度时,滑动才会发生在该材料的晶体内部,而不发生在底材金属与底材金属之间,或底材金属和润滑剂之间。附着力与剪切强度相差得愈大,该材料的润滑性能愈好,其摩擦系数(μ)与磨损(√)也愈小。 下面从这几方面来研究探讨二硫化钼的润滑机理: 1.二硫化钼的晶体结构 MoS2中含钼%,硫%。自然界天然产出的晶体MoS2呗称作“辉钼矿”。其组成部分与上述理论值相近。偶有钨、铼、锇或硒、碲作为类质同象元素取代钼或硫,进入晶格,而成为辉钼矿中的微量元素。 2.二硫化钼的晶体结构图 二硫化钼的晶体结构是六方晶体系结构,在两层位置相同的硫原子密堆积层中,形成许多三方棱柱体孔隙。钼原子就处在由六个硫原子形成的三方棱柱配位体的个数恰为钼原子个数的两倍。 二硫化钼的多型与润滑 当二硫化钼层片之间平行相叠加构成了二硫化钼晶体,其叠加方式不同,形成多种同质异构体。矿物学里称它为“辉钼矿”。 近年来有人依据对称原理和紧密堆积原理,在七层范围内重叠时,用

电子计算机推导出了112种类型。但迄今,自然界里已确定的辉钼矿的类型有两种: 2H(六方晶型)辉钼矿石1923年由Dickinson与Pauling所确定。它系二硫化钼层片接两层相重复的形式叠加。 3R(三方晶型)辉钼矿是1957年由Bell与Herfert发现,它系二硫化钼层片按三层相重叠的形式叠加。 2H与3R型辉钼矿的形成规律与其生成温度有关。二硫化钼晶型与生成温度的关系: 自然界分出的钼矿物质中98%为辉钼矿,而辉钼矿的80%为2H型,仅3%为3R型。其余17%为2H与3R混合型,它们可以通过Xˉ射线衍射图来区别。 3R系亚稳定态,当温度上升到600~1300℃后,它会转化为2H行辉钼矿。 对不同二硫化钼而言,合成多面因声场温度较低,通常为3R型;而天然工艺多面因保持着自然界辉钼矿原料面目,通常为2H型。在应用时,大多数人认为2H比3R型二硫化钼的润滑效果好。反之若无特别标明,所涉及二硫化钼均系2H(六方)晶型辉钼矿。 二硫化钼分子成键规律与滑移面

第一节(三)固体润滑材料二硫化钼-(MoS2)固体润滑材料的制备方法

固体润滑材料二硫化钼-(MoS2)固体润滑材料的制备方法 文章来源:开拓者钼业 公司网址:https://www.docsj.com/doc/b73875765.html, 三、固体润滑材料二硫化钼-(MoS2)的制备方法 在密闭的齿轮箱内放进一定量的固体润滑剂粉末,通过齿轮运动将其飞溅在摩擦表面,依靠它的粘着力附着在轮齿表面,便组成了最简单的固体润滑摩擦副。随着对固体润滑材料二硫化钼-(MoS2)要求的不断提高和科学技术的进步,固体润滑材料二硫化钼-(MoS2)的制备工艺也不断完善。从制备原理来讲,刚本润滑材料二硫化钼-(MoS2)的制备可归纳为以下几种方法。 1. 二硫化钼-(MoS2)机械混合 将几种作用互补的物质进行机械混合,使其成为均质混合体。 2. 二硫化钼-(MoS2)热压烧结 在一种粉末型基材中加人另一种(或多种)其他粉末,经机械混合后成为均质混合体。然后进行热压烧结(在不同的气氛、压力和温度下),使其成为具有一定物理机械和摩擦学性能的整体。用这种方法制备的固体润滑材料二硫化钼-(MoS2)较多,适用于金属基、非金属基和陶瓷等润滑材料二硫化钼-(MoS2)。 3. 二硫化钼-(MoS2)粘结 利用粘结剂将润滑剂粉末粘结在基材表面。如果将具有相当强度的金属或有机编织材料二硫化钼-(MoS2)作为背衬,其上再粘结润滑层,使形成了既有强度又有润滑性的复合层润滑材料二硫化钼-(MoS2)。 4 . 二硫化钼-(MoS2)气相沉积 通过物螋∫气相沉积(包括溅射、离子镀和等离子喷涂等)或化学气相沉积将润滑剂微粒粘着在基材表面形成固体润滑涂层。其粘着力由原子间的结合力呈现。 5 . 二硫化钼-(MoS2)化学反应 通过电镀化学镀,包括多层镀和复合镀等,将润滑剂微粒粘着在基材表癣形成固体润滑镀层。

润滑油的型号和分类

润滑油的型号和分类 每个润滑油的正规厂商一定会在产品外包装显著位置注明油品 牌号,牌号是由一组数字及英文字母共同构成,如:15W/40SG、5W/30SJ 等。牌号前的数字部分如:15W/40、5W/30代表汽油机油的粘度等级,后面的字母部分如SG、SJ代表汽油机油的质量等级。就是说,汽机油的粘度牌号由两部分构成,即粘度等级与质量等级,其中质量等级是标志汽机油质量高低的关键。以15W/40SG为例: 15W 40 SG 低温性能黏度等级 质量等级是这样划分的:根据世界通行的美国石油学会SPI的分类,将汽油机油定为以“S”为系列SA、SB、SC、SD、SF、SG、SH、SJ等多个等级,我国国家标准是等效采用此方法分类的。质量按字母顺序依次提高,即目前SJ级润滑油是世界上级别最高、质量最好的汽油机油,市场上常见的长城福星机油、美孚一号均属于SJ级别;SH级次之,市场常见的有长城机油、美孚等;而SF、SE则属中档产品。下面介绍汽油机油的粘度等级的划分:按照世界上公认的美国汽车工程师协会SAE制定的粘度等级,根据油品的高、低温流动性分为:“W”系列和非“W”系列。“W”系列主要以油品的低温性能来划分,“W”前面数字越小,表示低温性能越好,可在越寒冷的温度下使用。如:15W/40粘度等级兼顾了油品的高、低温性能,我们称它为多级油,可以冬、夏通用。而非“W”系列是以油品的100℃的粘度大小来划

分,数字越大代表粘度越高,只适用温度较高的地区。 在机油的特性中,最重要的一点是它的粘度。机油的粘度随温度变化,对于那些低温时粘度小,高温时粘度大,能保证发动机在任何温度下都能正常润滑的机油,我们定义为多级机油。中档车使用SG级别的机油,按照保养手册定期保养就足够了。机油黏度使用15W/40,可以保证大部分地区的使用。 一般高档车都要选择高档机油。在高温及严寒情况下,仍能维持适当的粘度,而提供合适的保护。另外,高档机油因氧化而产生酸质、油泥的趋势小,因而具有更长的使用寿命,对发动机在各种恶劣操作条件下,都能提供适当的润滑和有效的保护。

二硫化钼的润滑特性

书山有路勤为径,学海无涯苦作舟 二硫化钼的润滑特性 二硫化钼——天然或合成的辉钼矿,以润滑油脂及其他固体润滑剂难比拟 的优点,被誉为“固体润滑之王”而被广泛应用。作为润滑剂要必备两个条件,即材料内部具良好滑移面,材料与基材有很强的附着力。二硫化钼以S—Mo—S 的三明治式夹层相迭加。层内,S—Mo 间以极性键紧密相连。层间,S—S 间以分子键相连,范德华-伦敦力的键合力太弱,当受到很小的剪切应力 后即能断裂产生滑移。而这样的滑移面在每两个夹心层间就有一个。也就是在1μM厚的二硫化钼薄层内就有399 个良好的滑移面。二硫化钼与基材强烈粘附,这也是其他润滑剂,比如石墨也难比拟的。除此外,它还具备有许多良好的润滑特性。(1)温度适应范围宽:高温航空硅油能耐250℃高温,冷冻机油耐-45℃低温,这在润滑油脂中已属姣姣者。而二硫化钼在空气中应用,可在349℃下长期使用,或399℃下短期使用;在真空中,二硫化钼可在1093℃下工作;在氩气等惰性气体中,二硫化钼可在1427℃下工作。除能在高温下工作,二硫化钼还能在-184℃或更低温度下工作。(2)耐重负荷:在重负荷下油脂润滑膜会因变薄甚至消失而使润滑失效。但厚度仅为2.5μm的二硫化钼润滑膜在2800MPa、40m/s 的重负荷、高速度下润滑性能良好。即使负荷加大到3200MPa 超过了钢铁屈服强度,二硫化钼的润滑效能依旧存在。这是其他任何液体和固体润滑剂所难达到的。因此,全世界所产二硫化钼的大部份都被当作“极性添加剂”与油脂合用,比如市面常见的二硫化钼锂基脂、二硫化钼钙基脂、各种二硫化钼齿轮成膜膏等等。(3)耐真空:航天器在500km 以上高空飞行,太空的真空度已达1.3×10-2μPa以上:此时,油脂润滑剂的蒸发已超过它的极限蒸发率。这不仅会使润滑失效,而且挥发气体还会污染仪表和环境,在真空中连石墨润滑剂的润滑性能也会大幅度下降,而二硫化钼在真空条件下

润滑油脂的的特性概述

润滑脂、防冻液 一、什么是润滑脂? 润滑脂是将稠化剂分散在液体润滑剂中所组成的一种稳定的固体或半固体产品。在日常生产中人们习惯于把润滑脂叫成“黄油”。 润滑脂主要是由稠化剂、液体润滑油、添加剂和填料组成。 二、稠化剂的作用是什么?有哪些种类? 稠化剂的作用是在基础油中分散和形成结构骨架,使基础油吸附并固定在结构骨架中,从而形成固体或半固体关的润滑脂。 稠化剂的种类主要有皂基稠化剂和非皂基稠化剂。 皂基稠化剂可分为三类:单皂基—以单以金属皂作为稠化剂而制成的脂,如钙基脂、钠基脂。-混合皂基—由两种或两种以上的单一金属皂同时作为稠化剂混合而制成的脂,如钙—钠基脂。?复合皂基—皂结晶或皂纤维是由两种或更的化合物共结晶而制成的,复合引起润滑脂特性改变,并以滴点升高为标志,如复合锂、复合铝基脂。 非皂基稠化剂有:烃基、无机类、有机类 三、如何判断皂基脂与非皂基脂? 通过测定是否有明确的滴点即可区分。皂基脂有滴点,有的还有优良的抗辐射性、抗化学介质等特性。四、润滑脂的添加剂的类型有哪些?润滑油中添加剂是否都可以用于润滑月脂? 润滑脂的添加剂分为两大类:一类是物理性能改善剂,如结构改进剂(醇、水、甘油等);另一类是化学性能改善剂,如抗磨剂、防锈剂等。 在润滑油添加剂中,可能对润滑脂胶体结构破坏较大的添加剂不能用在润滑脂中;有的添加剂虽油溶性差,在润滑油中使用受到限制,但在润滑脂中感受性好,故可用于润滑脂中。 五、什么是填料?其作用如何? 填料是为了增加润滑脂中的某些特殊性能而添加的固体填充物,大多数是一些有润滑作用和增稠效果的无机物粉末。大部分填料本身可作为固体润滑剂用,加入脂中可提高脂的润滑能力,在脂的润滑膜受短暂冲击负荷或高热作用下,它们可起补强作用。常用填料有:石墨、铝粉、二硫化钼、铜粉等。 六、润滑脂的主要性能有哪些? ①流变学性能②高温性能③轴承性能④润滑性能⑤防护性能⑥低温性能。 七、润滑脂的流变学性能是如何测得的? 流变学是研究物质在受到外力作用后变形或流动的科学。润滑脂的流变学性能取决于它的组成和结构,同时也与剪切速率、温度有关,润滑脂的流动性能主要通过脂的触变性、相似粘度、强度极限等性能来评定。 八、什么是润滑脂的触变性和强度极限? 润脂受到剪切作用,在一定剪速下,随着剪切时间的增加,稠度下降,脂变稀;当剪切停止时,结构骨架又逐渐恢复,脂又变稠,这种由稠变稀,由稀变稠的现象称为触变性。其值大小取决于稠化剂种类、浓度和分散状态,而与基础油粘度并无直接关系。润滑脂有轻微的触变对使用是有益的。 强度极限是表示使润滑脂开始流动所需最小的剪应力。 由于脂是具有不定期的强度极限,就不会受地心引力而改变其形态自动流动,即使在密封不严的摩擦部件中也不会流失,在机械工作时能抵抗住离心的作用,不致从零件表面被甩出。 润滑脂强度极限是温度的函数,温度越高,脂的强度极限变小,温度降低,脂的强度极限变大。脂的强度极限,取决于稠化剂的种类和含量,与工艺也有关。 九、润滑脂稠度分级、牌号分类的依据是什么? 稠度是一个与脂在润滑部位保持能力和密封性能以及脂的输送和加注有关的重要指标,其大小按针入度划分。 目前国际上通用的稠度等级是按照美国润滑脂协会(NLGI)的稠度等级划分的。将润滑脂的稠度分为九个等级:000、00、0、1、2、3、4、5、6。稠度等级用锥入度度量。

常用润滑脂的种类新选

关于润滑脂(黄油)和万向节十字轴润滑的讨论 常用润滑脂的种类 1.钙基润滑脂 这既是普通所称之为黄油的润滑脂。在目前汽车维修行业中使用最为广泛的润滑脂。这种润滑脂是上世纪三十年代的技术。在发达国家已经是属于被淘汰的产品。由于价钱低廉还被汽车维修行业广泛使用。强烈建议不要再使用这类产品。至少不要在自己的车上使用。 2.石墨钙基润滑脂 通常为黑色,这是由于在润滑脂内加入了一定比例的鳞片石墨,具有良好的抗水性和碾压性。特别适合用于汽车后钢板的润滑。有关方面的试验证明,采用石墨钙基润滑脂脂所润滑的汽车钢板弹簧是采用普通黄油润滑寿命的一倍以上。建议切车车友不要再采用普通黄油润滑后轮钢板了。 3.汽车通用锂基润滑脂 这是现代汽车工业普遍使用的一种润滑脂。具有长寿命,抗水效果好和润滑效果好的特点。是普通黄油的取代产品。可用于汽车绝大部分的润滑。其使用寿命是钙基润滑脂的两倍。 4.极压复合锂基润滑脂 这是一种比通用锂基润滑脂有着更高的极压抗磨性的润滑脂。需要注意的是润滑脂同润滑油一样具有牌号以适用于不同的环境温度和使用条件。就一般而言,号数越大越粘稠。通常南方全年可使用2#,北方冬季可用1#。3#只适用于热带重负荷车辆。当然严格而言,润滑脂的选择还受其它因素影响和制约。 十字万向节的润滑 在汽车维修行业维修人员是广泛使用普通黄油来润滑十字万向节。根据有关技术人员的研究这是一种错误的做法。其具体如下因素: 1.十字万向节的结构因素从该油嘴处用黄油枪是很难将黄油加注到滚针轴承上的。众所周知,黄油的粘度大,当用黄油枪从该油嘴向万向节十字轴滚针轴承内腔加注黄油时,黄油进入狭窄内腔油道时阻力加大,黄油压力升高顶开油嘴对面的减压阀而溢出。这个现象还会被驾驶员和修理人员误认为已经加满了黄油。而实际上黄油根本就没进入滚针之间。 2.黄油本身的理化成份因素有汽车维修人员把熔化的黄油注入十字万向节或而使其到达所规定的润滑部位。但由于黄油本身的特性也使该处达不到有效润滑。这是由于普通黄油的特性而导致的。其具体如下 A.万向节在工作中要承受很大的扭力和交变载荷,而钙基润滑脂的油膜坚韧程度较差,在

电机轴承用什么型号润滑脂

电机轴承润滑脂的选用,要考虑电机的工作环境、负荷的轻重状况、运行时间的长短和转速的高低等众多因素。笔者在电机修理的长期实践中体会到电机轴承润滑脂的选用,主要取决于电机工作环境的潮湿程度和轴承运行的温度高低。如不满足这两个条件,会造成润滑脂流失、水解,导致轴承损坏甚至影响生产。电机滚动轴承使用的润滑脂种类较多,现对几种常用的润滑脂作一简介。 轴承润滑脂要根据轴承转速、百运转温度、是否降噪、耐水度淋状况和负荷等工况来确定如果有特殊要求问,如耐高温、耐低温、高负荷,答高转速、高负荷,建议采用合成润滑脂。研究发现,30%滚动轴承损坏的原因是由润滑不良引起的六这足以说明润滑材料对轴承保护起着至关重要的作用。最新的轴承寿命理论计算和试验结果也表明,提高润滑水平可以提高轴承寿命的2、5 倍罔。因此,正确选择润滑材料对电机轴承的保护有着极为重要的意义。轴承润滑脂的作用轴承润滑脂的基本作用是通过在轴承滚动面及滑动面上形成油膜,从而润滑相互配合的轴承元件,降低其摩擦力矩,减少动力消耗;并通过传导排出热量,防止轴承温度本文介绍了轴承润滑脂的作用及工作原0一S0俗0俗彐第六期上升。同时,轴承润滑脂对轴承还理,重点介绍了电机轴承润滑脂的选用原则有如下作用:0延长疲劳寿命:通过对滚动及填充量的选择及滑动接触面的良好润滑,可以延长轴承的使用寿命。浅谈电机轴承0减少摩擦及磨损。0防止轴承生锈、腐蚀。0较好的减振作用,降低电机轴承的噪音。润滑脂的选用润滑脂在轴承中的工作原理电机轴承的润滑机理:润滑脂在剪切力作用下,将自身的三维纤维网状结构拉断析出润滑油,在轴承的转动元件、轴承座和轴承座圈王顺顺刘建龙上形成一层润滑油膜,从而起到润中国石化润滑油有限公司天津分公司滑作用。设备在实际运行过程中,当新装润滑脂的轴承开始转动时,润滑脂首先从转动元件上被甩出。 Pseinu(比瑟奴) M.GREASE-80 通用型电机轴承润滑脂采用全合成基础油,特别含有独特的聚合物以及金属抗磨离子等多种添加剂精制而成,特别针对电机轴承工况而开发研制的。适应性好,具有高低温性能,可在室内外、南北方通用; 抗磨性好,不甩油、不乳化、不流失、不含有固体润滑物; 长期使用后,外观颜色、酸硷度变化小,无明显氧化现象; 能对润滑表面进行微观修复,减少震动,降低摩擦噪音; 启动力矩小,运转力矩低,功耗少,温升低。 DN值80万以下的大、中、小各类型号的风机轴承,尤其更适合于H 型电机,转速较高的二级电机以及大型电机,化工行业接触酸、碱气体、水蒸气等恶劣条件下的电机,中高速发电机轴承、大功率重载荷电机轴承,如:硫化机轴承、矿山电机轴承、高温风机轴承、化工泵电机轴承、熔盐泵电机轴承、牵引电机轴承、发电机轴承、特种高温风机轴承等。Pseinu(比瑟奴) M.GREASE-80(HS)高温高速电机轴承润滑脂采用先进的混合型基础油,内含独特的抗磨离子,并加有抗氧化、抗腐蚀等多种添加剂精制而成的,特别针对长期高温高速工作电机轴承工况而开发研制的,能对润滑表面进行微观修复,减少震动,降低摩擦噪音,能减少润滑件的磨损,延长电机轴承使用寿命。 能对润滑表面进行微观修复,减少震动,降低摩擦噪音; 满足DN值在120万的高速轴承的长期运行要求; 长期使用后,外观颜色、酸硷度变化小,无明显氧化现象; 能极大地降低摩擦系数,降低摩擦部位的温度; 有极强的物理和化学稳定性,可延长补、加脂周期。 军用,航空航天电机轴承、旋转部件、螺纹机构)民用,高温高速低温中负荷以及低噪音下的设备、长寿命或终生润滑的密封球轴承,如高温电机、风扇轴承、电动工具轴承、牵引电机轴承、交流发电机轴承、特种高温电机轴承、线材轧机导位轮轴承。

化工常用润滑油及其型号

1.液压油——液压传动系统(比如注塑机、挖土) 液压系统用46#(冬季)、68#(夏季)抗磨液压油 2.发动机油——引擎(如发电机、动力机械) 3. 齿轮油——传动齿轮机构(开式、闭式齿轮用油不同) 工业闭式齿轮油: 分类CKB CKC (中载荷齿轮油)CKD(中载荷齿轮油)CKE(蜗轮蜗杆油)CKT(低温中载荷工业齿轮油)CKS(合成烃齿轮油)以上型号68#、100#、150#、220#、320#、460#、680#、1000#、 工业用开式齿轮油: 分为68#、100#、150#、220#、320#、相近,原牌号:(1号、2号、3号、4号)。 减速机、齿轮箱用220#、320#CKC中负荷齿轮油 4.压缩机油——空气压缩机(分往复式、螺杆式和叶片式) 空气压缩机油: 分为型号有L-DAA、L-DAB,32、46、68、100、150,有原牌号13号和19号用于润滑空气压缩机, 往复式空压机一般使用DAB150#空压机油(螺杆机的话要使用46#螺杆式空压机油) 5.冷冻机油——冷冻压缩机(制冷设备) 15、22、32、46、68、100、150、220、320。使用于空调普通制冷压缩机,半封闭及开启式。 6. 防锈油——机件防锈(如钢板、钢缆、链条)

通用防锈油,使用于黑色金属及有色金属长期封存;.置换型防锈油,分为1号、2号、3号、4号。 7. 绝缘油——电路绝缘(如变压器、绝缘开关) 变压器油:分为10号、25号、40号。 8..滑脂——各种轴承、轧棍(分锂基、钙基、铝基等) : 9.其他 1热传导油:分为L-QB、L-QC、L-QD。280℃、320℃、360℃。使用于工业印染、建筑、木材、加工、化工,日常生活食品加工,电取暧———锅炉和热传导系统。 2真空泵油分为:46#、68#、100#。使用于机械真空泵和扩散泵的润滑。 3油膜轴承油:21号(原160号)用于冷扎厂单机架平整机及其同类设备的油膜轴承

纳米二硫化钼作为润滑油添加剂的润滑机理

MoS2晶体属于六方晶系,为典型三明治结构的层状化合物,每个平面层为S-Mo-S的结构,层内Mo和S以共价键结合为三方柱面体结构,层间以微弱的范德华力维系,因此,层状的MoS2容易受外界环境的影响破坏层与层之间的堆垛结构,并形成较为稳定的薄层,当MoS2用作润滑剂时,层状MoS2会转移到金属表面,缓和摩擦和磨损,这一性质使其在摩擦润滑领域有很好的应用,20世纪50年代,普通MoS2就作为固体润滑剂得到了广泛应用。 纳米材料是指至少有一维尺寸为纳米级别的材料,而当材料的尺寸缩小至纳米级别时,会凸显处诸如小尺寸效应、界面效应、量子隧道效应等性能特点。研究表明,一些纳米尺度的固体粒子加入到润滑油中,可以明显提升润滑油的性能,展现出许多优于传统添加剂的特点。近年来,将纳米MoS2用作润滑油添加剂得到了广泛关注,本文主要介绍纳米MoS2作为润滑油添加剂的润滑机理。 润滑机理 1物理吸附/沉积作用 学者们普遍认为,典型的MoS2晶体为层状结构,层与层之间以范德华力连接,在摩擦产生的剪切应力下层状结构剥离,并吸附到摩擦表面,这一过程对抗磨减摩有显著作用,如图1所示

摩擦过程中纳米MoS2的层状剥离 Wu等研究了纯MoS2和硼酸锌/MoS2纳米复合材料的摩擦学性能,研究发现当使用纯纳米MoS2作为添加剂时,有缺陷的MoS2纳米片和部分氧化的MoS2纳米片会导致润滑不良,在润滑油中加入硼酸锌/MoS2纳米复合材料时,具有极压性能的硼酸锌纳米颗粒能有效地填充MoS2纳米片的表面缺陷,并连续提供保护膜,以进一步降低摩擦系数,提高承载能力。还有学者指出,纳米MoS2可以填充摩擦表面的微裂纹区域,对磨损位置起到了修复作用 化学吸附/反应膜 纳米MoS2扩散能力强、表面能高、颗粒表面缺陷结构多,容易参加摩擦化学反应。有学者报道,在钢制摩擦副中纳米MoS2可以生成含FeS、FeSO4等产物的化学反应膜,反应膜的形成减少了摩擦基体的直接接触,降低了摩擦磨损,图2展示了纳米MoS2参加摩擦化学反应的一种典型方式。 纳米MoS2参加摩擦化学反应的一种典型方式

润滑油的型号和分类

润滑油的型号和分类 润滑油的型号和分类 每个润滑油的正规厂商一定会在产品外包装显著位置注明油品牌号,牌号是由一组数 字及英文字母共同构成,如:15W/40SG、5W/30SJ等。牌号前的数字部分如:15W/40、 5W/30代表汽油机油的粘度等级,后面的字母部分如SG、SJ代表汽油机油的质量等级。就是说,汽机油的粘度牌号由两部分构成,即粘度等级与质量等级,其中质量等级是标志汽 机油质量高低的关键。以15W/40SG为例: 15W 40 SG 低温性能黏度等级 质量等级是这样划分的:根据世界通行的美国石油学会SPI的分类,将汽油机油定为 以“S”为系列SA、SB、SC、SD、SF、SG、SH、SJ等多个等级,我国国家标准是等效采用 此方法分类的。质量按字母顺序依次提高,即目前SJ级润滑油是世界上级别最高、质量 最好的汽油机油,市场上常见的长城福星机油、美孚一号均属于SJ级别;SH级次之,市 场常见的有长城机油、美孚等;而SF、SE则属中档产品。下面介绍汽油机油的粘度等级 的划分:按照世界上公认的美国汽车工程师协会SAE制定的粘度等级,根据油品的高、低 温流动性分为:“W”系列和非“W”系列。“W”系列主要以油品的低温性能来划分,“W”前面数字越小,表示低温性能越好,可在越寒冷的温度下使用。如:15W/40粘度等级兼 顾了油品的高、低温性能,我们称它为多级油,可以冬、夏通用。而非“W”系列是以油 品的100℃的粘度大小来划 分,数字越大代表粘度越高,只适用温度较高的地区。 在机油的特性中,最重要的一点是它的粘度。机油的粘度随温度变化,对于那些低温 时粘度小,高温时粘度大,能保证发动机在任何温度下都能正常润滑的机油,我们定义为 多级机油。中档车使用SG级别的机油,按照保养手册定期保养就足够了。机油黏度使用 15W/40,可以保证大部分地区的使用。 一般高档车都要选择高档机油。在高温及严寒情况下,仍能维持适当的粘度,而提供 合适的保护。另外,高档机油因氧化而产生酸质、油泥的趋势小,因而具有更长的使用寿命,对发动机在各种恶劣操作条件下,都能提供适当的润滑和有效的保护。

纳米二硫化钼(MoS2)在润滑材料中的研究进展

纳米二硫化钼(MoS2)在润滑材料中的研究进展 摘要:本文介绍了MoS2的润滑性状、纳米MoS2的性能。对纳米MoS2在轧制液、机械油、铜合金拉拔润滑脂和空间润滑材料中的摩擦学应用与研究现状进行了综述,并对比了微米级与纳米级MoS2在使用中的效果。对未来纳米MoS2在润滑材料中的应用与研究进行了展望。关键词:纳米MoS2;润滑材料;摩擦 The research progress of molybdenum disulfide nanoparticles(MoS2) in lubrication materials Abstract: This paper describes the lubricating properties of MoS2and the performance of nano-MoS2. Nano-MoS2on the rolling fluid, mechanical oil, copper alloy drawing grease and space lubrication materials’ tribology applications and research status are reviewed. The micron and nano-level effect of MoS2 in use is compared. Nano-MoS2 lubricating materials application and research in the future are discussed. Key words: nano-MoS2; lubrication materials; friction 0 引言 二硫化钼(MoS2)用作固体润滑剂已有50多年的历史,是应用最广泛的固体润滑剂。在相同条件下,含MoS2的粘结固体润滑膜在真空中的摩擦系数约为大气中的1/3,而耐磨寿命比在大气中高几倍甚至几十倍。故MoS2粘结固体润滑膜是真空机械润滑的首选润滑材料[1]。从MoS2基固体润滑涂层的发展来看,自1946年美国的NASA路易斯宇航中心开发出第一种含MoS2的有机粘结固体润滑膜以后,20世纪60年代初期,美国就制定了航空飞行器使用的热固化二硫化钼基固体润滑涂层军用标准[2]。我国研制的耐辐射性较好的PI、PPS、EM-1、EMR[3]等二硫化钼基固体润滑涂层,因其性能独特,在航空航天领域的极端工况下及某些民用机械设备上获得了成功的应用[4,5]。近年来研究发现,纳米MoS2比微米MoS2具有更优异的润滑性能[6]。研究纳米MoS2润滑材料对航空及工业生产等具有重要的实际意义。 1 MoS2的润滑性状 如图1[7],MoS2具有层状结构,其晶体为六方晶系。MoS2的润滑作用取决于其晶体结构,层与层间的S原子结合力(范德华力)较弱,故易于滑动而表现出很好的减摩作用。另一方面,Mo原子与S原子间的离子键赋于MoS2润滑膜较

电机润滑脂的正确选用

电机润滑脂的正确选用 电机滚动轴承使用润滑脂种类繁多、型号复杂,对几种常用的润滑脂分别简介如下: 1)钙基润滑脂的外观鉴别,特点和适用场合 由天然脂肪酸钙皂稠化剂制成中等粘度的矿物油钙基润滑脂。由于该脂使用水作为结构稳定剂,以使钙皂水化并形成结晶,因此在使用中应防止工作温度不应太高,以防水份蒸发,而使润滑脂的结构遭到破坏,造成析油现象,因此,钙基润滑脂的使用温度一般不高于60度,适合于在潮湿场所和常与水接触的机械中使用。 外观鉴别:从淡黄色到暗褐色,在玻璃片上涂抹1~2mm 厚的润滑脂层,置于透光检查时而无块状物。 特点:抗水性强、稳定性好、纤维较短、泵送性好、不耐高温;若把它用于高温场合,当轴承运行温度在100度上下,使逐渐变软甚至流失,不能保证润滑,导致轴承损坏,酿成事故;一般允许轴承运行温度60度时长期使用。 按针入度分五个代号,运行上限温度分别为:ZG-1、ZG-2 55度;ZG-3、ZG-4 60度;ZG-5 65度。 适用场合:用于一般工作温度,与水接触的高转速,轻负荷;中转速、中负荷封闭式电动机滚动和滑动轴承的润滑。2)钠基润滑脂的外观鉴别,特点和适用场合 由天然脂肪酸钠皂稠化剂制成中苯粘度的矿物油钠基润滑脂。因脂肪酸钠盐具有亲水性,在水中会形成乳烛液,若少量的水与其接触,可以被脂吸收,但若过量的水与其接触则可能产生极度分散的乳烛液,在一定情况下还会使油脂大量流失。因此钠基脂不宜与水接触或在潮湿处使用,否则将丧失其稠化能力。 外观鉴别:从深黄色到暗褐色的均匀油膏状。

特点:不抗水、稳定性好、纤维较长、耐高温、防护性好、附着力强、耐振动;若把它用于很潮湿的场合,当润滑脂触水水解后而变稀流失,也会导致轴承缺油过早损坏。 按针入度分三个代号,使用上限温度分别为:ZN-2、ZN-3 110度;ZN-41 120度。 适用场合:在较高工作温度,清洁无水份前提下,中速、中等负荷,低速、高负荷开启式或封闭式电动机滚动和滑动轴承润滑。 3)钙钠基润滑脂的外观鉴别,特点和适用场合 由天然脂肪酸钙皂、钠皂稠化剂制成中等粘度的矿物油钙钠基润滑脂。在钙钠基润滑脂中的氧化钙和氧化钠之比,按1:3.5 或1:4混合均匀即可。而其中一种含量较少的皂氧化钙,是作为一种添加剂而加入的,当皂处于结晶状态时,混合皂就有可能在高温时互相溶解,及在冷却时分别晶析。钠皂在室温甚至在熔融状态时急冷的情况下会结晶出来。它的存在会导致钙皂的晶化。而钙皂通常从高温冷却后是处于不完全的晶态的,钙皂的存在会使钠皂的纤维缩短。 外观鉴别:由黄色到深棕色的均匀油膏状。 特点:兼有钙基润滑脂的抗水性,和钠基润滑脂的耐高温性,具有良好的输送性和机械安定性,安全可替代钙基、钠基润滑脂使用。适合于上限温度为80~100度的摩擦部分,在低温情况下是不适合的。 按针入度分二个代号,使用上限温度分别为:ZGN-1 80度;ZGN-2 100度。 适用场合:在较高工作温度,允许有水蒸气的条件下(不适合于低温场合的90kw以下封闭式电动机和发电机滚动轴承润滑),如炉送风机或轧钢机电动机轴承润滑。 4)锂基润滑脂的外观鉴别,特点与适用场合 由天然脂肪酸锂皂稠化剂制成中等粘度的矿物油锂基润滑脂,属国内最新产品,发展前途可观,国内生产起步较晚,落后于发达国家10~20年。

电力设备润滑特点.

电力设备润滑特点: 电力行业设备主要由发电设备和输电设备两大类组成。其中发电设备主要有:蒸汽蜗轮机、水涡轮机、汽轮发电机、核电汽轮机。润滑油品主要是指汽轮机油;输电设备用油主要是变压器油;核电行业的设备主要使用油品为聚苯醚。 发电设备对润滑油的要求: (1)优良的氧化安定性,保证油品在长期循环使用过程中的氧化沉淀物少,酸值增幅小,使用寿命达10年以上。 (2)优良的抗乳化性,容易与水分离,使漏进润滑系统的水在油箱中迅速分离排出,以保证油品的正常润滑和冷却作用。 (3)良好的粘温性,以保证汽轮机组的轴承在不同温度下都能得到良好的润滑。 (4)良好的防锈性,以防止蒸汽和冷凝水渗入系统引起调速系统锈蚀。 (5)良好的抗泡沫性,运行中进入空气而产生泡沫,泡沫过多或不易消失会影响油品的正常循环。 输电设备润滑剂要求: (1)优良的电气绝缘性能,绝缘强度高,介质损失角小。 (2)粘度小,散热快,冷却性能好,能将变压器在运行中产生的热传导出去。 (3)良好的氧化安定性,使用寿命长。 (4)凝点低,有好的低温流动性。

(5)闪点高,蒸发性小,保证在运行温度下能安全工作。 变压器油是减压轻质润滑油馏分,经深度精制,加入抗氧剂等调配而制成。 电力设备包括:汽轮机、变压器、水轮机、风力发电机、风力发电偏航系统、风力发电液压刹车系统、磨煤机等。 一、汽轮机--润滑特点: 汽轮机(见下图所示)是使用电站锅炉产生的过热蒸汽去冲动汽轮机叶片,并使之转动,从而带动汽轮机和汽轮发电机发电的一种动力机械。它是发电设备中的一种原动机。 汽轮机工作原理如下:一定温度和压力气体进入喷嘴,在喷嘴内膨胀加速,气体的热能转化为动能。气体以高速度冲击动叶片,动叶片带动叶轮转动,从而将动能转变成主轴的旋转机械能。主轴通过联轴器与其它机械如风机、发电机等相连,从而驱动这些机械转动。汽轮机由于其功率大,燃料便宜易得,因此,广泛地应用于各行各业,如电力工业、大型化肥厂、石油化工行业、航空发动机以及大型船舶和军舰。 工况特点:汽轮机各轴承及启动部分由于摩擦以及高温蒸汽产生大量的热量,汽轮机油不断地循环流过将这部分热量带走,使汽轮机的温度不超出一定的温度值,起到冷却作用。

电机轴承润滑脂型号

交流电机(160-355)轴承润滑脂基本有以下几种: 一、3号锂基润滑脂 最常用的油脂。主要用于常规Y、Y2及其派生系列。 二、美国加德士高速润滑脂RPM Grease SRI 2 耐高温油脂,耐温-30~+150℃,颜色为绿色。 主要用于环境温度比较高的供柳州富达YLF160~355,IP54电机,还有供戚墅铁路机车电机NTP365T-4等。 三、埃索美孚宝力达润滑脂Polyrex EM 耐高温油脂,耐温-40~+150℃,颜色为蓝色。 主要用于用户特殊要求的地方。如供出口美国的尼玛N250~580电机,目前供大连的NTP184~284T电机上。 四、道康宁润滑脂Molykoto fs-3451 耐高温油脂,耐温-40~+200℃,颜色为白色。 目前只用于大连机车冷却风机外转子电机JY470-16/8的下端轴承的上侧(只加在外面)。 五、德国克鲁勃Kluberquiet BQH72-102高温油脂 耐高温油脂,耐温-40~+200℃,目前仅在柳州富达出口日本压缩机配套的YLF200~225,200V,50Hz和200~220V,60Hz电机上使用过。 直流电机轴承润滑脂

除一小部分铁路电机轴承用L-XEGEB2锂基润滑脂(如:ZPT-62KG、ZTP-63GY、ZTP-63DG、ZTP-180GY)外,其余直流电机均用3号锂基脂。 高压电机轴承润滑油 H355~710 4级~12级(滚动轴承):锂基润滑脂L-XBCHA3 H355~450 2级(滚动轴承):用特级高速轴承润滑脂SR12 H450~630 2级(滑动轴承):汽轮机油L-TSA32# H710以下(滑动轴承):汽轮机油L-TSA46#

固体润滑二硫化钼(MoS2)材料的应用

一、固体润滑二硫化钼(MoS2)材料的应用 固体润滑二硫化钼(MoS2)材料的应用可归纳为以下诸多方两: 1.负荷高的滑动部件,如重型机械、拉丝机械等; 2.高速运动的滑动部件,如弹丸与枪膛之间的滑动面; 3.速度低的滑动部件,如机床导轨等; 4.温高的滑动部件,如炼钢机械、汽轮机等; 上海亿霖润滑材料有限公司:132 **** **** 5. 度低的滑动部件。如致冷机械、液氧、液氨输送机械等:; 6. 高真空条件下的滑动部件,如原子宇航器上的机械等; 7. 接受强辐射的滑动部件,如原子能发电站的某些机械; 8.耐腐蚀的滑动部件,如处于强酸、强碱和海水中的活动部件; 9. 需防止压配装时损坏的部件,如果某些紧固件等; 10.长需期搁置、一旦启动就要求运转很好的部件,如安全装置、汽车驾驶盘的保险装置、导弹防卫系统等; 11. 安装能再接近的部件,如原子能机械、航犬机械等; 12. 安装后不能冉拆卸的部件。如桥梁支承、航天器的密封部件等; 13. 电性良好的滑动部件,如可变电阻触点、电机电刷等; 14. 有微振动的滑动部件,如汽车、飞机等有不平衡件的自动工具等; 15. 不能使用油泵油路系统润滑二硫化钼(MoS2)的机械,如宇宙飞船、人造卫星上的滑动部件等; 16. 环境条件很清洁的滑动部件,如办公机械、食品机械、精密仪表、家用电器和电子计算机等; 17. 耐磨粒磨损的运动部件,如钻探机械、农业耕作机械等; 18. 环境条件很恶劣的运动部件,如矿山机械、建筑机械、潜水机械等。 还可以列出一些固体润滑二硫化钼(MoS2)材料的垃用范畴。每一类间体润滑二硫化钼(MoS2)材料可以在多个领域、多种工业或多种工况条件下得到应用。而每一个领域、每一种工业或每一种工况条件下也可以成用多种类型的固体润滑二硫化钼(MoS2)材料。其中涉及到固体润滑二硫化钼(MoS2)材料的设计、制备工艺方法和应用技术等,下面仅举几方面得到成功应用的范例。

固体润滑剂的特性

固体润滑剂的特性 文章来源:开拓者钼业 https://www.docsj.com/doc/b73875765.html, 1.3.1 固体润滑剂的特性 1.3.1.1 摩擦特性 所有的摩擦副都要承受一定的负荷或传递一定的动力,并且以一定的速度运动。黏着于摩擦表面的固体润滑剂在与对偶材料摩擦时,在对偶材料表面形成转移膜,使摩擦发生在固体润滑剂之间。这样才能表现出零号的摩擦特性——较低的摩擦系数。 固体润滑剂的摩擦特性与其剪切强度有关,剪切强度越小,摩擦系数则越小。层状结构润滑材料在摩擦力的作用下,容易在层与层之间产生滑移,所以摩擦系数小。软金属润滑材料能产生晶间滑移,剪切强度也很小,因而这些物质可以作为固体润滑剂。 1.3.1.2 承载特性 对偶材料在摩擦时,由于摩擦表面的粗糙度,会使微凸体处产生局部高温,而且,负荷越大,温度越高,速度越快,温升也越大,因而磨损也越大。 固体润滑剂应该具有承受一定负荷和运动的速度的能力,即承载能力。在它所能承受的负荷和速度范围内,应该使摩擦副保持较低的摩擦系数,不使对偶材料间发生咬合,而且应使磨损减到最小。 为了使固体润滑剂在规定的工作条件下充分发挥其润滑作用,对于轴承等材料来说,有个特定的标量,即pv值(pa·m/s)——负荷与速度的乘积。对于每种润滑材料,都有其极限pv值(超过该值运行便

失效)和工作pv值(正常工作条件),通常,工作pv值为极限pv值的一半左右。 固体润滑膜的承载特性与其本身的材质有关,尤其受其物理学性能的影响,同时也与固体润滑剂在基材料上的结合强度有关。结合强度越高,承载能力越大。 1.3.1.3 耐磨性 对偶材料在一定负荷和速度下发生摩擦,总会产生磨损。固体润滑剂的耐磨性能与下列两个因素有关。 1)固体润滑剂对摩擦比偶民的黏着力越强,越容易形成转移膜,其耐磨性也越好,固体润滑膜的寿命越长。 2)固体润滑剂应该具有不低于基材的热膨胀系数。当摩擦引起升温时,由于其热膨胀系数较高而将突出基于基材表面,并与对偶材料接触,不断提供固体润滑剂,以维持较好的耐磨性能。 同时,固体润滑剂的耐磨性与气氛黄精条件有关。 1.3.1.4 宽温性 固体润滑剂应能在一定的温度范围内工作。目前,固体润滑剂的使用温度上限在1200℃(金属压力加工中所使用的固体润滑剂),最低温度在-270℃左右(液氧和液氮等输液泵轴承的固体润滑)。但是,无论何种固体润滑剂都没有这样宽的工作范围。实际使用的固体润滑剂只要求适用于某一特定的温度范围,而且通过制造特定的复合润滑材料便可以用于某个温度范围工作。在一定工作温度范围内,固体润滑剂应该具有较低的摩擦系数、较好的润滑性能和耐磨性。

耐湿性二硫化钼固体润滑膜及其制造方法

分 类 号证 书 号类型申请国家申 请 日专 利 期 限C23C01816189442 发明中华民国89/06/3092/09/21~109/06/29适于高湿度之环境中使用。其镀膜组织较致密化,使二硫化钼固体润滑膜具有良好之机械性质,例如硬度由HV150左右提高到HV500以上,并仍保持其摩擦系数在0.05以下而继续发挥其固体润滑效果;金属中间层介于二硫化钼镀膜与工件间,以增强二硫化钼镀膜与工件间之附着力,使镀膜不易自工件脱落。 特 色 及 优 点 耐湿性二硫化钼固体润滑膜及其制造方法 发 明 人 李新中、杨玉森、卓廷彬应 用 面 固体润滑剂 摘 要 一种耐湿性二硫化钼固体润滑膜,系于二硫化钼镀膜中,掺入适量(约2-50at%)之金属,该金属之氧化电位须大于钼之氧化电位,如钛或铬等金属。因此,所掺入之金属得优先与潮湿空气中之氧气及水气反应,防止二硫化钼固体润滑膜之二硫化钼与潮湿空气中之氧气及水气反应,其在高湿度(相对湿度80%以上)的环境下仍保可持其良好之固体润滑性,亦即其摩擦系数不会随湿度和时间而急遽上升。此外,所掺入之金属可使二硫化钼固体润滑膜组织较致密化,使其具有良好之机械性质,例如硬度由HV150左右提高到HV500以上,并仍保持其摩擦系数在0.05以下而继续发挥其固体润滑效果。 1.一种涂层耐湿性二硫化钼固体润滑膜于一工  件之制造方法,其包含下列步骤:  清洗该工件表面,  将清洗后工件置放于一蒸镀设备中,  将挡板遮住二硫化钼靶,  通入Ar气,启动靶电流,将一钛或铬金属靶  之钛或铬原子击出,镀于工件表面以形成一  金属中间层,及  将二硫化钼靶之挡板移开,将二硫化钼靶及  钛或铬金属靶之钛或铬原子击出,镀于工件  表面以形成一二硫化钼与钛或铬原子镀膜。申请专利范围图 式 首 页

相关文档