文档视界 最新最全的文档下载
当前位置:文档视界 › 电动汽车与智能电网-10 [兼容模式]

电动汽车与智能电网-10 [兼容模式]

电动汽车与智能电网

李军求

机械与车辆学院

2015年6月

主要内容

一.电动汽车及其充电设施二.电动汽车充电对电网影响三.电动汽车与智能电网结合

一、电动汽车及其充电设施

电动汽车规模化发展趋势

我国将电动汽车作为战略性新兴产业,出台了一系列扶持政策,积极鼓励电动汽车发展。

我国正在开展公共服务领域和私人用车领域电动汽车大规模商业化示范运行。

根据预测:2015年我国电动汽车保有量将达到50万辆,2020年达到500万辆。

我国电动汽车保有量持续增加是必然趋势。

10:38

电动汽车的分类

按用途分类:

集团用车:公交车、环卫车、邮政车、电力车等。行驶特性有一定规律,有固定停车场所。

社会车辆:公务车和出租车等。行驶随机性较强,行驶半径大。

私人乘用车:行驶随机性极大,行驶里程短,停驶时间长。私人用电动汽车将会占很大比例。

电动汽车充电设施

交流充电桩直流充电站快速充电站电池更换站

3-10kW,可在3-

8h内为小型电

动汽车进行常

规充电

20-100kW,可在3-

8h内为大中型电

动汽车进行常规

充电

50-300kW,可在

30min内为电动汽车

进行快充(80%)

利用自动化设备,可

在10min内完成电池

更换

发展特征:网络化、智能化、标准化

充电设施建设模式

电动汽车类型充电设施建设模式

公交车、集团车电池更换、常规充电出租汽车电池更换、公共快速充电

私人乘用车专用停车位常规充电,临时停车位常规充电,电池

更换、快速充电充电

◆充电设施的用户:公交车、出租车、集团车、私家车

◆充电设施的配置原则和比例:经济性、运营管理

◆充电设施的功率等级和规模:大型充电站、中型充电站、

小型充电站;

◆充电设施的选址:满足一定的服务半径和服务能力,符合

所在电网规划和容量要求

电动汽车用户的充电行为

◆充电地点:居住地点、办公地点、公共充电站。

◆充电时间:每日或每次行程结束后即开始充电,或选择在低电价时段充电。

◆充电功率:快充或慢充。

美国加州私人乘用车调查数据:

(1)75%~80%在住所停车场通过交流充电桩满足;

(2)10%~15%在工作场合通过交流充电桩满足;

(3)仅有5%~10%通过公共充电设施满足。

二、电动汽车充电对电网的影响

电动汽车发展对电网影响

◆至2009年底,我国发电装机容量为8.7亿千瓦,我国民用汽车保有量为7619万辆。假定每辆电动汽车充电功率为10千瓦,总功率将达到7.6亿千瓦。

◆我国电网负荷峰谷比日益增大,平均峰谷差率己经达到1:0.4,电网面临的调峰任务和压力日趋严峻。

◆电动汽车很可能成为未来电网中数量最多的一类负荷,其动态特性将对电网安全、稳定、经济、高效运行以及输配电网的建设提出了新的挑战。

规模化电动汽车充电引发负荷增长

◆需求量大:引发新一轮负荷增长,大量充电设施建设对电网升级改造提出更多要求,需要新增装机容量,增加电网建设投资。

◆峰上加峰:电网峰谷差率不断加大,规模化电动汽车充电将进一步加大电网的峰谷差率,造成发电成本高、电网运行效率低。

◆随机性强:受多种因素的影响,电动汽车充电需求在时间和空间上具有随机性、分散性特点,增加电网运营管理的难度。

三、电动汽车和智能电网结合

智能电网的内涵

◆范围:发电、输电、变电、配电、用电和调度环节

◆特征:信息化、数字化、自动化、互动化

◆目标:坚强可靠、经济高效、清洁环保、透明开放、友好互动

电动汽车在智能电网中的作用

◆充电时可看作为用电负荷。目前车载充电机功率一般为3kW左右。未来可能增长到10-20kW。

◆停驶时具备储电能力。随着电池技术的成熟。在特定条件下可向电网送电,可看作为发电机或电源。

◆电动汽车保有量很大。规模化电动汽车对电网而言将是重要可用资源。

8 6 4

电动汽车充电控制方式

◆时间控制:电动汽车在给定时刻、通常电费或负荷处于低谷阶段开始充电。对负荷曲线有所改善,但由于控制方式单一、方法简单,仍然存在负荷尖峰。

◆智能控制:电动汽车与电网进行实时通信,充电受电网控制,可在电网允许时进行充电,还可根据电网的需要为电网提供部分辅助服务。

◆电价引导:基于开放的电力市场环境,通过电价信号引导电动汽车充电,智能充电装置可根据电价信号为用户制定最经济的充电方案。

电动汽车和智能电网的结合方式

◆交互方式

?能量交互:作为移动式分布储能单元,与电网实现双向能量流动(根据电网或者电动汽车的需要);

?信息交互:电动汽车、用户、电网之间建立信息交互(车辆能量状态、电网负荷状态、计费信息等)。

◆应用方向:利用谷电充电、利用可再生能源充电、向电网放电、为电网提供备用容量。

◆应用层面:削峰填谷、微网、辅助服务、促进可再生能源接入,参与车辆数量不同,不同层面需要相应的控制策略。

电动汽车和智能电网互动的构架

◆美国西北太平洋国家实验室(

PNNL)发布了名为“Smart Charger

Controller”的智能充电控制装置,

可接收电费价格设定等信息,自动

避开高峰时间充电。

Smart Charger Controller ◆美国特立华大学2007年成功将一

辆AC Propulsion“eBox”(Toyota

Scion改装车)接入电网并接受调度命

令,车辆作为调频、备用发电设备

,据计算每车每年为电力公司带来

4000美元的效益。

电动汽车对电力系统的影响

电动汽车对电力系统的影响 发表时间:2018-05-30T15:34:33.137Z 来源:《基层建设》2018年第9期作者:麦涛[导读] 摘要:汽车作为推动人类文明向前跃进的现代社会化工业产物,从生产、技术、规模、经济效益等方面来看,都取得了巨大的成就。 身份证号码:45010219891206xxxx 摘要:汽车作为推动人类文明向前跃进的现代社会化工业产物,从生产、技术、规模、经济效益等方面来看,都取得了巨大的成就。但是燃油汽车对于环境和能源的弊端日益凸显,而电动汽车作为一种新能源汽车,对环境的保护有积极意义。目前电动汽车已经得到一定的推广,但是其充电方式主要为通过外部提供的直流电源对电动汽车进行充电,会对电网造成一定的“污染”。本文从电动汽车充电设备及充 电特性出发,分析了电动汽车充电行为对风或光微电网、负荷平衡、电能质量、环境等方面的影响。探讨了不同地点、不同数量的电动汽车同时接入电网充电,对电网造成的影响。 关键词:电动汽车;电力系统;充放电;电网引言 电子技术应用于各个领域,悄然改变着人们的生活,使人们的生活更加方便快捷。得益于电子技术的支持,人们的出行方式有了更大的改变,电动汽车开始出现在人们的生活中,因其具有使用方便、价格低廉、节约能源的特点,日益受到人们的喜爱,在市场上的销售量呈逐年上升的态势,越来越多的人原意使用纯电动汽车。在能源日益紧缺的当今社会,电动汽车以其能源清洁的特点获得了空间的技术发展机遇,然而随着电动汽车使用量的逐渐提升,对电力系统施加的负荷压力也越来越大,必然会导致对电力系统运行安全性和稳定性的威胁。因此,加强电动汽车对电力系统影响方面的研究是非常必要的。 1.电动汽车充电对电力系统的影响 伴随着电动汽车数量的不断攀升,包括电动汽车智能化充放电的管理及电力的合理调度控制等在内的电网调整问题逐渐浮出水面,成为电力系统在适应电动汽车等新能源机械的过程中重点研究的课题。 1.1充电负荷对电力系统的影响分析 当电动汽车的数量达到一定规模时,必然会因充电问题对电力系统造成较大的用电负荷负担。电动汽车充电具有间歇性和随机性,对电力系统的影响主要表现在以下方面:第一,影响配电系统的安全性、可靠性。一般情况下,电动汽车在充电时多采用快充方式,这种方式在电力系统的负荷高峰期必然会引发变压器过载问题,从而使配电系统的功率损耗无法得到控制,电压偏移的问题也不可必免。由此带来的对配电系统运行安全性和可靠性的考验是相当严峻的。第二,影响配电系统的投资成本。研究发现,在用电负荷高峰期进行电动汽车充电,会使配电系统的建设成本至少增加20%左右,这一比率会随着负荷密度的提高而不断提高[1]。第三,影响电能质量。电动汽车快充对电力系统的负荷影响不仅使变压器出现过载问题,使变压器的温度快速提升,同时对电动汽车上的电力装置造成谐波污染,使电力系统电压下降、网损增加,而在常规充电的模式下,这一问题相对更小。 1.2不同充电模式对电力系统的影响分析 1)无序充电方式。伴随着电动汽车保有量持续上升,无序充电方式的使用也逐渐增多。无序充电方式会导致电力系统电力负荷小时数的显著降低,从而使系统的整体运行效率下降。这种无序充电方式会增强电网线路的负载率(70%~83%),使得电力系统的运行可靠性受到严重威胁。 2)有序充电方式。所谓有序充电方式即在电力系统的负荷低谷期进行大规模的电动汽车车载电池的充电,使得电力系统的负荷放电得以平衡。同时,现在对于再生能源发电技术的开发使得清洁能源的利用率更高[2],结合再生能源产生的特点使其与电力系统共同服务于电动汽车车载电池的充电,可以使电力系统的负荷状态更为稳定。 1.3电动汽车充电对电力系统的冲击作用 无论采用对常规充电方式还是直流机快充的充电方式,电动汽车充电都会对当地电力系统产生一定影响。 1.3.1对输电网和配电网产生的影响 研究人员通过调查纯电动汽车车载充电对输电网和配电网用电平衡的影响后,根据峰荷—时间模型来分析配电网与输电网的负荷曲线与电动汽车充电负荷特性之间的关系,得出了一个结论,那就是,电动汽车采取常规充电方式或者直流机快速充电方式都会在一定程度上对输电网和配电网产生某种影响。在夏季和冬季用电的负荷高峰期,这种冲击作用尤其明显,不仅会打破原有的电网负荷平衡,而且容易引发局部地区用电紧张的问题[3]。 1.3.2产生一定的谐波污染 电动汽车在充电过程中使用的电力电子装置会产生一定的谐波,对电力系统产生谐波电流的冲击作用。一般情况下,人们会采取添加无功补偿设施或者滤波装置的方式来降低谐波电流的有效性。 2.降低电动汽车对电力系统影响的应对措施 2.1加强对电动汽车充放电的技术研究 针对电动汽车对电力系统的影响,相关技术的开发利用对于解决问题具有重要意义。通过智能控制手段有效调整电动汽车充放电的策略和进行相关充电设备的科学规划,有助于加强电力系统运行的稳定性和安全性[4]。 2.2改变电动汽车的商业运营模式 目前,电动汽车的使用多集中于公共交通工具的应用方面,这为通过改变商业运营模式而有效调整电动汽车的充电规律提供了可能性。例如,可以通地更换电池等手段避开电力系统的用电高峰期,或集中在用电低谷其进行电动汽车的集中充电,这对于提高电力系统运行的经济性、改善电力负荷状态具有重要意义。 2.3建立分时充电电价 通过调整不同用电时段的电价,利用价格优势引导电动汽车用户的充电行为,可有效减少无序充电行为的发生率,从而降低无序充电对电力系统的不良影响。 3.电动汽车应用的发展趋势

国家电网与电动汽车,要互补不要喂养

国家电网与电动汽车,要互补不要喂养 如果不是那一条条橘黄色电源线慵懒地插在车身一旁,摆在特拉华大学理 工学院西北角的那15 辆MINI-E,乍一看会被人误以为是宝马经销商把展台搬 到了大学校园。但熟悉MINI 的的各位邦友肯定都特门儿清,因为除了i3 和 i8,宝马至今木有推出过其他任何量产版的新能源车型,所以这几辆小MINI 显然另有他用。不过小编这里可先要卖个关子,大伙儿不如先猜猜这些市面上 根本见不到的宝马电动车,背后到底牵扯了怎样的商业“机密”呢? 其实这些MINI-E 正是宝马专门为特拉华大学理工学院的实验项目量身打造 的产品。我们都知道电动车充电,耗的是国家电网的能源。但如果反其道行之,将电动车的多余电量再卖回给国家电网,在技术层面是否可行呢?这想法虽胜 似“无稽之谈”,但恰恰却是特拉华大学谋篇布局的方向,在获得了私营企业财 团的资金支持后,一项名为“电动车对电网”(vehicle-to-grid,简称V2G)的技 术才得以开花结果。按照该项目负责人的描述,这项V2G 技术主要希望通过 不断挖掘电动车电池巨大的储能潜力,帮助地方电力系统进行供需的有效管理。 这项技术经过多年的开发和成熟地孵化后,目前已经能够向全美最大的电网 运营商PJM Interconnection 输送稳定的电流。一位来自特拉华大学海洋科学系、同时也是V2G 技术其中一位缔造者的Willett Kempton 教授在接受记者采访时,笑称“这项技术已经成功把15 辆MINI-E 变成了PJM 电网的一部分。它不仅有 利于整个电力系统的稳定运行,同时还可以趁机为实验室赚些’零花钱’”。 在过去的两年里,来自特拉华大学以及PJM 下属子公司——NRG 能源的研

国家电网有限公司电动汽车充电设备标准化设计方案-80kW一体式一机一枪充电机

电动汽车充电设备标准化设计方案 80kW一体式一机一枪充电机 2019年10月28日

目录 1.概述 (1) 2.设计标准 (1) 3.设计方案 (2) 3.1.电气原理 (2) 3.2.专用部件设计 (2) 3.3.通用器件选型 (3) 3.4.结构外形 (6) 3.5.结构布局 (7) 3.6.设备安装 (9)

1.概述 本设计方案充分考虑充电设施运营现状与发展趋势,通过规范直流充电设备电气原理、专用部件设计、通用器件选型、外形结构、结构布局、设备安装等,实现充电设备统一化设计和标准化管理,全面提高充电设备的兼容性、可靠性和易维护性。 2.设计标准 GB/T 4208外壳防护等级(IP代码) GB/T 13384-2008机电产品包装通用技术条件 GB/T 18487.1-2015电动汽车传导充电系统第1部分:通用要求 GB/T 18487.2-2017电动汽车传导充电系统第2部分:非车载传导供电设备电磁兼容要求 GB/T 20234.1-2015电动汽车传导充电用连接装置第1部分:通用要求 GB/T 20234.3-2015电动汽车传导充电用连接装置第3部分:直流充电接口GB/T 33708-2017静止式直流电能表 GB/T 34657.1-2017电动汽车传导充电互操作性测试规范第1部分:供电设备 GB/T 34658-2017电动汽车非车载传导式充电机与电池管理系统之间的通信协议一致性测试 JJG 1149-2018电动汽车非车载充电机 JJG 842-2017电子式直流电能表检定规程 JJG 1069-2011直流分流器检定规程 NB/T 33001-2018电动汽车非车载传导式充电机技术条件 NB/T 33008.1-2018电动汽车充电设备检验试验规范第1部分:非车载充电机 DL/T 698.45-2017电能信息采集与管理系统第4?5部分:通信协议—面向对象的数据交换协议 Q/GDW 1233-2014电动汽车非车载充电机通用要求 Q/GDW 1591-2014电动汽车非车载充电机检验技术规范 Q/GDW 11709.1-2017电动汽车充电计费控制单元第1部分:技术条件

综合能源系统与智能电网

综合能源系统与智能电网随着人类进入工业化时代,一直发展到今天,化石燃料一直占据着我们生活中的主要地位。但社会在发展,现如今,环境问题,能源问题日益突出,人类对能源的数量和质量要求不断提升,所以,新型能源在不断发展,与此同时,智能电网规模也在逐渐扩大。 智能电网是以包括各种发电设备、输配电网络、用电设备和储能设备的物理电网为基础,将现代先进的传感测量技术、网络技术、通讯技术、计算技术、自动化与智能控制技术等与物理电网高度集成而形成的新型电网,它能够实现可观测(能够监测电网所有设备的状态)、可控制(能够控制电网所有设备的状态)、完全自动化(可自适应并实现自愈)和系统综合优化平衡(发电、输配电和用电之间的优化平衡),从而使电力系统更加清洁、高效、安全、可靠。 智能电网在世界的发展还属于起步阶段,智能电网的简历是一个巨大的历史性工程,目前有很多复杂的智能电网项目正在进行中,但是缺口仍然是巨大的。智能电网的简历,尚有许多技术难题需要攻克。例如:配电网络系统升级、配电站自动化和电力运输、智能电网网络和智能仪表等。 智能电网对世界经济社会发展的促进作用,智能电网建设对于应对全球气候变化,促进世界经济社会可持续发展具有重要作用。主要表现在:(1)促进清洁能源的开发利用,减少温室气体排放,推动低碳经济发展。 (2)优化能源结构,实现多种能源形式的互补,确保能源供应的安全稳定。 (3)有效提高能源输送和使用效率,增强电网运行的安全性、可靠性和灵活性。 (4)推动相关领域的技术创新,促进装备制造和信息通信等行业的技术升级,扩大就业,促进社会经济可持续发展。 (5)实现电网与用户的双向互动,革新电力服务的传统模式,为用户提供更加优质、便捷的服务,提高人民生活质量。 综合能源系统将各种新型的清洁能源以及分布式能源并入电网,但是在技术上还有很多难题有待解决。 以V2G为例,传统汽车碳排放是人类碳排放的主要来源之一,据科学家的测算,全球汽车每年向大气层排放的CO2约为40多亿吨,占人类碳排放总量

电动汽车充电对电网影响

创新实验 电动汽车充电对电网影响 学院:信息与电气工程学院 班级:电气工程及其自动化(定单)2010-3 姓名:汪海鹏 学号:201001100321 指导老师:白星振

一电动汽车新增电力需求预测----------------------3 二充电机谐波分析-------------------------------------------------4 三电动车的充电模式的技术状况--------------------5 (1)常规充电模式---------------------------------5 (2)快速充电模式---------------------------------6 (3)更换电池组-----------------------------------7 四谐波的产生与危害------------------------------8 五谐波消除的主要措施------------------------------------------12 (1)合理增大充电机的滤波电感值---------------------------12 (2)增大整流装置的脉波数---------------------------------------12 (3)采用功率因数校正技术---------------------------------------12 (4)由容量较大的系统供电-------------------------------------13 (5)加装滤波装置-------------------------------------------------13 (6)谐波消除的目标值-------------------------------------------13 六结束语---------------------------------------14

电动汽车充电站充电设施CAN总线通讯规范(国家电网)

电动汽车充电站充电设施CAN总线通讯规范 (BMS、充电桩、充电机、后台) 1、通讯规范 数据链路层应遵循的原则 总线通讯速率为:250Kbps,根据现场实际情况,可能改成125K。以250K为主,125K备用数据链路层的规定主要参考CAN2.0B的相关规定。 使用CAN扩展帧的29位标识符并进行了重新定义,以下为29们标识符的分配表: IDENTIFIER 11BITS S R R I D E IDENTIFIER EXTENSION 18BITS P R I Resv DestAddr SorceAddr S R R I D E FunctionCode InfoCode 1 2 1 4 3 2 1 4 3 2 1 8765432110 9 8 7 6 54321 282726252423222120191817161514131211109876543210其中,1位PRI 为报文优先级(0:高优先级;1:普通报文); 2位Resv 为保留位,填0 3位DestAddr 为目标地址(1-14表示设备地址,15表示广播地址;0:保留;1:后台监控系统;2:充电柱;3:BMS;4:CCS)4位SourceAddr 为源地址(1-14表示设备地址,15表示广播地址;0:保留;1:后台监控系统;2:充电柱;3:BMS;4:CCS) 8位FunctionCode 为报文的功能码;(0-255见后续定义) 10位InfoCode 为报文的信息码;(0-1023见后续定义)单体 FunctionCode表示功能码,指报文内容属于任何种功能类型,定义如下: =0对时报文 =1申请读取数据/回答读取数据 =2申请写入数据/回答写入数据(不带返校) =3遥控操作/遥控返校 =4遥控执行/执行返校 =5主动上送数据(广播发送) =6主动上送数据(点对点) …….. InfoCode表示信息码,指报文数据区的信息类型,定义如下: =0 保留,当不属于以下定义的信息类型时,可填0 =001-400 综合类数据,可由双方约定每种报文帧的数据结构(现未用) =401-600 直流测量值数据 。 401~600=总数据及报警参数; 。 407=每个模块是否有温度;//最大64模块 。 408~415=上送模块中电池支数;//最大64模块 。 420~519=单体电压;//最多400个单体电压 。 520~535=每个模块的温度;//最大64个温度,传输每个模块的最高温度 。 536~551=每个模块的温度;//最大64个温度,传输每个模块的最高温度 。 690=BMS发送广播帧充电参数 。 695=CCS发送数据及状态 =701~800 交流测量值数据:701:监控后台输出实时电度表值 702:直流充电桩输出计算电量 =801~899 状态量数据 801=CCS发送控制命令 =900 SOE数据 =901 BMS控制输出(控制充电机) =902 监控后台控制输出(控制充电机)

智能电网与新能源发电

智能电网与新能源发电技术 摘要:伴随着我国特高压电网的大力建设和电力行业体制改革的不断推进,着力发展智能电网技术成为我国电网未来探索的新领域。本文主要简述了智能电网的概念及特点,并指出了目前国内外智能电网的发展现状。通过分析我国智能电网发展的现有条件以及未来的发展趋势,提出国内新能源未来的发展规划,以期实现新能源发电和智能电网的协调发展,实现建设资源节约型与环境友好型社会的基本目标,争取早日实现我国未来社会、经济和环境的可持续发展。 关键词:智能电网;新能源;协调发展 Smart Grid and New Energy Power Generation Technology (Industrial Technology Research Institute of Zhengzhou University, Zhengzhou 450001, Henan Province,.) Abstract:This paper mainly introduces the concept and characteristics of smart grid, and points out the development status of smart grid at home and abroad. Through the analysis of the existing conditions of the development of smart grid in China and the future development trend, put forward the new energy plan for future development, realize the coordinated development of new energy and smart grid in order to achieve the basic goal of building a resource-saving and environment friendly society, to achieve the sustainable development of society, economy and environment in our country in the future as soon as possible. Key words:Smart grid; new energy; coordinated development 引言: 智能电网(smart power grids),也就 是电网智能化,它的基础是建立在集成、高速、双向的通信网络,并通过先进的传感测量技术及先进的设备技术、控制方法等,以达到可靠、安全、经济、高效的电网使用环境。 智能电网技术有机融合了高级传感、通信、自动控制等技术,具有自我管理与恢复、兼容性强等特点,其快速发展为分布式能源的无缝并网提供了良好的技术保障。通过合理利用各类高级控制技术,能推动各类分布式能源与现有电力系统的有机融合,实现“即插即用”、实时互动和协调运行。目前,分布式能源的开发利用多处于自治运行模式,缺乏一个长远的具体发展模式,进而实现分布式能源的大规模的开发利用。因此, 积极研究智能电网环境下的分布式能源发 展模式对未来实现分布式能源大规模的开发,缓解能源危机等战略目标具有重要的意义。智能电网作为未来电网发展的主要方向,以及新能源发展的有力平台,促进智能电网的发展相应地也会促进新能源产业的发展,是可持续发展的基本要求。首先,智能电网经过近些年的发展和改进,其配置与容纳能力得到较大提高,能够保证新能源合理入网及利用;其次,不断发展的新能源相关产业同时也为智能电网的大力发展提供强有力 的技术保障,两者相互促进、相辅相成,共同发展与完善。 我国新能源近年发展迅速,由于新能源发电具有随机性、波动性和间歇性,其接入电网会影响电力系统的安全稳定运机“智能电网”的提出,有利于促进可再生能源的发展,实现可再生能源与电力系统有机融合,相对彻底的解决目前困扰新能源发电入网等技术问题。 1 智能电网的概念及发展现状 1.1 智能电网的概念 国家电网公司对中国智能电网有一个概述:智能电网要求发、输、变、配、用电各个环节都能得到实时监控,每个点上的电流和信息得到双向流动,通过通信系统和自

电动汽车对区域电网的影响技术方案

电动汽车对区域电网的影响技术方案 2019.1.20 1系统思路 1.1研究内容 1.研究不同电动汽车接入规模和充电方式对单一设备和整个网络的影响。包括:设备过载 与寿命损失、电压波动和管理、网络损耗; 2.预测地区电网电动汽车充电需求,采用基于Multi-Agent的复杂系统建模方法对大量分 散用户的使用行为和充电习惯进行模拟,得出城市电网范围内电动汽车充电的负荷模型; 3.基于地理信息引擎开发适用于城市电网的电动汽车充放电站智能优化布点和可视化规 划软件; 1.2最终研究成果 1)完善充电站在电网潮流分析中的模型,重新配置地区电力负荷分布,并依据建立的模型 校验线路分布,开发相关的仿真程序,综合优化城市配电网分布。 2)电动汽车充电的负荷模型; 3)电动汽车充放电站智能布点和可视化规划软件。 1.3系统设计要求 1)可靠性。 2)安全性:保证数据和系统的安全性,采用适当加密防护措施,防范利用网络对系统 的攻击和破坏。 3)完整性:要保证数据的完整性,并提供所有相关数据的备份及恢复功能。 4)一致性:保证数据的一致性。 5)连续性:以固定的采样周期对所需数据进行连续采集与存储。 6)及时性:保证数据传输与处理的及时性。 7)开放性:采用开放式体系结构和功能分布式系统设计。 8)扩展性:适应电力调度业务与信息技术的发展。 1.4系统软件设计方案 1)采用C/S 体系结构,整体软件设计分为界面显示层,业务逻辑层,数据操作层三 层结构,方便软件功能的扩展。 2)软件设计应用面向对象思想并采用模块化分布式结构,功能的扩充更改只需修改相 应的软件模块,而不影响整个系统。 3)应用软件模块“即装即用”,可以安装在同一台服务器上运行,也可以分布安装在 不同的业务服务器上运行。 4)根据操作员级别的不同,分别给予相应模块的操作权限。 5)系统运行过程具有完备的记录。包括操作记录,数据库访问记录等。 6)客户端程序做到在线自动升级,以达到免维护的目的。 7)人机界面采用树形结构图、菜单、按钮、对话框以及各类选择框等技术,尽可能减 少键盘输入方式,避免误操作和误输入。 8)用户界面、报表打印及运行记录打印输出完全中文汉化。

国家电网公司电动汽车充电设施建设指导意见

(1)满足《国家电网公司电动汽车充电设施建设指导意见》、《电动汽车充电设施建设典型设计》中对交流充电装置技术指标的要求; (2)交流充电桩采用单桩单充式结构,每个充电接口提供AC220V/7kW的交流供电能力; (3)具备对充电桩运行状态的综合测控保护能力如运行状态监测、故障状态监测、充电计量和充电过程的联动控制、短路保护、过流保护等; (4)设置指示灯、数码管显示器或触摸屏,显示运行状态; (5)设置急停开关、操作按键等必需的操作接口; (6)预留交流三相四线电子式多功能电能表的表位,进行交流充电计量; (7)设置刷卡机,支持IC卡付费方式,并配置打印机,提供票据打印功能; (8)具备过/欠压报警、充电接口的连接状态判断、联锁等功能; (9)提供完善的通讯功能,采用GPRS及以太网接口,可根据需要上传交流充电桩的运行状态参数,接 受远程控制命令。 应遵循的主要标准 电动汽车技术标准: GB/T18487.1-2001《电动车辆传导充电系统一般要求》 GB/T18487.2-2001《电动车辆传导充电系统电动车辆与交流/直流电源的连接要求》 GB/T18487.3-2001《电动车辆传导充电系统电动车辆与交流/直流充电机(站)》 GB/T20234-2006《电动汽车传导充电用插头、插座、车辆耦合器和车辆插孔通用要求》 电气技术标准: GB/T17215.322-2008《静止式有功电能表0.2S级和0.5S级》 GB17625.2-2007《电磁兼容限值对每相额定电流≤16A且无条件接入的设备在公用低压供电系统中产生的电压变化、电压波动和闪烁的限制》 GB17625.3-2000《电磁兼容限值对额定电流大于16A的设备在低压供电系统中产生的电压波动和闪烁的限制》 DL/T620-1997《交流电气装置的过电压保护和绝缘配合》 DL/T621-1997《交流电气装置的接地》 GJB3855-1999《智能充电机通用规范》 国家电网公司标准: Q/GDW399-2009《电动汽车交流供电装置电气接口规范》 Q/GDW400-2009《电动汽车充放电计费装置技术规范》

国家电网电动汽车充电桩最新企业标准

ICS 29.240 Q/ GDW 国家电网公司企业标准 Q/GDW485-2010 电动汽车交流充电桩技术条件 Technical specitication for electric vehicle charging spot 2010-08-30发布 2010-08-30 实施 国家电网公司发布

一、编辑背景 为了适应电动汽车的发展和应用,支撑电动汽车充电设施师范试点建设,在国家电网公司的领导下,开展了充电设施标准化研究和标准体系建设,2008年12月,国家电网公司发布了第一批企业标准。包括《电动汽车非车载充电机通用要求》等六项标准;2009年12月发布了弟二批企业标准。包括《电动汽车车载充放电装置通用技术要求》等四项标准,为国家电网公司电动汽车能源供给基础设施的建设提供了指导,2010年,根据充电设施建设的要求,并结合示范工程取得的经验和成果,国家电网公司启动了电动汽车充电设施相关企业标准的制修订工作,以完善电动汽车充电设施体系,为充电设施示范试点建设的大范围开展提供有力的标准支持。 二、编辑主要原则及思路 1.根据国家电网公司电动汽车充电设施建设规划,结合充电设施示范工程取得的经验和成果,考虑五年内充电设施的技术发展和建设要求,编制本标准。 2.本标准规定电动汽车交流充电桩的基本构成、功能要求、技术要求、试验方法、检验规则及标志和标识等。 3.本标准适用于国家电网公司建设的电动汽车交流充电桩,用于指导电动汽车交流充电桩的设计、生产和检验。 三、条文说明 1.范围 标准涵盖了交流充电桩的基本构成、主要功能要求、技术要求及实验方法等,是交流充电桩设计和生产的基本要求,也可作为交流充电桩采购和验收的基本条件。 2规范性引用文件 交流充电桩是一种低压交流设备,根据其基本特点,本标准重点参考了GB 7251.1 2005《低压成套开关设备和控制设备第1部分型式试验和部分型式试验成套设备》和GB7251.3 2006《低压成套开关设备和控制设备第3部分对专业人员可进入场地的低压成套开关设备和控制设备—配电板的特殊要求》,引用了其中部分电气、安全性能指标及实验方法。 3.术语和定义 交流充电桩,在有些标准中又称为交流供电装置。 4.基本构成 本标准列出的“桩体、充电插座、保护控制装置、计量装置、读卡装置、人机交互界面等”是交流充电桩的基本构成。应允许生产厂商按照要求在此基础上增加其他辅助结构、 5.功能要求 本部分规定了交流充电桩的主要功能,包括人机交互、计量、刷卡付费、通讯、安全防护、自检等。 5.1.1 根据使用环境和显示数据量,可选择配置数码管和液晶显示屏等。

国家电网电动汽车充电桩企业标准

1 ICS 29.240 国家电网公司企业标准 Q /GDW 485-2010 电动汽车交流充电桩技术条件 Technical specitication for e lectric vehicle charging spot 2010-08-30 发布 2010-08-30实施 国家电网公司 发布

一、编辑背景 为了适应电动汽车的发展和应用,支撑电动汽车充电设施师范试点建设,在国家电网公司的领导下,开展了充电设施标准化研究和标准体系建设,2008年12月,国家电网公司发布了第一批企业标准。包括《电动汽车非车载充电机通用要求》等六项标准;2009年12月发布了弟二批企业标准。包括《电动汽车车载充放电装置通用技术要求》等四项标准,为国家电网公司电动汽车能源供给基础设施的建设提供了指导,2010年,根据充电设施建设的要求,并结合示范工程取得的经验和成果,国家电网公司启动了电动汽车充电设施相关企业标准的制修订工作,以完善电动汽车充电设施体系,为充电设施示范试点建设的大范围开展提供有力的标准支持。 二、编辑主要原则及思路 1.根据国家电网公司电动汽车充电设施建设规划,结合充电设施示范工程取得的经验和成果,考虑五年内充电设施的技术发展和建设要求,编制本标准。 2.本标准规定电动汽车交流充电桩的基本构成、功能要求、技术要求、试验方法、检验规则及标志和标识等。 3.本标准适用于国家电网公司建设的电动汽车交流充电桩,用于指导电动汽车交流充电桩的设计、生产和检验。 三、条文说明 1.范围 标准涵盖了交流充电桩的基本构成、主要功能要求、技术要求及实验方法等,是交流充电桩设计和生产的基本要求,也可作为交流充电桩采购和验收的基本条件。 2规范性引用文件 交流充电桩是一种低压交流设备,根据其基本特点,本标准重点参考了GB7251.12005《低压成套开关设备和控制设备第1部分型式试验和部分型式试验成套设备》和GB7251.32006《低压成套开关设备和控制设备第3部分对专业人员可进入场地的低压成套开关设备和控制设备—配电板的特殊要求》,引用了其中部分电气、安全性能指标及实验方法。 3.术语和定义 交流充电桩,在有些标准中又称为交流供电装置。 4.基本构成 本标准列出的“桩体、充电插座、保护控制装置、计量装置、读卡装置、人机交互界面等”是交流充电桩的基本构成。应允许生产厂商按照要求在此基础上增加其他辅助结构、 5.功能要求 本部分规定了交流充电桩的主要功能,包括人机交互、计量、刷卡付费、通讯、安全防护、自检等。 5.1.1根据使用环境和显示数据量,可选择配置数码管和液晶显示屏等。 2

浅谈电动汽车与电网

新能源汽车设计论文 学院:机械工程及自动化 班级:2012级车辆二班 作者:林湘龙 学号:021200716 教师:林歆悠 成绩: 2015年06月20日

浅谈电动汽车与电网 引言: 随着全球石油资源问题的凸显,越来越多的人选择购买电动汽车或者插电式混动动力汽车。研究显示,2020年,在欧、美、日、韩及中国,新能源汽车年产量预计占乘用车总量的9%-20%。巨大的电动车数量与用电需求对于电网来说是史无前例的挑战,同时,电动汽车的使用也将给电网带来前所未有的机遇。 到目前为止,电动汽车的充电模式主要有以下四种:1)VOG模式(单向无序电能供给),在此模式下,电动汽车接入电网即可立即充电;(2)TC--Timedcharging模式(单向有序电能供给),在此模式下,电动汽车可以在给定的时刻开始充电;(3)V1G模式(电动汽车充电受电网控制),在此模式下,电动汽车可以与电网进行实时通信,优化充电安排、提高电网效率,在电网允许时刻进行充电,弊端是不能向电网反馈送电;(4)V2G模式(双向有序电能供给),在此模式下,电动汽车可以作为电能存储设备、备用电源设备等,与电网的能量管理系统通信并受其控制,实现电动汽车与电网间的能量转换(充、放电)。 我们应该用辩证的眼光看待电动汽车充电的利弊,一方面,如果合理利用和控制电动汽车充电,便可使其削峰填谷的作用得到充分发挥,给电网负荷带来积极的调节;另一方面,它给电力系统带来的负面影响同样不容小觑,其中主要体现在以下几个方面:无计划的临时性快充对电网产生短时性负荷冲击;电动汽车通过逆变向电网供电,不可避免给电网带来反向潮流、电压变化、电能质量问题和无功功率平衡问题;给电网的规划和调度运行带来新的问题,尤其是配电网规划和运行等。 一、挑战 可以预计,未来配电网用户端将接有大量的纯电动汽车电池充电负荷。电动汽车的大规模应用将对城市电网和电力基础设施产生一定的影响,如局部电网升级、谐波污染等。 1.充电负荷对电网的影响。 如果电动汽车使用者在电网用电高峰时对电动汽车蓄电池充电,不但不能对电网负荷起负荷调整作用,反而增加电网负荷,对电网造成不利影响,所以在电动汽车普及过程中应对电动汽车使用者进行正确引导。 来自中国电力新闻网的最新消息。2015年2月,我国人均发电装机历史性突破1千瓦。此前,我国总装机容量和总用电量均超过美国位居世界第一。 相关数据显示,发达国家人均装机容量在2千瓦左右,美国更是超过3千瓦。 人均用电量方面,2012年美国达到12941千瓦时,是我们的3.5倍。日本、法国等国家人均用电量均在7000千瓦时以上,接近我国2倍。 换句话说,目前我国汽车保有量约为1亿辆,假设到2030年时我国汽车保有量为3亿辆,而电动汽车为6000万辆,占其中的五分之一,每辆电动汽车充电功率为10千瓦,极端情况下同时充电,则总充电功率将达到6亿千瓦,将占2030年时电网装机总容量24亿千瓦的1/4,如果不对此加以协调并采用相关技术手段有效控制,而无序地同时充电的话,将会出现“峰上加峰”的情况,从而增大电网调峰难度,加大输配电网建设的压力,降低发电机组和电网的运行效率。因此,在智能电网建设过程中,我们应把对电动汽车充放电运行模式的研究作为一项工作重点,充分利用电动汽车作为时间上可平移负

电动汽车无序充电行为和“车-桩-网”互动对配电网运行的影响

电动汽车无序充电行为和“车-桩-网”互动对配电网运行的影响 电动汽车作为一种重要的清洁能源动力受到了各国的高度关注和大规模投入。在中国、美国、日本、欧盟等国家和地区已上升为国家战略,市场规模快速增长。过去五年,中国新能源汽车的销售量、保有量均实现百倍增长。充电网络也同样处于快速发展时期,中国已经成为全球最大的充电桩市场。大规模充电基础设施投入运营,为配电网发展带来新的机遇和挑战。“车-桩-网”互动模式能够提高配电网的经济性、安全稳定性和环境友好性,但尚未得到足够重视。因此,报告重点对电动汽车发展对配电网的影响及效益进行了研究,以支持“车-桩-网”互动的发展,从而发挥电动汽车移动储能特性,实现削峰填谷,消纳新能源,减少对配电网增容改造的影响,实现经济、社会、环境效益。“车-桩-网”互动方式分为价格引导模式、本地优化的智能充电模式、全网优化的智能充电模式、本地优化的智能充放电模式、全网优化的智能充放电模式共五种互动模式。报告指出,在广泛应用价格引导模式的基础上,本地优化的智能充电模式有望率先得到应用,一方面有利于降低局部配电网的建设改造成本,另一方面能够在技术、设备、标准等方面打下良好基础;下一阶段随着电池成本下降、寿命提升与梯次利用的推广,大电网需求响应、电力市场等配套条件逐渐成熟,本地与全网优化的智能充放电模式有望实现应用。报告对比分析了电动汽车无序充电行为和“车-桩-网”互动对配电网运行的影响,着重分析了有序充电对电网的影响。“车-桩-网”互动可以显著降低对电网最大负荷的影响,促进需求侧资源的协调运行,最大程度消纳新能源,并降低配电网建设改造成本。以一个2000户的居民区配电设施为例,在配置充电桩时,无序充电下小区用电总容量要增加105%,在有序用电模式下用电下仅增加35%,并减少充电桩成本约50%。“车-桩-网”互动增强电网灵活性调节能力。电动汽车的停驶特性与电网负荷的爬坡特性存在较好的匹配关系。当早晨电网负荷爬升以及夜间电网负荷快速降低的同时,电动汽车也进入停驶状态,可以通过充电基础设施接入电网,参与电网的削峰填谷。“车-桩-网”互动模式还能够提高配电网的管理效率,丰富电网的服务模式。

纯电动汽车与电网相互关系的研究现状

纯电动汽车与电网相互关系的研究现状

纯电动汽车与电网相互关系的研究现状 摘要: 随着石油资源的日益枯竭以及人们对城市空气污染的关注,纯电池电动汽车开始受到全 世界的青睐,各国政府和工业界均在加大政策支持力度.可以预计,未来配电网用户端将 接有大量的纯电动汽车电池充电负荷.电动汽车的大规模应用将对城市电网和电力基础 设施产生一定的影响,如局部电网升级、谐波污染等;此外,电动汽车车用电池亦可以作 为分散式储能装置,在电网负荷高峰时,为电网提供容量支持.电动汽车的这一应用被称 为"车辆到电网"."车辆到电网"实现了车用电池和电网的交互作用,将解决以往电能无 法大量储存的困境,实现削峰填谷、稳定可再生间歇式能源电能质量,并提供应急电源. 综述电动汽车与电网交互关系的研究现状,指出虽然该领域是当前的研究热点,但是各 项研究均处于起步阶段,仍有大量的基础研究工作需要展开,如电动汽车电池充电负荷 模型的研究以及车用电池在"车辆到电网"中的模型,等. 关键词:纯电动汽车电力系统电网到车辆车辆到电网 1, 引言 负责把各地人们联系起来的交通运输系统是一个国家经济实力的基本方面。全世界23%二氧化碳排放来源于交通运输业,因此政府和业界开始加大了交通排放对全球气候变化影响的关注。在英国,为了实现苏格兰的气候改变模目标,一个环境保护组织报告称,到2020年前苏格兰道路上的交通工具至少有十分之一是电动车。然而在美国,到2025年之前,在所有登记的车辆中,纯电动汽车的占有量有望达到12%。随着量如此大的纯电动汽车接入电网系统充电,

充电

而不是在加油站增加动力。 2.2 纯电动汽车的市场前景 随着各国政府及汽车制造商对于不断上涨的油价,气候变化和环境保护法规的有效实施的难度的关注,纯电动车汽车得到了长足的发展。几个国家对电动汽车工程作出雄心勃勃的部署使得电动汽车的突破性转机有了迹象。例如,法国计划在2012年之前电动汽车占有100000辆,德国则计划2020年之前占有1000000辆。瑞士国家汽车公司计划2020年之前组装720000辆充电式混合动力车或电动车。在一个五年期里,英国为了支持电动的,混合动力的或者其他更环保的汽车项目,以实现其成为欧洲电动车中心。英国政府已经宣布了10亿英镑的政府支持资金。在此政府计划下,如果汽车驾驶人购买电的或者充电式混合动力的汽车,他们将得到来自政府的接近5000英镑的补贴。这是英国政府未来五年一个25亿英镑计划提升低碳交通的一部分。在苏格兰,一个慈善组织报告指出为了实现2020年至少减排42%这个目标,交通部门要对此作出相当的贡献。到那时候电动汽车要达到29万辆。未了实现这个目标,电动汽车必须达到汽车总量

智能电网电动汽车充电桩无线方案

智能电网电动汽车充电桩无线方案 智能电网-充电站概述 电动车是目前流行最广、节能环保的绿色出行交通工具。但目前电动车配套的充电器,一次充电经常需要7-8小时,一旦行驶途中没有电能,将使行车人陷入尴尬的境地。随着电动汽车的发展,在国家电网的推动下很多地方现在已经建起了电动汽车充电站,电动汽车产业化已经逐步展开,全国推广在即。 电动车快速充电站可以像汽车加油站一样,在沿街商店、街道社区、报刊亭旁、存车棚、彩票投注点等处设置。充电桩是电动力车充电站,外形犹如停车计时秒表一般。 为了支援无人管理且散布范围广大的电动汽车充电基础架构,物联网技术将成为不可或缺的促成科技。光载无线通信技术ROF为充电站的M2M通讯及数据采集,提供了简单且灵活的方式,容许各充电站与控制中心连线。不论是部署在餐厅的单一充电站,或是在停车场或购物中心的众多充电站,所有的充电站与控制中心之间,都将有大量的重要资料和指令须要传送。只要透过光载无线通信系统,控制中心就能远端管理充电站所有的工作,包括使用者验证、开始及停止指令、传输使用者资料、信用卡付款程序等等。光载无线通信技术还能协助控制

中心远端管理充电站故障而发生的设备停机,并立即侦测人为破坏而导致的异常。 随着物联网技术的不断发展,未来的充电站控制中心能透过定位服务,协助驾驶人找出距离最近、正在营运的充电站。充电完成后,再由控制中心系统通知使用者,传送简讯到驾驶人的行动电话,告知客户充电完、车辆可以上路。 基于光载无线通信技术的智能充电站无线解决方案 光载无线交换机将以上信息后通过电力光纤网络传送到电力管理计费中心,实现实时的信息传递。同样,从电网管理计费中心到最末端的充电桩也实现了实时的信息传递。 充电站基本结构包含侧快速充电机、储能蓄电池、再生蓄电池检修机、计费控制系统、线缆配电系、机房等组成。 针对充电站的充电桩分散、且单个充电桩的数据量小的特点,同时为了实现充电站的高速无线覆盖,既能满足充电桩的数据传输需要,又能提供高速宽带接入,系统采用两级无线数据传输方案如下图所示:

(国家电网)电动汽车充电站充电设施CAN总线通讯规范

山东中文沂星电动汽车充电站充电设施CAN总线通讯规范 (BMS、充电桩、充电机、后台) 1、通讯规范 数据链路层应遵循的原则 总线通讯速率为:250Kbps,根据现场实际情况,可能改成125K。以250K为主,125K备用 数据链路层的规定主要参考CAN2.0B的相关规定。 使用CAN扩展帧的29位标识符并进行了重新定义,以下为29们标识符的分配表: 其中,1位PRI 为报文优先级(0:高优先级;1:普通报文); 2位Resv 为保留位,填0 3位DestAddr 为目标地址(1-14表示设备地址,15表示广播地址;0:保留;1:后台监控系统;2:充电柱;3:BMS;4:CCS)4位SourceAddr 为源地址(1-14表示设备地址,15表示广播地址;0:保留;1:后台监控系统;2:充电柱;3:BMS;4:CCS)8位FunctionCode 为报文的功能码;(0-255见后续定义) 10位InfoCode 为报文的信息码;(0-1023见后续定义)单体 FunctionCode表示功能码,指报文内容属于任何种功能类型,定义如下: =0对时报文 =1申请读取数据/回答读取数据 =2申请写入数据/回答写入数据(不带返校) =3遥控操作/遥控返校 =4遥控执行/执行返校 =5主动上送数据(广播发送) =6主动上送数据(点对点) …….. InfoCode表示信息码,指报文数据区的信息类型,定义如下: =0 保留,当不属于以下定义的信息类型时,可填0 =001-400 综合类数据,可由双方约定每种报文帧的数据结构(现未用) =401-600 直流测量值数据 。401~600=总数据及报警参数; 。407=每个模块是否有温度;//最大64模块 。408~415=上送模块中电池支数;//最大64模块 。420~519=单体电压;//最多400个单体电压 。520~535=每个模块的温度;//最大64个温度,传输每个模块的最高温度 。536~551=每个模块的温度;//最大64个温度,传输每个模块的最高温度 。690=BMS发送广播帧充电参数 。695=CCS发送数据及状态 =701~800 交流测量值数据:701:监控后台输出实时电度表值702:直流充电桩输出计算电量 =801~899 状态量数据801=CCS发送控制命令 =900 SOE数据 =901 BMS控制输出(控制充电机)

相关文档