文档视界 最新最全的文档下载
当前位置:文档视界 › 2020届高三第一轮复习——曲线运动教案05

2020届高三第一轮复习——曲线运动教案05

2020届高三第一轮复习——曲线运动教案05
2020届高三第一轮复习——曲线运动教案05

2020届高三第一轮复习——曲线运动教案05

单元切块:

按照考纲的要求,本章内容能够分成三部分,即:运动的合成和分解、平抛运动;圆周运动;其中重点是平抛运动的分解方法及运动规律、匀速圆周运动的线速度、角速度、向心加速度的概念并记住相应的关系式。难点是牛顿定律处理圆周运动咨询题。 运动的合成与分解 平抛物体的运动 教学目标:

1.明确形成曲线运动的条件〔落实到平抛运动和匀速圆周运动〕;

2.明白得和运动、分运动,能够运用平行四边形定那么处理运动的合成与分解咨询题。

3.把握平抛运动的分解方法及运动规律

4.通过例题的分析,探究解决有关平抛运动实际咨询题的差不多思路和方法,并注意到相关物理知识的综合运用,以提高学生的综合能力.

教学重点:平抛运动的特点及其规律

教学难点:运动的合成与分解

教学方法:讲练结合,运算机辅助教学

教学过程:

一、曲线运动

1.曲线运动的条件:质点所受合外力的方向〔或加速度方向〕跟它的速度方向不在同一直线上。

当物体受到的合力为恒力〔大小恒定、方向不变〕时,物体作匀变速曲线运动,如平抛运动。

当物体受到的合力大小恒定而方向总跟速度的方向垂直,那么物体将做匀速率圆周运动.〔那个地点的合力能够是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.〕

假如物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直.

2.曲线运动的特点:曲线运动的速度方向一定改变,因此是变速运动。需要重点把握的两种情形:一是加速度大小、方向均不变的曲线运动,叫匀变速曲线运动,如平抛运动,另一是加速度大小不变、方向时刻改变的曲线运动,如匀速圆周运动。

二、运动的合成与分解

1.从的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们差不多上矢量,因此遵循平行四边形定那么。重点是判定合运动和分运动,那个地点分两种情形介绍。

一种是研究对象被另一个运动物体所牵连,那个牵连指的是相互作用的牵连,如船在水上航行,水也在流淌着。船对地的运动为船对静水的运动与水对地的运动的合运动。一样地,物体的实际运动确实是合运动。

第二种情形是物体间没有相互作用力的牵连,只是由于参照物的变换带来了运动的合成咨询题。如两辆车的运动,甲车以v甲=8 m/s的速度向东运动,乙车以v乙=8 m/s的速度向北运动。求甲车相关于乙车的运动速度v甲对乙。

2.求一个运动的分运动,叫运动的分解,解题时应按实际〝成效〞分解,或正交分解。

3.合运动与分运动的特点:

①等时性:合运动所需时刻和对应的每个分运动时刻相等

②独立性:一个物体能够同时参与几个不同的分运动,各个分运动独立进行,互不阻碍。

4.物体的运动状态是由初速度状态〔v0〕和受力情形〔F合〕决定的,这是处理复杂运动的力和运动的观点.思路是:

〔1〕存在中间牵连参照物咨询题:如人在自动扶梯上行走,可将人对地运动转化为人

对梯和梯对地的两个分运动处理。

〔2〕匀变速曲线运动咨询题:可依照初速度〔v 0〕和受力情形建立直角坐标系,将复杂运动转化为坐标轴上的简单运动来处理。如平抛运动、带电粒子在匀强电场中的偏转、带电粒子在重力场和电场中的曲线运动等都能够利用这种方法处理。

5.运动的性质和轨迹

物体运动的性质由加速度决定〔加速度得零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动〕。

物体运动的轨迹〔直线依旧曲线〕那么由物体的速度和加速度的方向关系决定〔速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动〕。

两个互成角度的直线运动的合运动是直线运动依旧曲线运动? 决定于它们的合速度和合加速度方向是否共线〔如下图〕。 常见的类型有:

⑴a =0:匀速直线运动或静止。 ⑵a 恒定:性质为匀变速运动,分为:① v 、a 同向,匀加速直线运动;②v 、a 反向,匀减速直线运动;③v 、a 成角度,匀变速曲线运动〔轨迹在v 、a 之间,和速度v 的方向相切,方向逐步向a 的方向接近,但不可能达到。〕

⑶a 变化:性质为变加速运动。如简谐运动,加速度大小、方向都随时刻变化。

6.过河咨询题

如右图所示,假设用v 1表示水速,v 2表示船速,那么:

①过河时刻仅由v 2的垂直于岸的重量v ⊥决定,即⊥

=v d t ,与v 1无关,因此当v 2⊥岸时,过河所用时刻最短,最短时刻为2v d t =

也与v 1无关。 ②过河路程由实际运动轨迹的方向决定,当v 1<v 2时,最短路程为

d ;当v 1>v 2时,最短路程程为d v v 2

1〔如右图所示〕。 7.连带运动咨询题

指物拉绳〔杆〕或绳〔杆〕拉物咨询题。由于高中研究的绳差不多上不可伸长的,杆差

不多上不可伸长和压缩的,即绳或杆的长度可不能改变,因此解题原那么是:把物体的实际速度分解为垂直于绳〔杆〕和平行于绳〔杆〕两个重量,依照沿绳〔杆〕方向的分速度大小相同求解。

【例1】如下图,汽车甲以速度v 1拉汽车乙前进,乙的速

度为v 2,甲、乙都在水平面上运动,求v 1∶v 2

解析:甲、乙沿绳的速度分不为v 1和v 2cos α,两者应该相

等,因此有v 1∶v 2=cos α∶1

【例2】 两根光滑的杆互相垂直地固定在一起。上面分不

穿有一个小球。小球a 、b 间用一细直棒相连如图。当细直棒与

竖直杆夹角为α时,求两小球实际速度之比v a ∶v b

解析:a 、b 沿杆的分速度分不为v a cos α和v b sin α

∴v a ∶v b = tan α∶1

三、平抛运动

当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。其轨迹为抛物线,性质为匀变速运动。平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动这两个分运动。广义地讲,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。

1、平抛运动差不多规律

① 速度:0v v x =,gt v y =

合速度 22y x v v v += 方向 :tan θ=o

x y

v gt v v = ②位移x =v o t y =22

1gt 合位移大小:s =22y x + 方向:tan α=t v g x y o

?=2 ③时刻由y =22

1gt 得t =x y 2〔由下落的高度y 决定〕 ④竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。

v 1 甲 乙 α v 1 v 2 v a v b α α v 1 甲 乙 α v 1 v 2

2.应用举例

〔1〕方格咨询题

【例3】平抛小球的闪光照片如图。方格边长a 和闪光照相的

频闪间隔T ,求:v 0、g 、v c

解析:水平方向:T a v 20= 竖直方向:22,T

a g gT s =∴=? 先求C 点的水平分速度v x 和竖直分速度v y ,再求合速度v C :

412,25,20T a v T a v T a v v c y x =∴===

〔2〕临界咨询题

典型例题是在排球运动中,为了使从某一位置和某一高度水平扣出的球既不触网、又不出界,扣球速度的取值范畴应是多少?

【例4】 网高H ,半场长L ,扣球点高h ,扣球点离网水平距离s 、求:水平扣球速度v 的取值范畴。

解析:假设运动员用速度v max 扣球时,球刚好可不能出界,用速度v min 扣球时,球刚好不触网,从图中数量关系可得:

()h

g s L g h s L v 2)(2/max +=+=; )

(2)(2/min H h g s g H h s v -=-= 实际扣球速度应在这两个值之间。

【例5】如下图,长斜面OA 的倾角为θ,放在水平地面上,现从顶点O 以速度v 0平抛一小球,不计空气阻力,重力加速度为g ,求小球在飞行过程中离斜面的最大距离s 是多少?

解析:为运算简便,此题也可不用常规方法来处理,而是将速度

和加速度分不沿垂直于斜面和平行于斜面方向进行分解。如图15,速

度v 0沿垂直斜面方向上的重量为v 1= v 0 sin θ,加速度g 在垂直于斜面

方向上的重量为a =g cos θ,依照分运动各自独立的原理可知,球离斜

面的最大距离仅由和决定,当垂直于斜面的分速度减小为零时,球离 0

斜面的距离才是最大。θ

?cos 2sin 22021g v a v s ==。 点评:运动的合成与分解遵守平行四边形定那么,有时另辟蹊径能够收到意想不到的成效。

〔3〕一个有用的推论

平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延

长线的交点到抛出点的距离都等于水平位移的一半。

证明:设时刻t 内物体的水平位移为s ,竖直位移为h ,那么末

速度的水平重量v x =v 0=s/t ,而竖直重量v y =2h/t , s h v v 2tan x y

==α,

因此有2

tan s h s =='α 【例6】 从倾角为θ=30°的斜面顶端以初动能E =6J 向下坡方向平抛出一个小球,那么小球落到斜面上时的动能

E /为______J 。

解析:以抛出点和落地点连线为对角线画出矩形ABCD ,能

够证明末速度v t 的反向延长线必定交AB 于其中点O ,由图中可

知AD ∶AO =2∶3,由相似形可知v t ∶v 0=7∶3,因此专门

容易能够得出结论:E /=14J 。 点评:此题也能用解析法求解。列出竖直分运动和水平分运动的方程,注意到倾角和下落高度和射程的关系,有:h=21gt 2,s=v 0t ,θtan =s

h 或 h=21v y t , s=v 0 t ,θtan =s

h 同样可求得v t ∶v 0=7∶3,E /=14J

四、曲线运动的一样研究方法

研究曲线运动的一样方法确实是正交分解法。将复杂的曲线运动分解为两个互相垂直方向上的直线运动。一样以初速度或合外力的方向为坐标轴进行分解。

【例7】 如下图,在竖直平面的xoy 坐标系内,oy 表示竖直向上方向。该平面内存在沿x 轴正向的匀强电场。一个带

电小球从坐标原点沿oy 方向竖直

v v O

v t

x

向上抛出,初动能为4J ,不计空气阻力。它达到的最高点位置如图中M 点所示。求:

⑴小球在M 点时的动能E 1。

⑵在图上标出小球落回x 轴时的位置N 。

⑶小球到达N 点时的动能E 2。

解析:⑴在竖直方向小球只受重力,从O →M 速度由v 0减小到0;在水平方向小球只受电场力,速度由0增大到v 1,由图知这两个分运动平均速度大小之比为2∶3,因此v 0∶v 1=2∶3,因此小球在M 点时的动能E 1=9J 。

⑵由竖直分运动知,O →M 和M →N 经历的时刻相同,因此水平位移大小之比为1∶3,故N 点的横坐标为12。

⑶小球到达N 点时的竖直分速度为v 0,水平分速度为2v 1,由此可得现在动能E 2=40J 。

五、综合例析

【例8】如下图,为一平抛物体运动的闪光照片示意图,照片与实际大小相比缩小10倍.对比片中小球位置进行测量得:1与4闪光点竖直距离为1.5 cm ,4与7闪光点竖直距离为2.5 cm ,各闪光点之间水平距离均为0.5 cm.那么

(1)小球抛出时的速度大小为多少?

(2)验证小球抛出点是否在闪光点1处,假设不在,那么抛出点距闪光点1的实际水平距离和竖直距离分不为多少?(空气阻力不计,g =10 m/s 2)

解析:

(1)设1~4之间时刻为T ,

竖直方向有:(2.5-1.5)×10-2×10 m =gT 2

因此T = 0.1 s

水平方向:0.5×10-2×3×10 m =v 0T

因此v 0=1.5 m/s

(2)设物体在1点的竖直分速度为v 1y

1~4竖直方向:1.5×10-2×10 m=v 1y T +2

1gT 2 解得v 1y =1 m/s

因v 1y ≠0,因此1点不是抛出点

设抛出点为O 点,距1水平位移为x m ,竖直位移为y m ,有

水平方向 x =v 0t

竖直方向:??

???=

=gt v gt y y 1221

解得t = 0.1 s ,

x =0.15 m=15 cm

y =0.05 m=5 cm

即抛出点距1点水平位移为15 cm ,竖直位移为5 cm

【例9】 柯受良驾驶汽车飞越黄河,汽车从最高点开始到着地为止这一过程的运动能够看作平抛运动。记者从侧面用照相机通过多次曝光,拍照到汽车在通过最高点以后的三副运动照片如图2所示,相邻两次曝光时刻间隔相等,均为Δt ,汽车的长度为l ,那么

A .从左边一幅照片可推算出汽车的水平分速度的大小

B .从左边一幅照片可推算出汽车曾经到达的最大高度

C .从中间一幅照片可推算出汽车的水平分速度的大小和汽车曾经到达的最大高度

D .从右边一幅照片可推算出汽车的水平分速度的大小

解析: 第一应动态的看照片,每幅照片中三个汽车的像是同一辆汽车在不同时刻的像,依照题目的描述,应是由高到低依次显现的,而且相邻两像对应的时刻间隔是相等的,均为的Δt 。

题目中〝汽车的长度为l 〞这一条件至关重要,我们量出汽车在照片中的长度,就能得到照片与实际场景的比例,如此照片中各点间的真实距离都能算出。

物理知识告诉我们,汽车在通过最高点后的运动,可抽象为质点的平抛运动,因此水平方向为匀速运动,竖直方向为自由落体运动。

关于水平速度,由于汽车在空中相邻的两个像对应的真实距离能算出,这段运动对应的时刻Δt ,因此由左、中两幅照片中的任意一幅都能算出水平速度。至于右边的一幅,因为汽车在空中的像只有一个,而紧接着的在地上的像不一定是刚着地时的像〔汽车刚着地时,可能是在两次拍照之间〕,因此在那个Δt 内,可能有一段时刻做的差不多不是平抛运动了,水平方向不是匀速的。因此用该照片无法运算出水平速度。

关于最大高度,应分析竖直方向,同时对不同照片进行比较。左边一幅,没拍到地面,确信不能运算最大高度。右边一幅,空中只有一个像,无法分析其自由落体运动。中间一幅,相邻像的两个真实距离均能明白,借用处理纸带的方法,能算出中间那个像对应的速度,进而由自由落体运动的公式算出最高点那个位置的高度,再加上那个位置的离地高度即可得到

汽车离地的最大高度。因此该题选A、C。

点评:这是一道专门典型的频闪照片的题,给我们专门多分析频闪照片的启发:要能看出动态、要关注照片比例、要先确定运动的性质,以便在其指引下分析,多幅照片要进行细致的比较。

六、针对练习

1.做平抛运动的物体,每秒的速度增量总是

A.大小相等,方向相同

B.大小不等,方向不同

C.大小相等,方向不同

D.大小不等,方向相同

2.从倾角为θ的足够长的斜面上的A点,先后将同一小球以不同的初速度水平向右抛出.第一次初速度为v1,球落到斜面上的瞬时速度方向与斜面夹角为α1,第二次初速度为v2,球落到斜面上的瞬时速度方向与斜面夹角为α2,假设v1>v2,那么

A.α1>α2 B.α1=α2 C.α1<α2D.无法确定

3.小球从空中以某一初速度水平抛出,落地前1s时刻,速度方向与水平方向夹30°角,落地时速度方向与水平方向夹60°角,g=10m/s2,求小球在空中运动时刻及抛出的初速度。

4.如下图,飞机离地面高度为H=500m,水平飞行速度为v1=100m/s,追击一辆速度为v2=20 m/s同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(g=10m/s2)

5.飞机以恒定的速度v沿水平方向飞行,高度为2000m。在飞行过程中开释一枚炸弹,通过30s后飞行员听见炸弹落地的爆炸声。假设此爆炸向空间各个方向的传播速度都为330m/s,炸弹受到的空气阻力能够忽略,求该飞机的飞行速度v?

6.如下图,点光源S距墙MN的水平距离为L,现从O处以水平速度v0平抛一小球P,P在墙上形成的影是P',在球做平抛运动过程中,其影P'的运动速度是多大?

7.在离地面高为h ,离竖直光滑墙的水平距离为s 1处,有一小球以v 0的速度向墙水平抛出,如下图。小球与墙碰撞后落地,不计碰撞过程中的能量缺失,也不考虑碰撞的时刻,那么落地点到墙的距离s 2为多少?

8.如下图,光滑斜面长为a ,宽为b ,倾角为θ。一物块沿斜面上方顶点P 水平射入,而从右下方顶点Q 离开斜面,求物块入射的初速度为多少?

参考答案:

1.A 2.B

3.解析:设小球的初速度为v 0,落地前1s 时刻其竖直分速度为v 1,由图1知:v 1=v 0tan300,落地时其竖直分速度为v 2,同理v 2=v 0tan600,v 2- v 1= g △t ,g v 230=,gt g v v ===2

3302,因此t =1.5s 。 点评:在解这类基此题型时,需要注意的是:速度、加速度、位移差不多上矢量,运算时遵守平行四边形定那么。

4.解析:炸弹作平抛运动,其下落的时刻取决于竖直高度,由22

1gt H =得:102==g

H t s ,设距汽车水平距离为s 处飞机投弹,那么有:800)(21=-=t v v s m 。

点评:物体作平抛运动飞行的时刻只与抛出点和落地点的高度差有关,与物体的质量及初速度无关。先确定运动所需时刻有助于咨询题的解决。

5.解析:设开释炸弹后,炸弹经t 1时刻落地爆炸,那么由平抛运动公式得: 21

21gt h =,设从炸弹爆炸到飞行员听见爆炸声所通过的时刻为t 2,那么由题给条件得t= t 1+ t 2,由图直角三角形的几何关系可得22222)()(h ct vt -=,解得v=262m/s 。

点评:依照题中描述的物理情形,画出相应的示意图,充分利用几何关系是处理平抛运动相关咨询题通常采纳的方法。

6.解析:设小球通过一段时刻运动到某一位置时的水平位移为x ,竖直位移为y ,对应的影的长度为h ,由图知:x L y h =,而x = v 0 t ,y=2

1g t 2;因此t v gL L x y h 02==,由此看出影子的运动是匀速直线运动,其速度为0

2v gL 。 点评:此题将平抛运动与光学有机结合起来,在摸索时注意 抓住影子是由于光的直线传播形成的。

7.解析:如下图,小球撞墙的速度v 斜向下,其水平重量

为v 0,由于碰撞无能量缺失,故碰撞后小球的速度大小不变,v ?与v 关于墙面对称,故v ?的水平重量仍为v 0,s 2故等于小球没有

撞墙时的水平位移s 2?,因此s 2=s -s 1,s 为平抛运动的整个位移,由s = v 0 t ,221gt h =有g h v s 20=;1022s g

h v s -=。 点评:由于碰撞无能量缺失,故反弹速度与原速度关于墙面对称,可用平抛运动全程求解是此题的一个亮点。

8.解析:物体在光滑斜面上只受重力和斜面对物体的支持力,因此物体所受到的合力大小为F =θsin mg ,方向沿斜面向下;依照牛顿第二定律,那么物体沿斜面方向的加速度应为a 加=θsin g m

F =,又由于物体的初速度与a 加垂直,因此物体的运动可分解为两个方v

s 1 v 0 h s 2 s 2 ′ s v 0 v 0 v ? x L y h

向的运动,即水平方向是速度为v 0的匀速直线运动,沿斜面向下的是初速度为零的匀加速直线运动。因此在水平方向上有 a = v 0 t ,沿斜面向下的方向上有b =21a 加t 2;故b

g a t a v 2sin 0θ==。 点评:初速度不为零,加速度恒定且垂直于初速度方向的运动,我们称之为类平抛运动。在解决类平抛运动时,方法完全等同于平抛运动的解法,立即类平抛运动分解为两个相互垂直、且相互独立的分运动,然后按运动的合成与分解的方法去解,此题的创新之处在于解题思维方法的创新,即平抛运动的解题方法推广到类平抛运动中去。

教学随感

把握平抛运动的分解方法及运动规律,通过例题的分析,探究解决有关平抛运动实际,咨询题的差不多思路和方法,并注意到相关物理知识的综合运用,以提高学生的综合能力

圆周运动

教学目标:

1.把握描述圆周运动的物理量及相关运算公式;

2.学会应用牛顿第二定律解决圆周运动咨询题

3.把握分析、解决圆周运动动力学咨询题的差不多方法和差不多技能

教学重点:匀速圆周运动

教学难点:应用牛顿第二定律解决圆周运动的动力学咨询题

教学方法:讲练结合,运算机辅助教学

教学过程:

一、描述圆周运动物理量:

1、线速度

〔1〕大小:v = t

s (s 是t 时刻内通过的弧长) 〔2〕方向:沿圆周的切线方向,时刻变化

〔3〕物理意义:描述质点沿圆周运动的快慢

2、角速度:

〔1〕大小:ω=t φ (φ是t 时刻内半径转过的圆心角)

〔2〕方向:沿圆周的切线方向,时刻变化

〔3〕物理意义:描述质点绕圆心转动的快慢

3、周期T 、频率f :

作圆周运动的物体运动一周所用的时刻,叫周期;单位时刻内沿圆周绕圆心转过的圈数,叫频率。即周期的倒数。

4、v 、ω、T 、f 的关系

v =T

r π2=ω r =2πrf 点评:ω、T 、f ,假设一个量确定,其余两个量也就确定了,而v 还和r 有关。

5、向心加速度a :

〔1〕大小:a =ππω442222===r T

r r v 2 f 2r 〔2〕方向:总指向圆心,时刻变化

〔3〕物理意义:描述线速度方向改变的快慢。

【例1】如下图装置中,三个轮的半径分不为r 、

2r 、4r ,b 点到圆心的距离为r ,求图中a 、b 、c 、d 各

点的线速度之比、角速度之比、加速度之比。

解析:v a = v c ,而v b ∶v c ∶v d =1∶2∶4,因此v a ∶

v b ∶v c ∶v d =2∶1∶2∶4;ωa ∶ωb =2∶1,而ωb =ωc =ωd ,因此ωa ∶ωb ∶ωc ∶ωd =2∶1∶1∶1;再利用

a =v ω,可得a a ∶a

b ∶a

c ∶a

d =4∶1∶2∶4

点评:凡是直截了当用皮带传动〔包括链条传动、摩擦传动〕的两个轮子,两轮边缘上各点的线速度大小相等;凡是同一个轮轴上〔各个轮都绕同一根轴同步转动〕的各点角速度相等〔轴上的点除外〕。

【例2】如下图,一种向自行车车灯供电的小发电机的上端有一半径r 0=1.0cm 的摩擦小轮,小轮与自行车车轮的边缘接触。当车轮转

动时,因摩擦而带动小轮转动,从而为发电机

提供动力。自行车车轮的半径R 1=35cm ,小齿轮的半径R 2=4.0cm ,大齿轮的半径R 3=10.0cm 。求大齿轮的转速n 1和摩擦小轮的转速n 2之比。〔假定摩擦小轮与自行车轮之间无相对滑动〕

解析:大小齿轮间、摩擦小轮和车轮之间和皮带传动原理相同,两轮边缘各点的线速度大小相等,由v =2πnr 可知转速n 和半径r 成反比;小齿轮和车轮同轴转动,两轮上各点的转速相同。由这三次传动能够找出大齿轮和摩擦小轮间的转速之比n 1∶n 2=2∶175

二、牛顿运动定律在圆周运动中的应用〔圆周运动动力学咨询题〕

1.向心力

〔1〕大小:R f m R T

m R m R v m ma F 2222

2244ππω=====向 〔2〕方向:总指向圆心,时刻变化

点评:〝向心力〞是一种成效力。任何一个力,或者几个力的合力,或者某一个力的某个分力,只要其成效是使物体做圆周运动的,都能够作为向心力。〝向心力〞不一定是物体所受合外力。做匀速圆周运动的物体,向心力确实是物体所受的合外力,总是指向圆心。做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变。

2.处理方法:

一样地讲,当做圆周运动物体所受的合力不指向圆心时,能够将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。分不与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。

做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:F n =ma n 在列方程时,依照物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需要的向心力〔可选用R T m R m R mv 2

222??? ??πω或或等各种形式〕。 假如沿半径方向的合外力大于做圆周运动所需的向心力,物体将做向心运动,半径将减小;假如沿半径方向的合外力小于做圆周运动所需的向心力,物体将做离心运动,半径将增大。如卫星沿椭圆轨道运行时,在远地点和近地点的情形。

3.处理圆周运动动力学咨询题的一样步骤:

〔1〕确定研究对象,进行受力分析;

〔2〕建立坐标系,通常选取质点所在位置为坐标原点,其中一条轴与半径重合; 〔3〕用牛顿第二定律和平稳条件建立方程求解。

4.几个特例

〔1〕圆锥摆

圆锥摆是运动轨迹在水平面内的一种典型的匀速圆周运动。其特点是由物体所受的重力与弹力的合力充当向心力,向心力的方向水平。也能够讲是其中弹力的水平分力提供向心力〔弹力的竖直分力和重力互为平稳力〕。

【例3】 小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中的θ〔小球与半球球心连线跟竖直方向的夹角〕与线速度v 、周期T 的关系。〔小球的半径远小于R 。〕

解析:小球做匀速圆周运动的圆心在和小球等高的水平面上〔不在半球的球心〕,向心力F 是重力G 和支持力N 的合力,因此重力和支持力的合力方向必定水平。如下图有: 22

sin sin tan θωθθmR R mv mg ==, 由此可得:g h g R T gR v πθπθθ2cos 2,sin tan ===, 〔式中h 为小球轨道平面到球心的高度〕。

可见,θ越大〔即轨迹所在平面越高〕,v 越大,T 越小。

点评:此题的分析方法和结论同样适用于圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的咨询题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。

〔2〕竖直面内圆周运动最高点处

的受力特点及分类

这类咨询题的特点是:由于机械

能守恒,物体做圆周运动的速率时刻

在改变,物体在最高点处的速率最小,在最低点处的速率最大。物体在最低点处向心力向上,而重力向下,因此弹力必定向上且大于重力;而在最高点处,向心力向下,重力也向下,因此弹力的方向就不能确定了,要分三种情形进行讨论。 ①弹力只可能向下,如绳拉球。这种情形下有mg R

mv mg F ≥=+2

即gR v ≥,否那么不能通过最高点。

θ

②弹力只可能向上,如车过桥。在这种情形下有:gR v mg R

mv F mg ≤∴≤=-,2

,否那么车将离开桥面,做平抛运动。

③弹力既可能向上又可能向下,如管内转〔或杆连球、环穿珠〕。这种情形下,速度大小v 能够取任意值。但能够进一步讨论:①当gR v >时物体受到的弹力必定是向下的;当gR v <时物体受到的弹力必定是向上的;当gR v =时物体受到的弹力恰好为零。②当弹力大小F mg 时,向心力只有一解:F +mg ;当弹力F =mg 时,向心力等于零。

【例4】 如下图,杆长为L ,球的质量为m ,杆连球在竖直平面内绕轴O 自由转动,在最高点处,杆对球的弹力大小为F = mg ,求这时小球的瞬时速度大小。

解析:小球所需向心力向下,此题中F = mg <mg ,因此弹力的方向可

能向上也可能向下。⑴假设F 向上,那么2

,2gL v L mv F mg ==- ⑵假设F 向下,那么2

3,2gL v L mv F mg ==+ 点评:此题是杆连球绕轴自由转动,依照机械能守恒,还能求出小球在最低点的即时速度。

需要注意的是:假设题目中讲明小球在杆的带动下在竖直面内做匀速圆周运动,那么运动过程中小球的机械能不再守恒,这两类题务必分清。

【例5】 如下图的装置是在竖直平面内放置光滑的绝缘轨道,处于水平向右的匀强电场中,以带负电荷的小球从高h 的A 处静止开始下滑,沿轨道ABC 运动后进入圆环内作圆周运动。小球所受到电场力是其重力的3/4,圆滑半径为R ,斜面倾角为θ,s BC =2R 。假设使小球在圆环内能作完整的圆周运动,h 至少为多少?

解析:小球所受的重力和电场力都为恒力,故可两力等效为一个力F ,如下图。可知F =1.25mg ,方向与竖直方向左偏下37o,从图6中可知,能否作完整的圆周运动的临界点是能否通过D 点,假设恰好能通过D 点,即达到D 点时球与环的弹力恰好为零。

由圆周运动知识得:R

v m F D 2=

即:R v m mg D 225.1= 由动能定理有:22

1)37sin 2cot (43)37cos (D mv R R h mg R R h mg =?++?-

?--θ 联立①、②可求出现在的高度h 。

三、综合应用例析 【例6】如下图,用细绳一端系着的质量为M =0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m =0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .假设A 与转盘间的最大静摩擦力为f =2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范畴.〔取g =10m/s 2〕

解析:要使B 静止,A 必须相关于转盘静止——具有与转盘相同的角速度.A 需要的向心力由绳拉力和静摩擦力合成.角速度取最大值时,A 有离心趋势,静摩擦力指向圆心O ;角速度取最小值时,A 有向心运动的趋势,静摩擦力背离圆心O .

关于B ,T =mg

关于A ,2

1ωMr f T =+

22ωMr f T =- 5.61=ωrad/s 9.22=ωrad/s

因此 2.9 rad/s 5.6≤≤ωrad/s

【例7】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R 〔比细管的半径大得多〕.在圆管中有两个直径与细管内径相同的小球〔可视为质点〕.A 球的质量为m 1,B 球的质量为m 2.它们沿环形圆管顺时针运动,通过最低点时的速度都为v 0.设A 球运动到最低点时,B 球恰好运动到最高点,假设要现在两球作用于圆管的合力为零,那么m 1、m 2、R 与v 0应满足的关系式是______.

解析:这是一道综合运用牛顿运动定律、圆周运动、机械能守恒定律的高考题.

A 球通过圆管最低点时,圆管对球的压力竖直向上,因此球对圆管的压力竖直向下.假设要现在两球作用于圆管的合力为零,

B 球对圆管的压力一定是竖直向上的,因此圆管对B 球的压力一定是竖直向下的.

由机械能守恒定律,B 球通过圆管最高点时的速度v 满足方程

20222221221v m R g m v m =?+ 依照牛顿运动定律

关于A 球,R

v m g m N 20111=- 关于B 球,R v m g m N 2222=+

又 N 1=N 2

解得 0)5()(212021=++-g m m R

v m m 【例8】如下图,位于竖直平面上的1/4圆弧光滑轨道,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止开释,最后落在水平地面上C 点处,不计空气阻力,求:

(1)小球运动到轨道上的B 点时,对轨道的压力多大?

(2)小球落地点C 与B 点水平距离s 是多少?

解析:

(1)小球由A →B 过程中,依照机械能守恒定律有:

mgR =22

1B mv ① gR v B 2=

② 小球在B 点时,依照向心力公式有;

R

v m mg F B N 2=- ③ mg R

v m mg F B N 32=+= 依照牛顿第三定律,小球对轨道的压力大小等于轨道对小球的支持力,为3mg

(2)小球由B →C 过程,

水平方向有:s =v B ·t

④ 竖直方向有:221gt R H =- ⑤

解②④⑤得R R H s )(2-=

【例9】如下图,滑块在恒定外力作用下从水平轨道上的A 点由静止动身到B 点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰好通过轨道最高点C ,滑块脱离半圆形轨道后又刚好落到原动身点A ,试求滑块在AB 段运动过程中的加速度.

解析:设圆周的半径为R ,那么在C 点:

mg =m R

v C 2 ① 离开C 点,滑块做平抛运动,那么2R =gt 2/2 ②

v C t =s AB ③ 由B 到C 过程: mv C 2/2+2mgR =mv B 2/2 ④

由A 到B 运动过程: v B 2=2as AB ⑤

由①②③④⑤式联立得到: a =5g /4

四、针对练习:

1.如下图,长为L 的细线,一端固定在O 点,另一端系一个球.把小球拉到与悬点O 处于同一水平面的A 点,并给小球竖直向下的初速度,使小球绕O 点在竖直平面内做圆周运动。要使小球能够在竖直平面内做圆周运动,在A 处小球竖直向下的最小初速度应为

A.gL 7

B.gL 5

C.gL 3

D. gL 2

2.由上海飞往美国洛杉矶的飞机与洛杉矶返航飞往上海的飞机,假设往返飞行时刻相同,且飞经太平洋上空等高匀速飞行,飞行中两种情形相比较,飞机上的乘客对座椅的压力

A.相等

B.前者一定稍大于后者

C.前者一定稍小于后者

D.均可能为零 3.用一根细线一端系一小球〔可视为质点〕,另一端固定在一光滑锥顶上,如图〔1〕所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为T ,那么T 随ω2变化的图象是图〔2〕中的

4.在质量为M 的电动机飞轮上,固定着一个质量为m 的重物,重物到轴的距离为R ,如下图,为了使电动机不从地面上跳起,电动机飞轮转动的最大角速度不能超过

A .g mR m M ?+

B .g mR m M ?+

C .

g mR m M ?- D .mR Mg

5.如下图,具有圆锥形状的回转器〔陀螺〕,半径为R ,绕它的轴在光滑的桌面上以角速度ω快速旋转,同时以速度v 向左运动,假设回转器的轴一直保持竖直,为使回转器从左侧桌子边缘滑出时可不能与桌子边缘发生碰撞,v 至少应等于

A .ωR

B .ωH

C .R H g 2

D .R H g 2 6.如图,细杆的一端与一小球相连,可绕过O 点的水平轴自由转

动现给小球一初速度,使它做圆周运动,图中a 、b 分不表示小球轨道

的最低点和最高点,那么杆对球的作用力可能是

A .a 处为拉力,b 处为拉力

B .a 处为拉力,b 处为推力

C .a 处为推力,b 处为拉力

高一物理必修2第五章曲线运动单元测试题及答案

高一物理五章曲线运动单元测试题 (时间90分钟,总分100分) 一.选择题(本题共14小题.每小题4分,共56分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分.请将正确答案填在答题卡中) 1.关于曲线运动, 以下说法正确的是() A.曲线运动是一种变速运动 B.做曲线运动的物体合外力一定不为零C.做曲线运动的物体所受的合外力一定是变化的 D.曲线运动不可能是一种匀变速运动2.关于平抛运动,下列说法中正确的是() A.平抛运动是匀速运动 B.平抛运动是匀变速曲线运动 C.平抛运动不是匀变速运动 D.作平抛运动的物体落地时速度方向一定是竖直向下的 3、做平抛运动的物体,在水平方向通过的最大距离取决于() A .物体的高度和受到的重力 B .物体受到的重力和初速度 C .物体的高度和初速度 D .物体受到的重力、高度和初速度 4.在高h处以初速度 v将物体水平抛出,它们落地与抛出点的水平距离为s,落地时速度为1 v,则此物体从抛出到落地所经历的时间是(不计空气阻力)( ) A、 B、 C、() g v v 1 - D、 5.对于匀速圆周运动的物体,下列物理量中不断变化的是() A. 转速 B.角速度 C.周期 D. 线速度 6.列车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。若在某转弯处规定行驶速度为v,则下列说法中正确的是:() ①当以速度v通过此弯路时,火车重力与轨道面支持力的合力提供向心力;②当以速度v 通过此弯路时,火车重力、轨道面支持力和外轨对轮缘侧弹向力的合力提供向心力;③当速度大于v时,轮缘侧向挤压外轨;④当速度小于v时,轮缘侧向挤压外轨。 A. ①③ B. ①④ C. ②③ D. ②④ 7.质量为m的飞机,以速率v在水平面上做半径为r的匀速圆周运动,空气对飞机作用力的

高中物理曲线运动教案

第四章 曲线运动 一、本章知识要点: 1、曲线运动中质点的速度沿轨道的切线方向,且必具有加速度。 2、运动的合成和分解。 3、平抛运动。 4、匀速率园周运动,线速度和角速度、周期、园周运动的向心加速度 R v a 2= 5、园周运动中的向心力 二、说明: 1.不要求会推导向心加速度的公式R v a 2 = 2.有关向心力的计算,只限于向心力是在一条直线上的力合成的情况。 二、本章内容及高考考查的特点: 本章知识是运动学和动力学知识的综合运用。首先讲述了曲线运动的特点和条件,然后讲述了研究曲线运动的基本方法—运动的合成和分解;最后研究了曲线运动的两种重要特殊情况—平抛运动和匀速园周运动。其中平抛运动和匀速圆周运动的描述及向心力、向心加速度的概念是本章的重点。运动的合成和分解是本章的重点。平抛运动的规律及其研究方法、圆周运动的角速度、线速度、向心加速度及做园周运动的物体力与运动的关系是近年高考的热点,人造地球卫星几乎每年都有,园周运动经常与电磁场、洛仑兹力等内容结合起来进行考查。这部分知识是高考综合考察的常考点,主要以综合计算题形式出现。 三、课时安排: 第一课时:曲线运动 运动的合成和分解 第二课时:平抛运动 第三课时:匀速圆周运动及向心力公式 第四课时:匀速圆周运动的应用 第五课时:竖直面内的圆周运动 第六课时:单元检测 第七课时:单元检测讲评 第八课时:单元检测讲评

第一课时 曲线运动运动的合成和分解 教学目的和要求: 1、了解物体做曲线运动的特点和条件 2、理解运动合成和分解的原理和法则 3、掌握运动合成和分解的方法 教学过程: 一、曲线运动的特点: 曲线运动的速度方向就是通过这点的曲线的切线方向,说明曲线运动是变速运动,但变速运动并不一定是曲线运动,如匀变速直线运动。 二、物体做曲线运动的条件 物体所受合外力方向和速度方向不在同一直线上。 三、匀变速曲线运动和非匀变速曲线运动的区别 匀变速曲线运动的加速度a恒定(即合外力恒定),如平抛运动。非匀变速曲线运动的加速度是变化的,即合外力是变化的,如匀速园周运动。 四、运动的合成和分解 ㈠原理和法则: 1.运动的独立性原理: 一个物体同时参与几种运动,那么各分运动都可以看作各自独立进行,它们之间互不干扰和影响,而总的运动是这几个分运动的叠加。例如过河。 2.运动的等时性原理: 若一个物体同时参与几个运动,合运动和分运动是在同一时间内进行的。 3.运动的等效性原理: 各分运动的规律叠加起来与合运动的规律有完全相同的效果。 4.运动合成的法则: 因为s、v、a都是矢量,所以遵守平行四边形法则。若在同一直线上则同向相加,反向相减。 ㈡运动的合成 1.两个匀速直线运动的合成 ①分运动在一条直线上,如顺水行舟、逆水行舟等。 ②两分运动互成角度(只讨论有直角的问题)。 例1:一人以4m/s 6m/s的速度骑行时,感觉风是从东南吹来,则实际 风速和风向如何? 解析:风相对人参与了两个运动:相对自行车 向西的运动v1和其实际运动v2,感觉的风是合运动 v。

人教版高中物理必修二:《曲线运动》学案(含答案)

第一节曲线运动 1.了解曲线的切线。 2.知道曲线运动速度的方向。 3.理解并掌握曲线运动的条件。 ★自主学习 1.曲线运动速度的方向:质点在某一点的速度,沿曲线在这一点的方向。 2.速度是矢量,它既有,又有。不管速度的大小是否改变,只要速度的发生变化,就表示速度矢量发生了变化。3.曲线运动的性质:曲线运动中速度的方向时刻(填“不变”、“改变”);也就是具有。所以,曲线运动是运动。 4.物体做匀速直线运动的条件:合力为,速度矢量(填“不变”、“改变”);当物体所受的方向与它的方向在上时,物体做直线运动;物体做曲线运动的条件:当物体所受的方向与它的方向不在同一直线上时,物体做曲线运动。 ★新知探究 一、曲线运动中速度方向的确定 1.曲线运动的几个实例 体育活动中的例子: 日常生活中的例子: 自然现象中的例子: 2.切线的理解 (1)数学上曲线的割线:过曲线上的A、B两点所作的这一条叫做曲线的割线。 (2)数学上曲线的切线:当曲线跟其割线的两个交点时,这条就叫这条曲线的切线。 (3)曲线运动质点速度的方向:沿曲线在这一点的。 (4)数学上曲线的切线与物理上曲线运动在某点的轨迹的切线方向的异同: 同:二者都是曲线上的两点之间所作的。 不同:前者是一条没有方向的直线,后者是一条有的。 二、曲线运动的性质

曲线运动中质点速度的方向时刻在,也就具有了,所以曲线运动是。 三、曲线运动的条件 1.规律发现 (1)演示实验: (2)观察结果: 2.规律内容 当物体受的的方向与它的方向上时,物体作曲线运动。 ★例题精析 【例题1】下列说法正确的是( ) A.只要速度大小不变,物体的运动就是匀速运动B.曲线运动的加速度一定不为零 C.曲线运动的速度方向,就是它的合力方向 D.曲线运动的速度方向为曲线上该点的切线方向 【训练1】关于曲线运动,下列说法正确的是( ) A.曲线运动一定是变速运动 B.变速运动不一定是曲线运动 C.曲线运动是变加速运动 D.加速度大小及速度大小都不变的运动一定不是曲线运动 【例题2】关于曲线运动,下列说法错误 ..的是( ) A.物体在恒力作用下可能做曲线运动 B.物体在变力作用下一定做曲线运动 C.做曲线运动的物体,其速度大小一定变化 D.做曲线运动的物体,其速度方向与合外力方向不在同一直线上 参考答案 ★自主学习 1.切线 2.大小方向方向 2. 3.改变加速度变速 3. 4.0 不变合力速度同一直线合力速度 ★新知探究 一、1.略 2.(1)直线 (2)非常非常接近割线(3)切线方向(4)非常非常接近割线方向线段 二、变化加速度变速运动 三、1.略2.合力速度不在同一直线 ★例题精析 例题1 BD 训练1 AB

高中物理必修2第五章曲线运动知识点总结

船 v d t = m in ,θ sin d x = 船 v v = θtan 第五章 曲线运动知识点总结 §5-1 曲线运动 & 运动的合成与分解 一、曲线运动 1.定义:物体运动轨迹是曲线的运动。 2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。 3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。 ②运动类型:变速运动(速度方向不断变化)。 ③F 合≠0,一定有加速度a 。 ④F 合方向一定指向曲线凹侧。 ⑤F 合可以分解成水平和竖直的两个力。 4.运动描述——蜡块运动 二、运动的合成与分解 1.合运动与分运动的关系:等时性、独立性、等效性、矢量性。 2.互成角度的两个分运动的合运动的判断: ①两个匀速直线运动的合运动仍然是匀速直线运动。 ②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a 合为分运动的加速度。 ③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。 ④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。 三、有关“曲线运动”的两大题型 (一)小船过河问题 模型一:过河时间t 最短: 模型二: 直接位移x 最短: 当v 水

α 模型三:间接位移x 最短: (二)绳杆问题(连带运动问题) 1、实质:合运动的识别与合运动的分解。 2、关键:①物体的实际运动是合速度,分速度的方向要按实际运动效果确定;②沿绳(或杆)方向的分速度大小相等。 模型四:如图甲,绳子一头连着物体B ,一头拉小船A ,这时船的运动方向不沿绳子。 甲 乙 处理方法:如图乙,把小船的速度v A 沿绳方向和垂直于绳的方向分解为v 1和v 2,v 1就是拉绳的速度,v A 就是小船的实际速度。 §5-2 平抛运动 & 类平抛运动 一、抛体运动 1.定义:以一定的速度将物体抛出,在空气阻力可以忽略的情况下,物体只受重力的作用,它的运动即为抛体运动。 2.条件:①物体具有初速度;②运动过程中只受G 。 二、平抛运动 1.定义:如果物体运动的初速度是沿水平方向的,这个运动就叫做平抛运动。 2.条件:①物体具有水平方向的加速度;②运动过程中只受G 。 3.处理方法:平抛运动可以看作两个分运动的合运动:一个是水平方向的匀速直线运动,一个是竖直方向的自由落体运动。 4.规律: A v 水 v 船 θ 当v 水>v 船时,L v v d x 船 水== θcos min , θ sin 船v d t =,水船v v =θcos θ θsin ) cos -(min 船船水v L v v s = θ v 船 d

人教版高中物理必修2《第五章曲线运动》章末总结教案

人教版高中物理必修2 《第五章曲线运动》章末总结★知识网络

【教学过程】 ★重难点一、运动的合成与分解★ 一、研究曲线运动的基本方法 利用运动的合成与分解研究曲线运动的思维流程:(欲知)曲线运动规律――→ 等效 分解 (只需研究)两直线运动规律――→ 等效 合成 (得知)曲线运动规律。 二、运动的合成与分解 1.合运动与正交的两个分运动的关系 (1)s=x2+y2——(合运动位移等于分运动位移的矢量和) (2)v=v21+v22——(合运动速度等于分运动速度的矢量和) (3)t=t1=t2——(合运动与分运动具有等时性和同时性) 2.小船渡河问题的分析 小船渡河过程中,随水漂流和划行这两个分运动互不干扰,各自独立而且具有等时性。 (1)渡河时间最短问题:只要分运动时间最短,则合运动时间最短,即船头垂直指向对岸渡河时间最短, t min=d v船。 (2)航程最短问题:要使合位移最小。当v水 v船时,船不能垂直到达河岸,但仍存在最短航程,当v船与v合垂直时,航程最短。 3.关联物体速度的分解 在运动过程中,绳、杆等有长度的物体,其两端点的速度通常是不一样的,但两端点的速度是有联系的,我们称之为“关联”速度,解决“关联”速度问题的关键两点:一是物体的实际运动是合运动,分速度的方向要按实际运动效果确定;二是沿杆(或绳)方向的分速度大小相等。

特别提醒: 关联物体运动的分解 1.常见问题:物体斜拉绳或绳斜拉物体,如图所示。 2.规律:由于绳不可伸长,绳两端所连物体的速度沿着绳方向的分速度大小相同。 3.速度分解方法:图甲中小车向右运动,拉绳的结果一方面使滑轮右侧绳变长,另一方面使绳绕滑轮转动。由此可确定车的速度应分解为沿绳和垂直于绳的两个分速度。甲、乙两图的速度分解如图所示。 【典型例题】小船匀速横渡一条河流,宽200m,当船头垂直对岸方向航行时,从出发点经时间400s到达正对岸下游120m处,求: (1)水流的速度; (2)若船头保持与河岸成某个角度向上游航行,使船航行的轨迹垂直于岸,则船从出发点到达正对岸所需要的时间. 【答案】(1)(2) 【解析】根据分运动与合运动的等时性,即可求解水流的速度;根据运动学公式,求得船在静水中速度,当船的合速度垂直河岸时,依据矢量的合成法则,求得合速度大小,从而求得到达正对岸的时间. (1)当船头垂直对岸方向航行时,从出发点经时间400s到达正对岸下游120m处,将运动分解成水流方向与垂直水流方向,再依据分运动与合运动具有等时性,那么设水流速度为 (2)由题意可知,设船在静水中速度为v c,则有: 当船头保持与河岸成某个角度向上游航行,使船航行轨迹垂直于岸,则合速度大小 因此船从出发点到达正对岸所需要的时间

高中物理必修二知识点总结:第五章曲线运动(人教版)

高中物理必修二知识点总结:第五章曲线运动(人教版)这一章是在前边几章的学习基础之上,研究一种更为复杂的运动方式:曲线运动。这也是运动学中更为重要的一部分内容,本章的重难点就在于抛体运动、圆周运动。 考试的要求: Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。 Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。 要求Ⅱ:曲线运动、抛体运动、圆周运动。 知识构建: 新知归纳: 一、曲线运动 ●曲线运动 1、定义:物体的运动轨迹不是直线的运动称为曲线运动。 2.物体做曲线运动的条件 (1)当物体所受合力的方向跟它的速度方向不在同一直线上时,这个合力总能产生一个改变速度方向的效果,物体就一定做曲线运动。 (2)当物体做曲线运动时,它的合力所产生的加速度的方向与速度方向也不在同一直线上。 (3)物体的运动状态是由其受力条件及初始运动状态共同确定的. 2、曲线运动的特点:质点在某一点的速度方向,就是通过该点的曲线的切线方向.质点的速度方向时刻在改变,所以曲线运动一定是变速运动。 物体运动的性质由加速度决定(加速度为零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度

变化时物体做变加速运动)。 3、曲线运动的速度方向 (1)在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线切线的方向。 (2)曲线运动的速度方向时刻改变,无论速度的大小变或不变,运动的速度总是变化的,故曲线运动是一种变速运动。 4、曲线运动的轨迹:作曲线运动的物体,其轨迹向合外力所指向的一方弯曲,若已知物体的运动轨迹,可判断出物体所受合外力的大致方向,如平抛运动的轨迹向下弯曲,圆周运动的轨迹总是向圆心弯曲等。 ●曲线运动常见的类型: (1)a=0:匀速直线运动或静止。 (2)a 恒定:性质为匀变速运动,分为:①v 、a 同向,匀加速直线运动;②v 、a 反向,匀减速直线运动;③v 、a 成角度,匀变速曲线运动(轨迹在v 、a 之间,和速度v 的方向相切,方向逐渐向a 的方向接近,但不可能达到。) (3)a 变化:性质为变加速运动。如简谐运动,加速度大小、方向都随时间变化。 二、质点在平面内的运动 ●合运动和分运动 当物体实际发生的运动较复杂时,我们可将其等效为同时参与几个简单的运动,前者——实际发生的运动称作合运动,后者则称作物体实际运动的分运动. ●运动的合成和分解 已知分运动求合运动,叫做运动的合成;已知合运动求分运动,叫做运动的分解,这种双向的等效操作过程,是研究复杂运动的重要万法. 1、合运动与分运动的关系:等时性;独立性;等效性。 2、运动的合成与分解的法则:平行四边形定则 3、分解原则:根据运动的实际效果分解,物体的实际运动为合运动。 其运动规律为: (1)水平方向:a x =0,v x =v 0,x=v 0t 。 (2)竖直方向:a y =g ,v y =gt ,y=gt 2/2。 (3)合运动:a=g ,22y x t v v v +=,22y x s +=。v t 与v 0方向夹角为θ,tan θ=gt/v 0,s 与x 方向夹角为α,tan α=gt/2v 0. 平抛运动中飞行时间仅由抛出点与落地点的竖直高度来决定,即g h t 2= ,与v 0无关。水平射程s=v 0g h 2. ●运动的合成和分解的应用 (1)进行运动的合成与分解,就是对描述运动的各物理量如位移、速度、加速度等矢量用平行四边形定则求和或求差.运动的合成与分解遵循如下原理:

高中物理曲线运动精品公开课优质课教案

曲线运动 教学目标: 1、知道什么是曲线运动; 2、知道曲线运动中速度的方向是怎样确定的; 3、知道物体作曲线运动的条件。 教学重点: 1、什么是曲线运动 2、物体作曲线运动的方向的确定 3、物体作曲线运动的条件 教学难点: 物体作曲线运动的条件 教学方法: 实验、归纳、推理法 教学用具: 小钢球、条形磁铁、木板 教学步骤: 一、导入新课: 前边几章我们研究了直线运动,下边同学们思考两个问题: 1、什么是直线运动? 2、物体做直线运动的条件是什么? 在实际生活中,普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。 二、新课教学 1、曲线运动 (1)多媒体:展示几种物体所做的运动 a:导弹所做的运动;汽车转弯时所做的运动;人造卫星绕地球的运动; b:归纳总结得到:物体的运动轨迹是曲线。 (2)提问:上述运动和曲线运动除了轨迹不同外,还有什么区别呢?

(3)用CAI课件对比小车在平直的公路上行驶和弯道上行驶的情况。 学生总结得到:曲线运动中速度方向是时刻改变的。 ?过渡:怎样确定做曲线运动的物体在任意时刻的速度方向呢? ?→ 2:曲线运动的速度方向 (1)多媒体: a:在砂轮上磨刀具时,刀具与砂轮接触处有火星沿砂轮的切线方向飞出; b:撑开的带着水的伞绕伞柄旋转,伞面上的水滴沿伞边各点所划圆周的切线方向飞出。 (2)总结:质点在某一点(或某一时刻)的速度的方向是在曲线的这一点的切线方向。 问题:能不能通过速度的定义从理论的角度推出曲线运动的瞬时速度方向呢? 极短时间内的平均速度就是该时刻的瞬时速度。。。。。 (3)结论1: a:只要速度的大小、方向的一个或两个同时变化,就表示速度矢量发生了变化。b:由于作曲线运动的物体,速度方向时刻改变,所以曲线运动是变速运动。 ?过渡:那么物体在什么条件下才作曲线运动呢? ?→ 3:物体作曲线运动的条件 (1)问题:一个在水平面木板上做直线运动的钢珠,若使其改作曲线运动,有哪些办法?请同学们试一试。 (2)实验:方法1吹气。2用磁铁吸引。3将木板倾斜。。。。。。 问题:这些方法的共同点是?。。。。。 (3)学生作结论2:当物体所受的合力的方向跟它的速度方向不在同一直线时,物体就作曲线运动。 4:一般情况下对物体运动的影响-----切向力与法向力 当合力的方向与物体的速度方向在同一直线上时,产生的加速度也在这条直线上,物体就做直线运动。 如果合力的方向跟速度方向不在同一条直线上时,产生的加速度就和速度成一夹角,这时,合力就不但可以改变速度的大小,而且可以改变速度的方向,物体就

20182019学年高中物理第一章抛体运动1曲线运动学案教科版必修2

1 曲线运动 [学习目标] 1.知道什么是曲线运动,会确定曲线运动速度的方向,知道曲线运动是一种变速运动.2.知道物体做曲线运动的条件. 一、曲线运动的速度方向 1.曲线运动:物体运动轨迹是曲线的运动. 2.曲线运动的速度方向:质点做曲线运动时,速度方向是时刻改变的,质点在某一点(或某一时刻)的速度方向是沿曲线上这一点的切线方向. 3.曲线运动是变速运动 (1)速度是矢量,它既有大小,又有方向.不论速度的大小是否改变,只要速度的方向发生改变,就表示速度发生了变化,也就具有了加速度. (2)在曲线运动中,速度的方向是不断变化的,所以曲线运动是变速运动. 二、曲线运动的条件 1.动力学角度:当运动物体所受合外力的方向与它的速度方向不在同一直线上时,物体就做曲线运动. 2.运动学角度:物体的加速度方向与它的速度方向不在同一直线上时,物体就做曲线运动. 1.判断下列说法的正误. (1)做曲线运动的物体,速度可能不变.(×) (2)曲线运动一定是变速运动,但变速运动不一定是曲线运动.(√) (3)物体的速度不断改变,它一定做曲线运动.(×) (4)做曲线运动物体的位移大小可能与路程相等.(×) (5)做曲线运动物体的合力一定是变力.(×) (6)做曲线运动的物体一定有加速度.(√) 2.小文同学在探究物体做曲线运动的条件时,将一条形磁铁放在桌面的不同位置,让小钢珠在水平桌面上从同一位置以相同初速度v0运动,得到不同轨迹.图1中a、b、c、d为其中四条运动轨迹,磁铁放在位置A时,小钢珠的运动轨迹是________(填轨迹字母代号),磁铁放在位置B时,小钢珠的运动轨迹是________(填轨迹字母代号).实验表明,当物体所受合外力的方向跟它的速度方向________(填“在”或“不在”)同一直线上时,物体做曲线运动.

人教版高中物理必修二《曲线运动》教学设计及反思

人教版高中物理必修二《曲线运动》教学设计人教版高中物理必修二《曲线运动》教学设计 一、教学目标 1.知识与技能 (1)知道曲线运动是一种变速运动,它在某点的瞬时速度方向在曲线这一点的切线上; (2)理解物体做曲线运动的条件是所受合外力与初速度不在同一直线上. 2.方法与过程 (1)类比直线运动认识曲线运动、瞬时速度方向的判断和曲线运动的条件; (2)通过实验观察培养学生的实验能力和分析归纳的能力. 3.情感态度与价值观 激发学生学习兴趣,培养学生探究物理问题的习惯. 二、教学重难点 1.曲线运动中瞬时速度方向的判断

2.理解物体做曲线运动的条件 三、教学过程 1.新课导入,引入曲线运动 教师:在必修一里我们学习了直线运动,我们知道物体做直线运动时他的运动轨迹是直线,需要满足的条件是物体所受的合力与速度的方向在同一条直线上。但在现实生活中,很多物体做的并非是直线运动,比如玩过山车的游客的运动、火车在其轨道上的运动、风中摇曳着的枝条的运动、人造地球围绕地球的运动(图片)。 问题1:在这几幅图片中,物体的运动轨迹有什么特点? (运动的轨迹是一条曲线) 教师:我们把像这样运动轨迹是曲线的运动叫做曲线运动。 设计意图:通过复习直线运动引入生活中更为常见的曲线运动,并借助实例归纳出曲线运动的概念,帮助学生认识曲线运动。 2.曲线运动的方向

问题2:我们知道物体在做直线运动时,物体的速度方向始终是保持不变的,那么在做曲线运动时,物体的速度的方向又有什么特 点呢? (方向时刻在改变) 问题3:那么,我们该如何确定物体做曲线运动时每时每刻所对应速度的方向呢? 教师:我们来猜想一下,钢珠从弯曲的玻璃管中滚落出来,运动方向会是下面那一种情况呢? 学生:猜想 教师:现在咱们从理论上分析一下,钢珠从弯曲玻璃管中滚落出来的运动方向 当B点无限接近A点时,这条割线变成了曲线在A点的切线,这一过程中AB段的平均速度变成了A点的瞬时速度,瞬时速度的方向沿切线方向。所以钢珠从弯曲玻璃管中滚落出来的运动方向也 应该沿试管出口处的切线方向。

第五章曲线运动

第五章曲线运动 第七节生活中的圆周运动 【课标要求】 1.能用牛顿第二定律分析匀速圆周运动的向心力,分析生活和生产中的离心现象。 2.关注抛体运动和圆周运动的规律与日常生活的联系。 【学习目标】 1.掌握圆周运动的特点,会分析铁路的弯道、拱形桥和航天器中的失重现象。 2.自主学习,合作探究,通过分析生活中的圆周运动问题学会构建物理模型的思想方法。 3.激情投入,关注圆周运动的规律与日常生活的联系。 【重难点】 1、重点:分析向心力来源 2、难点:临界问题的讨论和分析 【使用说明与学法指导】 1. 15分钟研读课本26-29页的内容,明确火车弯道、拱形桥和航天器中的失重现象。 2.结合生活中的实例分析向心力来源和离线运动。 3. 带★的C 层选做,带★★的BC 层选做。 【课前预习】 一、 火车转弯问题 1.如图甲所示,若火车正在内外轨等高的轨道处转弯,请对火车进行受力分析并说明什么力提供火车做圆周运动的向心力? 2.如图乙示,若火车正在内外轨不等高处转弯,(轮缘与轨道间没有侧压 力)请对火车进行受力分析,思考什么力提供火车做圆周运动的向心力? 二、离心运动 1.做圆周运动的物体,在合外力突然消失时,将会怎样? 2.结合生活实际,举出物体做离心运动的例子。在这些例子中离心运动是有益的还是有害的? 【我的疑问】请写出你的疑问,让我们在课堂上解决。 【课内探究】 探究点一:火车转弯问题 情景1:新华网北京2013年7月25日电,弯道限速80公里,通过时速180公里,后果会如何?2013年7月24日深夜,随着一声巨响,西班牙一列快速列车行驶至距加利西亚自治区首府圣地亚哥-德孔波斯特拉车站3公里处一个弯道时脱轨,造成至少77人死亡。列车在弯道居然超速100公里,实乃“死亡狂奔”。我们为什么要在火车转弯时限制速度呢? 问题1:设火车质量m 、轨道平面倾角θ、轨道转弯处半径r ,为了消除火车车轮对路轨的侧向压力,试推导火车安全拐弯的速度。 问题2:若列车行驶的速度大于规定速度,火车轮缘对哪个轨道有侧压力? 问题3:若列车行驶的速度小于规定速度,火车轮缘对哪个轨道有侧压力? 探究二:汽车过拱桥的问题 情景2:汽车在炎热的夏天沿不平的曲面行使,很容易发生爆胎,你知道原因吗?快通过下面问题的分析来寻找原因吧。 问题4:有一辆质量为800kg 的小汽车驶上圆弧半径为50m 的拱形桥。(g 取10m/s 2 ) 甲 α 乙 天上最美的是星星,人间最美的是真情

《曲线运动》教学设计

《曲线运动》教学设计 江苏省姜堰第二中学黄开智 一、设计思想 就《曲线运动》的知识点而言,实际上只有两个,一是曲线运动的速度方向,二是曲线运动的条件。如果说,教师通过简单的图片展示、理论推导后,就将以上两结论直接告知学生,相信学生也是比较容易接受的,剩下的时间就可以通过习题加以巩固。但如此,未免有过于注重物理学科知识,而忽略了物理学科思维、物理学科方法等核心素养的嫌疑。因此,解决该问题的关键在于施教的理念和方法上。 本节课,教师通过大量的演示实验,并在问题的引导下,让学生通过观察实验现象,自主获取实验结论,进而又通过实验直接验证学生所得出的结论,完全遵循伽利略科学实验的探究方法,即发现问题──猜想──探究──验证──结论──交流,实际上也是学校提出的问题链·导学模式的具体化应用,发现问题——解决问题——感悟问题。在问题发现的环节上,通过开放性的实验,引导学生思考,发散学生思维;在问题解决的过程中,通过小组合作探究,交流讨论,体会知识获取的乐趣;在问题感悟时,学生自主小结,并将已学知识运用到指导实践生活当中来,体会STS的意义,提高科学素养。 二、教材分析 教学要求:知道曲线运动的概念,知道曲线运动中速度的方向且理解曲线运动是一种变速运动,知道物体做曲线运动的条件,并掌握速度和合外力方向与曲线弯曲情况之间的关系。 本课是整章教学的基础,但不是重点内容,通过实验和讨论,让学生体会到曲线运动的物体的速度是时刻改变的,曲线运动是变速运动,速度的方向是曲线的切线方向。本节课知识内容主要有两点:1、曲线运动的速度方向如何;2、物体做曲线运动的条件。 三、学情分析 《必修1》,学生已经初步掌握几种运动,但都局限于直线运动,而曲线运动是最为常见的运动。其实在初中,学生已经学过什么是直线运动,什么是曲线运动,也知道曲线运动是常见的运动,但是不知道曲线运动的特点和原因。虽然学生在《必修1》学过速度的矢量性,但是在实际学习中常常忽略了速度的方向,也就是说学生对“曲线运动是变速运动”的掌握有困难。此外,在获取“曲线运动的速度方向为切线方向”和“合外力与速度不共线,物体做曲线运动”的结论时,虽较为简单,但实验验证过程却不容易。学生分组实验时,容易滚跑小钢珠,要求学生小心配合。几何作图可能难以下手,教师可以适当提示。学生主要的学习行为是观察、回答、实验。 四、教学目标 1、知识与技能: (1)知道曲线运动的速度方向并认识曲线运动是一种变速运动 (2)理解物体做曲线运动的条件并掌握轨迹弯曲方向与受力方向的位置关系 (3)会将曲线运动的相关知识应用到生产生活实践中去 2、过程与方法 (1)经历发现问题──猜想──探究──验证──结论──交流的探究过程 (2)经历并体会研究问题要先从特殊到一般,由定性到定量的过程

第五章曲线运动导学案

第五章 曲线运动导学案 5.1 曲线运动 班级: 小组: 姓名: 评价: 学习目标: 1、知道什么叫曲线运动。 2、明确曲线运动中速度的方向。 3、理解曲线运动是一种变速运动。 4、理解物体做曲线运动的条件,会用来分析具体问题。 学习重点: 1、物体做曲线运动速度的方向的判定。 2、物体做曲线运动条件的分析、理解与应用。 学法指导: 1、要明确一个数学概念:曲线的切线。结合实际现象理解曲线运动中速度的方向特点 2、要学会从力与运动的关系分析理解做曲线运动的条件。 学习过程: 第 1 课 时 【课前自学】请同学们在阅读教材的基础上解决以下问题: 1、运动轨迹是_________的运动叫曲线运动。 2、研究物体的运动时,坐标系的选取是很重要的。我们研究物体做曲线运动时,已无法应用直线坐标系来处理,而应选取____________坐标系。(P2) 3、过曲线上的A 、B 两点作直线,这条直线叫做曲线的________。设想B 点逐渐向A 点移动,这条割线的位置也就不断变化。当B 点非常非常接近A 点时,这条割线就叫做曲线在A 点的_________。(P3) 4、质点做曲线运动时,质点在某一点的速度,沿曲线在这一点的_________方向。做曲线运动的物体,不同时刻的速度具有___________的方向。(P3) 5、曲线运动中速度的方向在改变,所以曲线运动是_____________运动。(P3) 6、曲线运动可分为___________曲线运动和___________曲线运动。 【课堂探究】 7、物体做曲线运动时,速度方向时刻改变。速度是矢量,它与力、位移等其它矢量一样,可以用它在相互垂直的两个方向的分矢量来表示。这两个分矢量叫分速度。 v x 、 v y 为它在两坐标轴上的分速度。由图可知: v x = v y = 8、飞机起飞时以v =300km/h 的速度斜向上飞,飞行方向与水平面的夹角成30°角,飞机在水平方向和竖直方向的分速度各是多大?画出速度分解的图示。 x y

人教版必修二第五章曲线运动单元3

物理必修2人教新课标第5章曲线运动复习教案 单 元 小 结 导 航 【知识结构】 【疑难解析】 一.曲线运动和运动的合成与分解 物体的运动轨迹不是直线的运动称为曲线运动,曲线运动的条件可从两 个角度来理解:①从运动学角度来理解:物体的加速度方向与速度方向不在同一条直线上;②从动力学角度来理解:物体所受合力的方向与物体的速度方向不在同一条直线上。曲线运动的速度方向沿曲线的切线方向,曲线运动 曲线运动的条件:物体所受合力的方向跟它的速度方向不在同一直线上 研究曲线运动的基本方法:运动的合成与分解 曲线运动 三种特殊的曲线运动 匀速圆周运动 向心力:指向圆心,提供相信加速度 运动性质:变速曲线运动 描述匀速圆周运动快慢的几个物理量 线速度:v 角速度:ω 周期T 频率:f 向心加速度:改变速度方向 平抛运动 运动性质:匀变速曲线运动 运动规律: 水平方向匀速直线运动 竖直方向自由落体运动 公式: 水平方向:v x =v 0,x =v 0 t 竖直方向:v y =gt ,y =gt 2/2 运动性质:匀变速曲线运动 规律 斜抛运动 水平方向:v x =v 0cos θ,x =v 0 cos θt 竖直方向:v y =v 0sin θ-gt ,y =v 0sin θt -gt 2/2

是一种变速运动。 曲线运动是一种复杂的运动,为了简化解题过程引入了运动的合成和分 解。一个复杂的运动可根据运动的实际效果按正交分解或按平行四边形定则进行分解。合运动与分运动是等效替代关系,它们具有独立性和等时性的特点。运动的合成是运动分解的逆运算,同样遵循平行四边形定则。 二.平抛运动 平抛运动具有水平初速度且只受重力作用,是匀变速曲线运动。研究平抛运动的方法是利用运动的合成与分解,将复杂运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动。其运动规律为:①水平方向:a x =0,v x =v 0,x =v 0t ;②竖直方向:a y =g ,v y =gt ,y =gt 2/2; ③合运动:a =g ,22y x v v v +=,v 与 v 0的夹角0 tan v gt =θ 平抛运动中飞行时间仅由抛出点与落地点间的竖直高度决定,即g h t 2=与v 0无关。水平射程x =v 0g h 2。 三.匀速圆周运动、描述匀速圆周运动的物理量、匀速圆周运动的实例分析。 正确理解并掌握匀速圆周运动、线速度、角速度、周期和频率、向心加速度、向心力的概念及物理意义,并掌握相关公式。 圆周运动与其他知识结合时,关键找出向心力,再利用向心力公式 r v m F n 2 =或2ωmr F n =列式求解。向心力可以由某一个力提供,也可由某一个力的分力提供,还可以由合外力提供,在匀速圆周运动中,向心力指向圆心,其大小不变,作用是改变线速度的方向,不改变线速度的大小;在变速圆周运动中,物体所受的合外力不一定指向圆心,各力沿半径的分量的合力指向圆心,此合力提供向心力,大小、方向均变化;与半径垂直的各分力的合力改变速度大小,此合力产生切向加速度,在中学阶段不做研究。

物理必修2第五章曲线运动经典分类例题

第五章曲线运动经典分类例题 §5.1 曲线运动基础 一、知识讲解 二、【典型例题】 知识点1、力和运动的关系 1、曲线运动的定义: 2、合外力决定运动的速度: 】 3、合外力和速度是否共线决定运动的轨迹: 4、物体做曲线运动的条件: 习题 1、关于曲线运动的速度,下列说法正确的是:() A、速度的大小与方向都在时刻变化 ) B、速度的大小不断发生变化,速度的方向不一定发生变化 C、速度的方向不断发生变化,速度的大小不一定发生变化 D、质点在某一点的速度方向是在曲线的这一点的切线方向 2、下列叙述正确的是:() A、物体在恒力作用下不可能作曲线运动 B、物体在变力作用下不可能作直线运动 C、物体在变力或恒力作用下都有可能作曲线运动 D、物体在变力或恒力作用下都可能作直线运动 ^ 3、下列关于力和运动关系的说法中,正确的上:() A.物体做曲线运动,一定受到了力的作用 B.物体做匀速运动,一定没有力作用在物体上 C.物体运动状态变化,一定受到了力的作用 D.物体受到摩擦力作用,运动状态一定会发生改变 4、下列曲线运动的说法中正确的是:() A、速率不变的曲线运动是没有加速度的 B、曲线运动一定是变速运动 C、变速运动一定是曲线运动 D、曲线运动一定有加速度,且一定是匀加速曲线运动; 5、物体受到的合外力方向与运动方向关系,正确说法是:() A、相同时物体做加速直线运动 B、成锐角时物体做加速曲线运动 C、成钝角时物体做加速曲线运动 D、如果一垂直,物体则做速率不变的曲线运动6.某质点作曲线运动时:() A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内位移的大小总是大于路程

高一物理:《曲线运动》教学设计

高中物理新课程标准教材 物理教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 物理教案 / 高中物理 / 高一物理教案 编订:XX文讯教育机构

《曲线运动》教学设计 教材简介:本教材主要用途为通过学习物理知识,可以让学生培养自己的逻辑思维能力,对事物的理解认识也会有一定的帮助,本教学设计资料适用于高中高一物理科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 课题 曲线运动 课时 1课时 教材分析 教材先安排曲线运动的方向,然后安排物体做曲线运动的条件。从知识结构上看,曲线运动的方向在轨迹上某点的切线方向是反映曲线运动的运动学特征,而曲线运动的条件则是动力学特征,完全符合牛顿力学的研究思路。从对学生认知建构的过程来看,知道曲线运动的方向只是知道一个事物的结果,掌握了曲线运动发生的条件才能理解出现该结果的原因,这样才能在逻辑上有利于学生深刻理解本节的两个重点内容。本节是整章教学的知识基础。教材中选取了两个实际情景的图片和一个演示实验。这样的安排充分体现了重视教学中知识与技能目标达成的同时更加突出过程和方法的形成。本来在通过观察砂轮打磨刀具和投掷链

球两个视频后学生得出感性的、最表面的结论,学生还需要深入问题的本质。教材中又安排了一个看似简单的实验,这个实验和上述两个材料有本质的不同,它不是一看就了事,而是要通过收集信息和分析、处理信息,然后得到物理结论,这是科学研究过程的必然。这样能使学生感觉到,一个结论的形成并不是草率的。到此似乎研究的过程就可以画上完美的句号,但是通过上述实验只能得出做圆周运动时质点的速度方向,这不能代表一般的曲线运动,所以结论不具有普遍性。因此教材中又安排了采用极限思想的一段理论证明,从理论上证明了任何曲线运动的物体在某点的速度方向在曲线上该点的切线方向。通过实验和讨论,让学生体会到做曲线运动的物体的速度是时刻改变的,曲线运动是变速运动;速度的方向沿轨迹的切线方向;理解物体做曲线运动的条件。 学情分析 在初中的学习中对于直线运动的特点和规律已经理解透彻,曲线运动在知识结构上对于高一学生是比较新的内容,又涉及到对矢量的理解,学生掌握这部分知识就具有一定的难度。但在教学中,首先让学生要建立物体做曲线运动的图景。教材中所示的曲线运动的图景,生活中有很多,让学生们去观察,去体验。例如让学生抬起自行车的后轮,旋转脚踏板使后轮转动,观察轮上的泥点脱离车轮前的运动。然后提高车轮的转速,泥点将脱离车轮,观察泥点脱离车轮时的速度方向以及泥点脱离车轮后的运动。自行车是学生们最常用的交通工具,

人教版高中物理必修二:《曲线运动》学案

5.1 曲线运动(学案) 一、学习目标 1.知道什么是曲线运动 2.知道曲线运动中速度的方向是如何确定的,理解曲线运动是变速运动。 3.结合实例理解物体做曲线运动的条件,对比直线运动和曲线运动条件,加深对牛顿定律的理解。 二、课前预习 1.曲线运动:。 2.曲线运动的位移与路程的关系;曲线运动平均速度与平均速率的关 系;曲线运动瞬时速度与瞬时速率的关系;曲线运动的方向:。 3.物体做曲线运动时,运动状态(“发生”或“不发生”)变化,做曲线运动的物体 (“有”或“没有”)加速度。 4.物体做曲线运动的条件:。 三、经典例题 例1、关于曲线运动,下列说法正确的是 ( ) A.曲线运动一定是变速运动 B.曲线运动速度的方向不断地变化。但速度的大小可以不变 C.曲线运动的速度方向可能不变 D.曲线运动的速度大小和方向一定同时改变 例2、对曲线运动中的速度的方向,下列说法正确的是 ( ) A.在曲线运动中,质点在任一位置的速度方向总是与这点的切线方向相同 B.在曲线运动中,质点的速度方向有时也不一定是沿着轨迹的切线方向 C.旋转雨伞时.伞面上的水滴由内向外做螺旋运动,故水滴速度方向不是沿其切线方向的 D.旋转雨伞时,伞面上的水滴由内向外做螺旋运动,水滴速度方向总是沿其轨道的切线方向 例3、从A到B,经过时间为5s,在A点的速度方向与水平方向成300,偏向上。大小是5m/s,在B点的速度大小也是5m/s,但方向与水平方向成300角,偏向下。求这段时间的加速度。

例4、某物体受到同一平面内几个力的作用作匀速直线运动,从某时刻撤去其中一个力,其它力不变,则该物体() A.一定是匀变速运动 B.一定不是匀变速运动 C.其轨迹可能是曲线 D.其轨迹不可能是直线 例5、运动员推铅球,铅球在运动过程中,不计阻力() A.曲线运动,速度大小和方向均变,是匀变速。 B.曲线运动,速度大小不变,方向变化,是非匀变速。 C.曲线运动,速度大小方向均变化,是非匀变速。 D.若水平抛出,是匀变速,竖直向上抛出则不是。 四、课堂训练 1、下列说法中正确的是( ) A.做曲线运动物体的速度方向一定发生变化。 B.速度方向发生变化的运动一定是曲线运动。 C.速度变化的运动一定是曲线运动。 D.加速度变化的运动一定是曲线运动。 2、如图所示,物体在恒力F作用下沿曲线从点A运动到点B,这时突然使它所受的 力反向,但大小不变,即由F变为-F。在此力的作用下,物体以后的运动情况,下列说法中正确的是() A.物体不可能沿曲线Ba运动 B.物体不可能沿曲线Bb运动 C.物体不可能沿曲线Bc运动 D.物体不可能沿原曲线BA返回 3、电动自行车绕图所示的400米标准跑道运动,车上的车速表指针一直指在36km/h处不动。则下列说法中正 确的是() A.电动车的速度一直保持不变 B.电动车沿弯道BCD运动过程中,车一直具有加速度 C.电动车绕跑道一周需40秒钟,此40秒内的平均速度 等于零 D.电动车在弯道上运动时合外力方向不可能沿切线方向 4、做曲线运动的物体,在其轨迹曲线上某一点的加速度方向( ) A.为通过该点的曲线的切线方向。 B C D B A b a c

物理:第五章《曲线运动》教案(新人教版必修2)[整理]

5.1曲线运动 知识与技能 1、知道什么是曲线运动; 2、知道曲线运动中速度的方向是怎样确定的; 3、知道物体做曲线运动的条件。 过程与方法 通过物体做曲线运动的条件的分析,提高学生能抓住要点对物理现象分析的能力 情感态度与价值观 使学生善于在日常生活中,发现和总结问题。 教学重点 1、什么是曲线运动 2、物体做曲线运动在某点的速度方向的确定 3、物体做曲线运动的条件 教学难点 物体做曲线运动的条件 教学过程 新课教学 导入: 前边几章我们研究了直线运动,下边同学们思考两个问题: 1、什么是直线运动? 2、物体做直线运动的条件是什么? 在实际生活中,普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。 一、曲线运动

(1)几种物体所做的运动 导弹所做的运动;汽车转弯时所做的运动;人造卫星绕地球的运动; 归纳总结得到:物体的运动轨迹是曲线。 (2)提问:上述运动和曲线运动除了轨迹不同外,还有什么区别呢? (3)学生总结得到:曲线运动中速度方向是时刻改变的。 ?→?过渡:怎样确定做曲线运动的物体在任意时刻的速度方向呢? 2:曲线运动的速度方向 (1)手通过细线拉一小球在光滑水平面上做圆周运动,在某位置A 突然放手,描出小球的运动方向。 学生回答,沿切线方向飞出。然后引导学生分析原因:放手后小球速度方向 不再发生变化,由于惯性,从即刻起小球做匀速直线运动,沿切线飞出。 实例:a :在砂轮上磨刀具时,刀具与砂轮接触处有火星沿砂轮的切线方向飞出; b :撑开的带着水的伞绕伞柄旋转,伞面上的水滴沿伞边各点所划圆周的切线方向飞出。 (2)分析总结得到:质点在某一点(或某一时刻)的速度的方向沿曲线的这一点的切线方向。 (3)推理: a :只要速度的大小、方向的一个或两个同时变化,就表示速度矢量发生了变化。 b :由于做曲线运动的物体,速度方向时刻改变,所以曲线运动是变速运动。 c :曲线运动一定有加速度,物体受到的合外力一定不为零。 ?→? 过渡:那么物体在什么条件下才做曲线运动呢? 3:物体做曲线运动的条件 (1)实验:一个在水平面上做直线运动的钢珠,如果从旁给它施加一个侧向力,它的运动方向就会改变,不断给钢珠施加侧向力,或者在钢珠运动的路线旁放一块磁铁,钢珠就偏离原来的方向而做曲线运动。 图6.1

相关文档
相关文档 最新文档