文档视界 最新最全的文档下载
当前位置:文档视界 › (完整word版)湿度露点饱和水蒸气压计算公式

(完整word版)湿度露点饱和水蒸气压计算公式

(完整word版)湿度露点饱和水蒸气压计算公式
(完整word版)湿度露点饱和水蒸气压计算公式

饱和水蒸气压公式

饱和是一种动态平衡态,在该状态下,气相中的水汽浓度或密度保持恒定。在整个湿度的换算过程中,对于饱和水蒸气压公式的选取显得尤为重要,因此下面介绍几种常用的。

(1)、克拉柏龙-克劳修斯方程

该方程是以理论概念为基础的,表示物质相平衡的关系式,它把饱和蒸汽压随温度的变化、容积的变化和过程的热效应三者联系起来。方程如下:

T-为循环的温度;dT-为循环的温差;L-为热量,这里为汽化潜热(相变热);ν-为饱和蒸汽的比容;ν^-为液体的比容;e-为饱和蒸汽压。

这就是著名的克拉柏龙-克劳修斯方程。该方程不但适用于水的汽化,也适用于冰的升华。当用于升华时,L为升华潜热。

(2)、卡末林-昂尼斯方程

实际的蒸汽和理想气体不同,原因在于气体分子本身具有体积,分子间存在吸引力。卡末林 - 昂尼斯气体状态方程考虑了这种力的影响。卡末林-昂尼斯于1901年提出了状态方程的维里表达式(e表示水汽压)。

这些维里系数都可以通过实验测定,其中的第二和第三维里系数都已经有了普遍的计算公式。例如接近大气压力,温度在150K到400K时,第二维里系数计算公式:

一般在我们所讨论的温度范围内,第四维里系数可以不予考虑。

(3)、Goff-Grattch 饱和水汽压公式

从1947年起,世界气象组织就推荐使用 Goff-Grattch 的水汽压方程。该方程是以后多年世界公认的最准确的公式。它包括两个公式,一个用于液 - 汽平衡,另一个用于固 - 汽平衡。

对于水平面上的饱和水汽压

式中,T0为水三项点温度 273.16 K

对于冰面上的饱和水汽压

以上两式为 1966 年世界气象组织发布的国际气象用表所采用。

(4)、Wexler-Greenspan 水汽压公式

1971年,美国国家标准局的 Wexler 和 Greenspan 根据 25 ~ 100 ℃范围水面上饱和水汽压的精确测量数据,以克拉柏龙一克劳修斯方程为基础,结合卡末林 - 昂尼斯方程,经过简单的数学运算并参照试验数据作了部分修正,导出了 0 ~ 100 ℃范围内水面上的饱和水汽压的计算公式,该式的计算值与实验值基本符合。

式中常数项的个数 n 一般取 4 ~ 8 ,例如 n 为 4 时,各项系数为:

C 0 =-0.60436117 × 10 4 、 C 1 =0.1893292601 × 10 2 、 C 2 =-0.28244925 × 10 -1 、 C 3 =0.17250331 × 10 -4、 C 4 =0.2858487 × 10

由于冰面上的饱和水汽压试验数据较少, Wexler 类似 0 ~ 100 ℃范围内水面上的饱和水汽压的计算公式,使用了 Guildner等人的三相点蒸气压试验数据,导出了冰面上的饱和水汽压公式,类似于上式,不再列出。

(5)、饱和水汽压的简化公式

上述的饱和水汽压公式均比较繁杂,为了适应大多数工程实践需要,特别是利于计算机、微处理器编程需要,总结了一组简化饱和水汽压公式

对于水面饱和水汽压

对于冰面饱和水汽压

上式与 Goff-Gratch 和 Wexler 公式的最大相对偏差小于 0.2% 。

以上五个求饱和水蒸气压值的公式很具有代表性,与此相关的公式也基本通过它们得来,包括 Michell 公司和Thunder 公司。

在这里介绍一下 Michell 公司和 Thunder 公司在程序中所使用的饱和水蒸汽压以及露点温度和增强因子等几个重要参量的计算公式。

(6)、Michell Instruments Ltd 中使用的饱和水汽压计算公式

通过查阅资料知 Michell 公司计算饱和水蒸气压的计算公式,一组是简化的,一组是复杂的。

简化公式如下(饱和水蒸气压的单位:Pa):

在水面上:

其中温度范围是: -45 ℃ ~+60 ℃;不确定度小于±0.6% ;置信空间在 95% 。

在冰面上:

其中温度范围是: -65 ℃ ~+0.01 ℃;不确定度小于± 1.0% ;置信空间在 95% 。

另一组复杂公式如下所示:

在水面上:

在冰面上:

该组公式也相应的给出了不确定度,在水面上温度范围从 0℃ ~100℃,饱和水蒸气压的不确定小于0.1% ,而对于过冷水即 -50℃ ~0℃不确定度为0.6% ;在冰面上温度范围从-100℃ ~0.01℃,饱和水蒸气压的不确定小于1% ;上述两公式的置信空间都在95%。

资料中给出的露点计算公式是将求饱和水蒸气压简化公式中的温度值反推,公式如下:

在水面上:

在-45℃ ~+60℃ 温度范围内,露点值 td 的不确定度为 ±0.04℃ 。 在冰面上:

在-65℃~+0.01℃ 温度范围内,霜点值 td 的不确定度为±0.08℃ 。

在增强因子的计算中, Michell 也给出了两个公式,条件主要是由环境的压力值来确定的,公式如下: 若压力 P 在 3kPa ~ 110kpa 间:

该公式在 -50 ℃ ~+60 ℃ 内计算出的 f 值的不确定度在 ± 0.08% 内。 若压力 P 在一标准大气压至 2MPa :

其中,

,,A i 和 B i 的值如下表:

过冷水 -50 ℃ ~0 ℃ 水面上 0 ℃ ~100 ℃ 冰面上 -100 ℃ ~0 ℃ A1 3.62183 × 10 -4 3.53624 × 10 -4 3.64449 × 10 -4 A2 2.60553 × 10 -5 2.93228 × 10 -5 2.93631 × 10 -5 A3 3.86501 × 10 -7 2.61474 × 10 -7 4.88635× 10 -7 A4 3.82449 × 10 -9

8.57358 × 10 -9

4.36543 × 10 -9

B1 -10.7604 -10.7588 -10.7271 B2 6.39725 × 10 -2 6.32529 × 10 -2 7.61989 × 10 -2 B3 -2.63416 × 10 -4 -2.53591 × 10 -4 -1.74771 × 10 -4 B4

1.67254 × 10 -6

6.33784 × 10 -7

2.46721 × 10 -6

(7)、HumiCalc 中使用的饱和水汽压公式

Thunder 公司分别给出了在 68 温标和 90 温标下的计算公式,由于现在涉及到温度的计算都采用 90 温标,因此本文中所提到的公式没有特殊说明都是采用 90 温标。饱和水蒸气压的计算公式如下: 在水面上:

, T 的单位为 K :温度范围 t : 0℃ ~100℃

系数 g 值列表如下

g 0

g 1

g 2

g 3

g 4

g 5

g 6

g 7

-2836.5744 -6028.076559 19.54263612 -0.027******** 1.6261698 × 10 -5 7.0229056 × 10 -10 -1.8680009 × 10 -13

2.7150305

在冰面上:

, T 的单位为 K :温度范围 t : -100 ℃ ~0 ℃

系数 k 值列表如下

k 0

k 1

k 2

k 3

k 4

k 5

-5886.6426 22.32870244 0.0139387003 -3.4262402 × 10 -5

2.7040955 × 10 -8

-0.67063522

Thunder 公司的饱和水蒸气的计算公式是根据 Wexler-Greenspan 水汽压公式来的,只是方程中所用的系数值 g 和 k 取得更加精确,所查阅的 Thunder 公司资料中没有指出其公式计算出的不确定度,但我们同 Michell 公司的公式以及相应的其它同类计算公式比对从数据上可以看出值是比较接近的,说明该公式精度是很高的,只是公式的表达方式不同。

Thunder 公司的露点和霜点的计算公式,如下: 在水面上(露点计算公式):

c 和

d 系数列表值:

c 0

c 1

c 2

c 3

d 0

d 1

d 2

d 3

207.98233 -20.156028 0.46778925

-9.2288067 × 10 -6

1 -0.13319669

5.6577518 × 10 -3

-7.5172865 × 10 -5

在冰面上(霜点计算公式):

c 和

d 系数列表值:

c 0

c 1

c 2

d 0 d 1

d 2

d 3

212.57969 -10.264612 0.14354796 1

-8.2871619 × 10 -2

2.3540411 × 10 -3

-2.436395 ×

10 -5

对增强因子的计算,Thunder 公司只给出了一种公式,格式上看同 Michell 公司给出的公式例同(压力 P 在一标准大气压至2MPa 间的),只是在 Ai 和 Bi 的取值稍有不同,公式如下:

其中,Ai 和 Bi 的值如下表:

系数 过冷水 -50 ℃ ~0 ℃ 水面上 0 ℃ ~100 ℃ 冰面上 -100 ℃ ~-50 ℃ 冰面上 -50 ℃ ~0 ℃ A1 3.62183 × 10 -4 3.53624 × 10 -4 9.8830022 × 10 -4 3.61345 × 10 -4 A2 2.6061244 × 10 -5 2.9328363 × 10 -5 5.7429701 × 10 -5 2.9471685 × 10 -5 A3 3.8667770 × 10 -7 2.6168979 × 10 -7 8.9023096× 10 -7

5.2191167 × 10 -7

A4 3.82449 × 10 -9 8.5813609 × 10 -9 6.2038841 × 10 -9 5.0194210 × 10 -9 B1 -10.7604

-10.7588

-10.415113

-10.7401

B2 6.3987441 × 10 -2 6.3268134 × 10 -2 9.1177156 × 10 -2 7.3698447 × 10 -2 B3 -2.6351566 × 10 -4 -2.5368934 × 10 -4 5.1128274 × 10 -5 -2.6890021 × 10 -4

B4 1.6725084 × 10 -6 6.3405286 × 10 -7 3.5499292 × 10 -6 1.5395086 × 10 -6

基础知识

(1)干空气与水蒸气的分压

自然界的空气总含有一些水蒸汽,可称之为湿空气,即湿空气可看成干空气与水蒸气的混合物。若令P代表大气压强,即湿空气的总压,Pa 和 Pw 分别代表干空气及水蒸气的分压,则按道尔顿分压定律有:

( Pa )

(2)露点Td和霜点Tf:

如果给定的空气在水汽压不变的情况下逐渐冷却,当达到某一温度时,空气的水汽压达到了该温度下的饱和蒸汽压,当空气进一步冷却时,如果在空气中有一个光洁的平面和“冷凝核心”(如表面上的微粒和缺陷的棱角),水汽就会在平面上凝结成露点,此温度Td称为露点温度,确切的说,应为热力学露点温度;当空气的温度低于0℃时,水汽在平面上凝结成霜,该温度Tf被称为霜点。

露点和露点的计算公式详见饱和水蒸气压公式中的介绍。

(3)相对湿度 %RH :

相对湿度是指空气中水汽的摩尔分数与相同温度(T)、压力(P)下纯水表面的饱和水汽的摩尔份数之比,用百分数表示。

式中,e-表示水气分压(Pa) ;ew-表示饱和水蒸气压力(Pa) ;

相对湿度越小,就表示是空气离饱和态越远,尚有吸收更多水蒸气的能力,即空气越干燥,吸收水蒸气能力越强;反之,相对湿度越大,吸收水蒸汽能力越弱,即空气越潮湿。相对湿度反映了湿空气中水蒸汽含量接近饱和的程度,故又称饱和度。

(4)气象相对湿度 %RH :

气象相对湿度的定义同(3)相对湿度 %RH 的定义基本相同,只是低于 0 ℃时,相对湿度仍以过冷水即液面饱和水汽压计算公式来计算饱和气压值,所以在计算ew时我们始终用水面上饱和气压值计算公式来计算(低于0℃看成过冷水),这点在同标准相对湿度是不同的。

(5)水气分压WVP;

就是在总压下水蒸汽所占的压力,表示为e,若将湿空气视作理想二元气体混合物,根据道尔顿分压定律,引入摩尔分数可得到:

式中P为实际气体的压力(包括水汽分压e与干空气分压Pa),r表湿空气的混合比。

(6)饱和水蒸汽压力SWVP,

即湿空气处于露点温度或霜点温度(饱和状态时)时水蒸气所占的分压值。

(7)混合比R(W):

湿空气的混合比R(W)是指湿空气中所含的水汽质量和与它共存的干空气质量的比值。

当把湿空气视作理想气体时,由理想气体状态方程可以导出如下关系式:

式中,Mw为水的分子量(18.0153),Ma为干空气的分子量(28.9635)。

(8)混合比R(V):

气体的湿度除可用质量比的形式来表示之外,也可以用体积比来表示,即水汽体积与干空气体积之比。

体积混合比

对于理想状态有

(9)PPM(V):

在湿度测量中体积比还经常用水汽的体积和与之共存的干空气的体积之比(百万分之一)来表示,即PPM(V) ,公式如下:

式中, P为湿空气的总压力;e为湿空气中的水汽分压。

(10)PPM(W):

以“百万分之一”为计算单位表示的水汽与其共存的干空气的质量之比,公式如下:

式中,mw是给定的湿空气中的水汽质量,单位为g;

ma是与质量为mw的水汽共存的干空气质量,单位为g。

(11)比湿:

湿空气中的水汽质量与湿空气的总质量之比,表示式为:

当把湿空气视作理想气体时,将理想气体状态方程代入上式,可以导出如下关系式:

(12)绝对湿度:

绝对湿度亦称为水气浓度和水气密度,定义为湿空气中的水汽质量与湿空气的总体积之比,表示为:

式中,V是湿空气的总体积(m3),ρw是绝对湿度(g/m3)

如果将湿空气视作理想气体,可导出如下关系式:

(13)焓H:

湿空气的热含量是指单位质量绝热干空气在常压下,以0℃为基准的热焓,用H表示,单位为kJ/kg干空气:

式中:d为空气的含湿量 ( kg 水蒸气 /kg 干空气 )

Ca,Cw —绝干空气与水蒸气在 0~t℃的平均定压比热,它们是温度的函数,在200℃以下的干燥范围内可取

Ca=1.006,

Cw=1.930kJ/kg℃;t—空气的温度℃;2490是水在0℃时的汽化潜热,kJ/kg 。

(14)湿球温度Tw :

在压力为P、温度为T条件下,纯水—湿空气体系进行绝热蒸发,达到平衡状态时湿球所对应的温度就叫湿球温度Tw。

根据干湿表公式,空气的水汽压e(mb)为:

式中,e tw-为湿球温度tw所对应的纯水平液面的饱和水汽压(mb);当湿球结冰时,即为纯水平冰面的饱和水汽压;

A—为干湿表系数(℃^(-1) )。在湿球球部(柱状)通风速度为3.5m/s条件下,

当湿球未结冰时 A=0.667×10^(-3)(℃^(-1) );当湿球结冰时 A=0.588 ×10^(-3)(℃^(-1) )。

P—为本站气压(mb);t—为干球温度(℃);tw —为湿球温度(℃)。

(15)增强因子f:

由于实际气体并非理想气体,所以实际气体混合物并不完全遵守道尔顿分压定律,具体地说,当水汽与其临界温度以下的其他气体混合时和水面或冰面平衡时的水汽压力与只存在纯水汽的情况不同,一般称作有效饱和压力e'( 有效饱和压力比只有纯水汽时的饱和压力要大 ) 。

e'=f*e

式中, f 称为增强因子;

e-为气相纯水汽时的饱和压力;

e'-为相同条件下与其它气体共存时的饱和水气分压。

(16)体积百分比:

在标准压力和温度下,湿空气中水汽所占有的体积与其它总体积的百分比,公式如下:

体积百分数

对于理想状态有

(17)重量百分比:

湿空气中所含的水汽质量和与它共存的干空气质量的百分比,公式如下:

当把湿空气视作理想气体时,由理想气体状态方程可以导出如下关系式:

(18)干空气密度:

根据理想气体方程得干空气密度公式为:

Pa- 空气压力( Pa );

Psat- 对应与空气温度t的饱和水蒸气压力;

Ra- 干空气的气体常数,取 Ra=287;

RH- 表相对湿度。

(19)湿空气密度:

由含湿量公式和理想气体状态方程可的:

Ra 及 Rv 为干空气及水蒸气的气体常数, J/kg K;

其中,

公式整理,得:

(20)水蒸气摩尔分数:

在气体混合物中,水蒸气的摩尔分数定义为该水蒸气的摩尔数与混合气体的总摩尔数之比。对于视作二元体系的湿空气来说,水汽的摩尔分数为:

式中,nw为水汽的摩尔数,na为干空气的摩尔数。

当湿空气被看作理想气体时,有下列关系:

(21)干空气摩尔分数:

在气体混合物中,干空气的摩尔分数定义为该干空气的摩尔数与混合气体的总摩尔数之比。对于视作二元体系的湿空气来说,干空气的摩尔分数为:

式中,nw为水汽的摩尔数,na为干空气的摩尔数。

当湿空气被看作理想气体时,有下列关系:

(22)含湿量:

指把每千克干空气中所含水蒸汽质量(g)称为含湿量或水分含量用符号d表示,它实际上是扩大了 1000 倍的混合比,即:

(23)湿空气比容:

单位质量的湿空气的体积称为比容,用Rs表示,它是湿空气密度的倒数,即:

上面的基本概念几乎包括了湿度领域的所有,看过之后是不是感觉收益匪浅啊。

相对湿度与露点对照表

室内温度25℃时露点与相对湿度对照表相对湿度露点相对湿度露点0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -2 4.49 1 5.0% -3.02 2.2% -24.02 1 6.0% -2.25 2.3% -23.57 1 7.0% -1.15 2.4% -23.14 1 8.0% -0.83 2.5% -22.73 1 9.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31 3.3% -19.86 90.0% 23.24 3.4% -19.55 3.5% -19.25 3.6% -18.95 3.7% -18.67 3.8% -18.39 3.9% -18.11

饱和蒸气压计算方法

饱和蒸气压 编辑[bǎo hézhēng qìyā] 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气 压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气 压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于 液态的饱和蒸气压。 目录 1定义 2计算公式 3附录 ?计算参数 ?水在不同温度下的饱和蒸气压 1定义编辑 饱和蒸气压(saturated vapor pressure) 例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的 饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性 质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2计算公式编辑 (1)Clausius-Claperon方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸气压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron 方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方 程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lg p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最 简单的改进,在1.333~199.98kPa范围内误差小。 3附录编辑 计算参数 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公 式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2) 公式进行计算 lgP=-52.23B/T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表1 不同物质的蒸气压 名称分子式范围(℃) A B C 1,1,2-三氯乙烷C2H3Cl3 \ 6.85189 1262.570 205.170 1,1,2一三氯乙烯C2HCl3 \ 7.02808 1315.040 230.000 1,2一丁二烯C4H6 -60~+80 7.16190 1121.000 251.000

水在不同温度下的饱和蒸气压

水在不同温度下的饱和 蒸气压 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

饱和蒸(saturatedvaporpressure) 在密闭条件中,在一定下,与或处于相的蒸气所具有的称为饱和蒸气压。同一在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为,为。而在100℃时,水的饱和蒸气压增大到,乙醇为。饱和蒸气压是液体的一项重要,如液体的、液体的相对挥发度等都与之有关。 饱和蒸气压 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在~范围内误差小。 附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2) 氯化银AgCl1255~1442公式(2)三氯化铝AlCl370~190公式(2)氧化铝Al2O31840~2200公式(2)

室内温度25℃时露点与相对湿度对照表 文档

时露点与相对湿度对照表 ℃时露点与相对湿度对照表 25℃ 室内温度25 相对湿度 露点 相对湿度 露点 0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -24.49 15.0% - 3.02 2.2% -24.02 16.0% -2.25 2.3% -2 3.57 17.0% -1.15 2.4% -2 3.14 18.0% -0.83 2.5% -22.73 19.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31 3.3% -19.86 90.0% 23.24 3.4% -19.55 3.5% -19.25 3.6% -18.95 3.7% -18.67 3.8% -18.39 3.9% -18.11

湿度空气计算方法

相对湿度、露点温度转换的基本原理说明 湿度研究对象是气体和水汽的混合物。 无论是对于自由大气中的空气而言,还是对密闭容器中的特定气体而言,但凡是气体和水汽的混合物,都可以作为湿度的研究对象,湿度研究的一般理论大多都是通用的。 湿度的表示方法很多,包括混合比、体积比、比湿、绝对湿度、相对湿度等等,虽然各单位之间的转换非常复杂,但其定义都是基于混合气体的概念引出的。相对湿度是比较常用的湿度单位,是一个相对概念(所以,相对湿度是一个无量纲单位),主要有以下几种定义表达: 1、 压力为P,温度为T的湿空气的相对湿度,是指在给定的湿空气中,水汽的摩尔分数(或实际水汽压)与同一温度T和压力P下纯水表面的饱和水汽的摩尔分数(或饱和水气压)之比,用百分数表示。 2、实际水汽压与同一温度条件下的饱和水汽压的比值 从相对湿度的定义中可以看出,相对湿度的计算,是通过混合气体的实际水汽压与同状态下(温度、压力)水汽达到饱和时其饱和水汽压相比得来的。 对于混合气体而言,其实际水汽压与总压力和混合比相关,但对于物质的量而言,是独立的,也就是无相关的。但是,在保持混合气体压力不变的情况下,混合气体的饱和水汽压是与温度相关的(在湿度论坛中,本人给出了温度to饱和水汽压的简化公式以及计算程序,可下载)。 上面说道:饱和水汽压是与温度相关的量。 在保持系统的混合比、总压力不变的情况下,降低混合气体的温度,能够降低混合气体的饱和水汽压,从而使得混合气体的饱和水汽压等于混合气体的实际水汽压,此时,相对湿度为100%,该温度,即为混合气体的露点温度。 基于上述解释,可以看出,只要测量得到了露点温度,通过温度to饱和水汽压的计算公式或者计算程序,即可计算出混合气体的在露点温度时的饱和水汽压,也就是正常状态下混合气体的实际水汽压。 同样,只要测量了当前混合气体的正常温度,就可以通过温度to饱和水汽压的计算公式或者计算程序,得到当前系统正常温度下的饱和水汽压 实际水汽压除以饱和水汽压,就可以得到相对湿度。 湿度的单位换算 测湿仪表的显示值,通常是相对湿度或露点温度,在需要用其它单位时可进行换算。换算的方法如下: 1.相对湿度与实际水汽压间的换算 由相对湿度的定义可得: ---------------------------(1) 式中:RH----相对湿度,%RH; e----实际水汽压,hPa; E---饱和水汽压,hPa。 因此: -------------------------------(2) 即:实际水汽压等于相对湿度乘以相同温度下的饱和水汽压。 由于饱和水汽压E是温度的函数,所以用相对湿度换算为实际水汽压或用实际水汽压计算相对湿度,都必须已知当时的温度值。在计算饱和水汽压时,应确定是冰面还是水面,以正确选用计算公式。 2.相对湿度换算为露点温度 由于露点温度定义为空气中的水汽达到饱和时的温度,所以,必须先计算出实际水汽压。根据露点的定义,这时的水汽压就是露点温度对应的饱和水气压。因此,可以用对饱和水汽压求逆的方法计算露点温度。 用Goff-Grattch方程求逆非常困难,常用饱和水汽压的简化公式计算,而 简化公式很多,一般采用国军标GJB1172推荐的公式: ----------(3) 式中:E------为饱和水汽压,Pa;

水在不同温度下的饱和蒸气压

饱和蒸气压(saturated vapor pressure) 在密闭条件中,在一定温度下,与液体或固体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为,乙醇为。而在100℃时,水的饱和蒸气压增大到,乙醇为。饱和蒸气压是液体的一项重要物理性质,如液体的沸点、液体混合物的相对挥发度等都与之有关。 饱和蒸气压曲线 水在不同温度下的饱和蒸气压 Saturated Water Vapor Pressures at Different Temperatures

编辑本段饱和蒸汽压公式 (1)Clausius-Claperon方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron 方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:ln p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方

程最简单的改进,在~范围内误差小。 编辑本段附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表1 不同物质的蒸气压 名称分子式范围(℃) A B C 银Ag 1650~1950 公式(2)250 氯化银AgCl 1255~1442 公式(2) 三氯化铝AlCl3 70~190 公式(2)115 氧化铝Al2O3 1840~2200 公式(2)540 砷As 440~815 公式(2)133 砷As 800~860 公式(2) 三氧化二砷As2O3 100~310 公式(2) 三氧化二砷As2O3 315~490 公式(2) 氩Ar ~ 公式(2) 金Au 2315~2500 公式(2)385 三氯化硼BCl3 …… 钡Ba 930~1130 公式(2)350 铋Bi 1210~1420 公式(2)200 溴Br2 …… 碳 C 3880~4430 公式(2)540 二氧化碳CO2 …… 二硫化碳CS2 -10~+160 一氧化碳CO -210~-160 四氯化碳CCl4 …… 钙Ca 500~700 公式(2)195 钙960~1100 公式(2)370 镉Cd 150~ 公式(2)109 镉500~840 公式(2) 氯Cl2 (240) 二氧化氯ClO2 -59~+11 公式(2) 钴Co 2374 公式(2)309 铯Cs 200~230 公式(2) 铜Cu 2100~2310 公式(2)468 氯化亚铜Cu2Cl2 878~1369 公式(2) 铁Fe 2220~2450 公式(2)309 氯化亚铁FeCl2 700~930 公式(2)

关于露点温度的计算方法

关于露点温度的计算方法 2010-10-25 16:37:42| 分类:工作| 标签:|字号大中小订阅 因为看到很多朋友发帖子,询问露点温度的计算方法,没有发现太确切的跟帖,现举例说明如下: 例如:23℃,RH45%的湿度,对应的露点温度算法: 先在温度对应的饱和水汽压上查找23℃,对应的饱和水汽压——21.07毫米汞柱,再用21.07×45%(需要的湿度)=9.4815,在下表中查询此值9.4815对应的饱和水汽压,没有完全吻合的值,就在其上下临界点按比例取一个温度值即为露点温度,因此,23℃,45%的湿度,对应的露点温度为10.5℃。 知道为什么这么计算吗?道理很简单,就是假设我们需要设定23℃时的饱和蒸汽压,那么对应的气压值是21.07毫米汞柱,可是我们需要的不是饱和的,是RH45%,那么21.07的45%,是我们实际需要的水气压值即9.4815,我们假设这个水汽压值是另外一个温度对应的饱和水汽压,这个饱和水汽压恰恰是由湿度供给系统来确保提供的,那么这个水汽压对应的温度即是10.5℃即是我们要得到的水蒸汽(湿度)供给系统所需要设定的露点温度(汽压达到饱和时的温度)。通俗一点讲就是10.5℃的饱和蒸汽压放到23℃的环境里就只有45%的相对湿度啦! 这里大家一定要知道什么是“露点温度”,露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。 不同温度时饱和水汽压(P)(单位:毫米高水银柱)

空气温度湿度对照表

单位体积空气中所含水蒸汽的质量,叫做空气的“绝对湿度”。它实际上就是水汽密度。它是大气干湿程度的物理量的一种表示方式。通常以1立方米空气内所含有的水蒸汽的克数来表示。单位为克/立方米或克/立方厘米。水蒸汽的压强是随着水蒸汽的密度的增加而增加的,所以,空气里的绝对湿度的大小也可以通过水汽的压强来表示。由于水蒸汽密度的数值与以毫米高水银柱表示的同温度饱和水蒸汽压强的数值很接近,故也常以水蒸汽的毫米高水银柱的数值来计算空气的干湿程度。空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的“相对湿度”。空气的干湿程度和空气中所含有的水汽量接近饱和的程度有关,而和空气中含有水汽的绝对量却无直接关系。例如,空气中所含有的水汽的压强同样等于1606.24pa(12.79毫米汞柱)时,在炎热的夏天中午,气温约35℃,人们并不感到潮湿,因此时离水汽饱和气压还很远,物体中的水分还能够继续蒸发。而在较冷的秋天,大约15℃左右,人们却会感到潮湿,因这时的水汽压已经达到过饱和,水分不但不能蒸发,而且还要凝结成水,所以我们把空气中实际所含有的水汽的密度ρ1与同温度时饱和水汽密度ρ2的百分比ρ1/ρ2×100%叫做相对湿度。也可以用水汽压强的比来表示露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。所以露

点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。湿球温度的定义是在定压绝热的情况下,空气与水直接接触,达到稳定热湿平衡时的绝热饱和温度。

关于露点温度的计算方法(DOC)

关于露点温度的计算方法 例如:23℃,RH45%的湿度,对应的露点温度算法: 先在温度对应的饱和水汽压上查找23℃,对应的饱和水汽压——21.07毫米汞柱,再用21.07×45%(需要的湿度)=9.4815,在下表中查询此值9.4815对应的饱和水汽压,没有完全吻合的值,就在其上下临界点按比例取一个温度值即为露点温度,因此,23℃,45%的湿度,对应的露点温度为10.5℃。 知道为什么这么计算吗?道理很简单,就是假设我们需要设定23℃时的饱和蒸汽压,那么对应的气压值是21.07毫米汞柱,可是我们需要的不是饱和的,是RH45%,那么21.07的45%,是我们实际需要的水气压值即9.4815,我们假设这个水汽压值是另外一个温度对应的饱和水汽压,这个饱和水汽压恰恰是由湿度供给系统来确保提供的,那么这个水汽压对应的温度即是10.5℃即是我们要得到的水蒸汽(湿度)供给系统所需要设定的露点温度(汽压达到饱和时的温度)。通俗一点讲就是10.5℃的饱和蒸汽压放到23℃的环境里就只有45%的相对湿度啦! 这里大家一定要知道什么是“露点温度”,露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于

露点温度。所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。 不同温度时饱和水汽压(P)(单位:毫米高水银柱) 室内空气露点查询表

露点和相对湿度

露点的原始定义一般说来是:湿度一定压力一定的被测量气体被降温,当降到一个特定的温度时出现结露现象,此时这个特定温度就是这个压力条件下的露点温度。所以才出现了从原始定义出发测量露点的镜面式露点仪,GE的测量镜面采用铂铑合金。 相对湿度是被测量气体的水蒸气分压与相同压力、温度条件下净水表面饱和水蒸气分压的比值。范围0-100% 单位RH,无量纲单位。 露点的测量环境要根据测量仪器的不同而定,镜面式露点仪一般要求流量,基本都为0.25升/分钟至5升/分钟之间,流量过大或过小都将导致测量不准确。探头式的在线露点仪也要求流量条件,它的流量性质准确的称为流速,不同压力下流速允许范围因传感器不同而异。GE的金基三氧化二铝传感器有许多种,种种不同,根据测量条件内置针阀式采样器的可测量更大压力气体的露点,MMY35典型的流速允许为 1bar 基本是常压了,可达50米/秒。但在10bar压力条件下,只有5米/秒的最大流速。 相对湿度基本没碰到过有什么要求,一般常见的是在相对湿度含量很低的情况下用露点表示,或者直接用含水PPM表示,因为你不能用小数点以后几个零的数字来表示,那样没有意义。高温下也一般已经不存在相对湿度的概念,因为水已经被完全汽化,根本不存在含水量的概念(高压下例外)。无论是高温还是高温高压下,现在的相对湿度传感器基本都是通过采样气体测量常温湿度,然后反推得出的。 结论:如果空气相对湿度达到100%RH,那么此时的空气温度就是露点温度,这个结果不难得出。 而且现在的计量单位,从一级到二级站基本都已经将镜面露点仪作为相对湿度的最高标准。 什么是相对湿度? 在相同温度下,空气中水汽含量与饱和水汽含量之间的比例。 详细解释:压力为P,温度为T的湿空气的相对湿度是指给定的湿空气中,水汽的摩尔分数怀同一温度T和压力P下纯水表面的饱和水汽的摩尔分数之比,用百分数表示。相对湿度是两个压强值之比: %RH = 100 x p/ps 在这里p 是周围环境中水蒸汽的实际部分压强值;ps是周围环境中水的饱合压强值. 相对湿度传感器通常是在标准室温情况下校准的(高于0度),相应的,通常认为这种传感器可以指示在所有温度条件下的相对湿度(包括在低于0度的情况).

蒸气压和相对湿度的计算公式

水蒸气压和相对湿度的计算公式 要求水蒸气压和相对湿度时,虽然最好用通风乾湿计,但也可采用不通风乾湿计。由乾湿计计算水 蒸气压和相对湿度的公式为: 1. 从通风乾湿计的度数计算水蒸气压: (1)湿球不结冰时 e =E’w–0.5(t-t’)P/755 (2)湿球结冰时 e =E’i –0.44(t-t’)P/755 式中, t:乾球读数(oC) t’:湿球读数(oC) E’w:t’(oC)的水饱和蒸气压 E’i:t’(oC)的冰饱和蒸气压 e:所求水蒸气压 P:大气压力 2. 从不通风乾湿计的度数计算水蒸气压: (1)湿球不结冰时 e=E’ w-0.0008P(t-t’) (2)湿球结冰时 e=E’ i-0.0007P(t-t’) 此处所用符号的意义同上。压力单位都统一用mmHg或mb。 3.求相对湿度: H=e/Ew×100 式中H为所求相对湿度(%),Ew为t(oC)的饱和蒸气压(即使在0oC以下时也不使用Ei)。

水的蒸气压 水和所有其它液体一样,其分子在不断运动着,其中有少数分子因为动能较大,足以冲破表面张力的影响而进入空间,成为蒸气分子,这种现象称为蒸发。液面上的蒸气分子也可能被液面分子吸引或受外界压力抵抗而回入液体中,这种现象称为凝聚。如将液体置于密闭容器内,起初,当空间没有蒸气分子时,蒸发速率比较大,随着液面上蒸气分子逐渐增多,凝聚的速率也随之加快。这样蒸发和凝聚的速率逐渐趋于相等,即在单位时间内,液体变为蒸气的分子数和蒸气变为液体的分子数相等,这时即达到平衡状态,蒸发和凝聚这一对矛盾达到暂时的相对统一。当达到平衡时,蒸发和凝聚这两个过程仍在进行,只是两个相反过程进行的速率相等而已。平衡应理解为运态的平衡,绝不意味着物质运动的停止。 与液态平衡的蒸气称为饱和蒸气。饱和蒸气所产生的压力称为饱和蒸气压。每种液体在一定温度下,其饱和蒸气压是一个常数,温度升高饱和蒸气压也增大。水的饱和蒸气压和温度的关系列于表中。 表水的蒸气压和温度的关系

露点与相对湿度对照表

露点与相对湿度对照表(室内温度25℃时)相对湿度露点相对湿度露点0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -24.49 15.0% - 3.02 2.2% -24.02 16.0% -2.25 2.3% -2 3.57 17.0% -1.15 2.4% -2 3.14 18.0% -0.83 2.5% -22.73 19.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31

饱和蒸汽压计算方法

There is a large number of saturation vapor pressure equations used to calculate the pressure of water vapor over a surface of liquid water or ice. This is a brief overview of the most important equations used. Several useful reviews of the existing vapor pressure curves are listed in the references. Please note the updated discussion of the WMO formulation. 1) Vapor Pressure over liquid water below 0°C ?Goff Gratch equation (Smithsonian Tables, 1984, after Goff and Gratch, 1946): Log10p w = -7.90298 (373.16/T-1) [1] + 5.02808 Log10(373.16/T) - 1.3816 10-7 (1011.344 (1-T/373.16)-1) + 8.1328 10-3 (10-3.49149 (373.16/T-1) -1) + Log10(1013.246) with T in [K] and p w in [hPa] ?WMO (Goff, 1957): Log10p w = 10.79574 (1-273.16/T)[2] - 5.02800 Log10(T/273.16) + 1.50475 10-4 (1 - 10(-8.2969*(T/273.16-1))) + 0.42873 10-3 (10(+4.76955*(1-273.16/T)) - 1) + 0.78614 with T in [K] and p w in [hPa] (Note: WMO based its recommendation on a paper by Goff (1957), which is shown here. The recommendation published by WMO (1988) has several typographical errors and cannot be used. A corrigendum (WMO, 2000) shows the term +0.42873 10-3 (10(-4.76955*(1-273.16/T)) - 1) in the fourth line compared to the original publication by Goff (1957). Note the different sign of the exponent. The earlier 1984 edition shows the correct formula.) ?Hyland and Wexler (Hyland and Wexler, 1983): Log p w = -0.58002206 104 / T [3] + 0.13914993 101

用露点法测量SF6气体湿度的测试方法详解

一测试原理 使被测气体在恒定压力下,以一定流量流经露点仪测量室中的抛光金属镜面,该镜面的温度可人为地降低并可精确地测量。当气体中的水蒸气随着镜面温度的逐渐降低而达到饱和时,镜面上开始出现露(或霜),此时所测得的镜面温度即为露点。用相应的换算式或查表即可得到用体积比表示的湿度。 露点仪可以用不同的方法设计,主要的不同在于金属镜面的性质、冷却镜面的方法、控制镜面温度的方法、测定温度的方法以及检测出露的方法。常见的露点仪可以分为两大类,即目视露点仪和光电露点仪。 目视露点仪通常以金属镜作为冷镜,通过溶剂蒸发手动制冷,利用与冷镜背面相接触的溶剂中的水银温度计或热电偶以测量镜面温度。当温度逐渐下降时,镜面出露,温度上升时又消露,目视观察上述现象,以出露和完全消露时镜面温度的平均值作为露点。该法凭经验操作,人为误差较大,且需要使用制冷剂,不便于现场测量,目前已基本不采用。 光电露点仪通常采用热电效应制冷(也就是半导体制冷,采用多级Peltier)元件串联以获得不同的低温),由光电传感器检测露的生成与消失,并控制热电泵的制冷功率,用紧贴在冷镜下方的铂电阻温度传感器测量温度。在测量室内,由光源照射到冷镜表面的光经反射后,被光电传感器接受并输出电信号到控制回路,驱动热电泵对冷镜制冷。当镜面出露时,由于

漫反射而使光电传感器接受的光强减弱,输出的电信号也相应减弱,此变化经控制回路比较、放大后调节热电泵激励,使其制冷功率减小,镜面温度将上升而消露。 如此反复,最终使镜面温度保持在气体的露点温度上。通过镜面冷凝状态观察镜,可以判断镜面上的冷凝物是液态的露(呈圆或椭圆形)还是固态的霜(呈晶形)。光电露点仪有相当高的准确度和精密度,操作简单方便,获得了广泛的应用。 二一般操作步骤 1)连接好待测设备的取样口和仪器进气口之间的管路,确保所有接头处均无泄漏。 2)调节待测气体流量至规定范围内。由于气体露点与其流量没有直接关系,所以流量不作严格要求,按说明书要求控制在一定范围内即可。 3)对光电露点仪,打开测量开关,仪器即开始自动测量。待观察到镜面上的冷凝物或出露指示器指示已出露;且露点示值稳定后,即可读数。 对目视露点仪,需手动制冷,同时目视观察冷镜表面。当镜面出露时,记下出露温度,同时停止制冷;当温度回升,露完全消失时,记下消露温度。出露温度和消露温度之平均值即为露点。需要注意的是,当镜面温度离露点约5℃时,降温速度应不超过5℃/min。对不知道露点范围的气体,可先进行一次粗测。 三注意事项 1)干扰物质 a同体杂质及油污。绝对不溶于水的固体杂质不会改变气体的露点,但会妨碍对出露的观测。在自动仪器中,对镜面污染如果没有采用补偿装置,在低露点测量时,有时会因镜面上附着固体杂质使测得的露点值偏高,这时需用适当溶剂对镜面人工清洗。为了防止固体杂质的干扰,最好在仪器入口设置不吸附水分的过滤器。 如果被测气体中有油污,应在气体进入测量室前除去。 b以蒸气形式存在的杂质。如果气体中以蒸气形式存在的杂质(如烃类)会先于水蒸气而结露,或者气体中含有能与水共同在镜面上凝结的物质(如甲醇),则必须先采取措施除掉。如果烃类的露点低于水蒸气的露点,则不会影响测定。通常在SF6的测定中,不需考虑蒸气杂质的干扰。 2)冷壁效应 除冷镜外,仪器其余部分和管道的温度应高于气体露点至少2℃,否则水蒸气将在最冷点凝结,从而改变气体样品中的水分含量。

露点&相对湿度及测量

湿度露点测量原理 1. 湿度基础知识在许多物理、化学和生物学过程中,空气及其他气体中水蒸气的存在与否有着重要的影响。在很多工业领域内,湿度测量是关乎商业成本、产品质量、人身健康和安全的至关重要的因素之一。目前有很多不同的湿度表达方法,也有很多不同的湿度测量技术,因而很有必要了解规范的湿度术语和定义及成熟的湿度测量技术。 1.1 什么是湿度?湿度是在空气或其他气体中存在的水蒸气。水蒸气是水的气态形式,同其他各种气体一样,是透明的。在我们周围的环境中大约有1%的气体是水蒸气。 1.2 饱和水汽压、增强因子定义及计算公式 1.2.1 饱和水汽压定义我们知道,温度高的水会蒸发出水蒸气。同样,水在较低的温度下也可以释放出水蒸气。一定温度下,在水的表面和冰的表面,蒸发现象始终都是存在的。相反,冷凝也是一样存在的。当蒸发和冷凝的速度达到一致时,该体系就达到了动态平衡状态。空气或其他气体都有吸收水蒸气的能力,这种能力主要受温度的影响。总的来说,温度越高,吸收水蒸气的能力越强。在某个温度下,气体中所能包含的水蒸气的量达到最多时,就叫作“饱和”。 饱和水汽压是指水蒸气与水的凝聚相(水或冰)的单组分体系(界面为平面)处于热力学平衡状态时的水蒸气压力。简单的说,就是一定温度下水蒸气所能存在的最大压力。该压力仅仅是温度的函数。 1.2.2饱和水汽压计算公式目前饱和水汽压公式使用比较多的是Sonntag公式,其中包括纯水和纯冰面上的饱和水汽压公式,分别见公式1及公式2。 纯水面上的饱和水汽压公式: (公式1)其中: , 单位是 ,若以 表示,需将公式中的21.2409642用16.635794来代替。该公式的使用范围为173.15K≤T≤373.15K,当273.15K≤T≤373.15K时,不确定度为0.005%(k=2)。纯冰面上的饱和水汽压公式: (公式2) 其中: 单位为 , 单位是 ,若以 表示,需将公式中的29.32707用24.7219来代替。该公式的使用范围为173.15K≤T≤273.16K,当173.15K≤T≤223.15K时,不确定度为0.5%(k=2);223.15K≤T≤273.15K时,不确定度为0.3%(k=2)。1.2.3 饱和水汽压计算简化公式目前比较常用的是Magnus公式。 1.2.3.1 由温度计算饱和水汽压 水面上的饱和水汽压公式为: 公式(3)式中: 单位为 , 单位为℃。该公式的使用范围为-45℃≤t≤+60℃,不确定度≤0.6%(k=2)。冰面上的饱和水汽压公式为: 公式(4)式中: 单位为 , 单位为℃。该公式的使用范围为-65℃≤t≤+0.01℃,不确定度≤1.0%(k=2)。 1.2.3.2 由饱和水汽压计算温度由饱和水汽压计算露点温度:

露点与相对湿度

绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位 绝对湿度的单位习惯用毫米水银柱高来表示。也常用l立方米空气中所含水蒸汽的克数来表示。 (3)说明 ①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。 相对湿度 (1)定义或解释 ①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。 ②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。 (2)说明 ①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。 ②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。 露点 (1)定义或解释 ①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。 ②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。 (2)单位 习惯上,常用摄氏温度表示。 (3)说明 ①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg,12℃时的饱和蒸汽压为lO.52mmHg。则此时:空气的绝对湿度p=10.52mmHg, 空气的相对湿度.B=(10.52/17.54)×100%=60%。 采用这种方法来确定空气的湿度,有着重大的实用价值。但这里很关键的一点,要求学生学会露点的测定方法。 ②露点的测定,在农业上意义很大。由于空气的湿度下降到露点时,空气中的水蒸汽就凝结成露。如果露点在O℃以下,那末气温下降到露点时,水蒸汽就会直接凝结成霜。知道了露点,可以预报是否发生霜冻,使农作物免受损害。 ⑨气温和露点的差值愈小,表示空气愈接近饱和。气温和露点接近,也就是此时的相对湿度百分比值大,人们感觉气候潮湿;气温和露点差值大,即此时的相对湿度百分比值小,人们感觉气候干燥。人体感到适中的相对湿度是60~70%。 ④严格地说,露点时的饱和汽压和空气当时的水汽压强是不相等的。 由于未饱和汽的压强随温度的变化是遵循下列规律Pt=P0(1+t/273)。

饱和蒸汽压

饱和蒸汽压

饱和蒸气压 编辑 [b ǎo h ézh ēng q ìy ā] 饱和蒸汽压即饱和蒸气压。 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于液态的饱和蒸气压。 蒸汽压指的是在液体(或者固体)的表面存在着该物质的蒸汽,这些蒸汽对液体表面产生的压强就是该液体的蒸汽压。比如,水的表面就有水蒸汽压,当水的蒸汽压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100 摄氏度时水的蒸汽压等于一个大气压。蒸汽压随温度变化而变化,温度越高,蒸汽压越大,当然还和液体种类有关。一定的温度下,与同种物质的液态(或固态) 处于平衡状态的蒸汽所产生的压 强叫饱和蒸汽压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方汽相的压力,即水的蒸汽所具有的压力就不断增加。但是,当温度一定时,汽相压力最终将稳定在一个固定的数值上,这时的汽相压力称为水在该温度下的饱和蒸汽压力。当汽相压力的数值达到饱和蒸汽压力的数值时,液相的水分子仍然不断地气化,汽相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸汽的冷凝速度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸汽所具有的压力为其饱和蒸汽压力时,汽液两相即达到了相平衡。饱和蒸汽压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸汽压越大,表示该物质越容易挥发。 1 定义编辑 饱和蒸气压( saturated vapor pressure ) 例如,在30℃时,水的饱和蒸气压为4132.982Pa, 乙醇为10532.438Pa 。而在100 ℃时,水的饱和蒸气压增大到101324.72Pa, 乙醇为222647.74Pa 。饱和蒸气压是液体的一项重要物理性质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2 计算公式编辑 (1) Clausius-Claperon 方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p 为蒸气压;H(v) 为蒸发潜热;Z(v) 为饱和蒸汽压缩因子与饱和液体压缩因子之差。该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2) Clapeyron 方程: 若上式中H(v)/(R*Z(v)) 为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:ln p=A-B/T 式中B=H(v)/(R*Z(v)) 。 (3) Antoine 方程:lg p=A-B/(T+C) 式中,A,B,C 为Antoine 常数,可查数据表。Antoine 方程是对Clausius-Clapeyron 方程最简单的改进,在 1.333~199.98kPa 范围内误差小。 3 附录编辑 计算参数 在表 1 中给出了采用Antoine 公式计算不同物质在不同温度下蒸气压的常数A、 B 、C 。其公式如下 lgP=A-B/(t+C) ( 1) 式中:P —物质的蒸气压,毫米汞柱; t—温度,℃ 公式( 1)适用于大多数化合物;而对于另外一些只需常数 B 与 C 值的物质,则可采用( 2)公式进行计算 lgP=-52.23B/T+C ( 2 )

相关文档
相关文档 最新文档