文档视界 最新最全的文档下载
当前位置:文档视界 › BIOINFORMATICS ORIGINAL PAPER

BIOINFORMATICS ORIGINAL PAPER

BIOINFORMATICS ORIGINAL PAPER
BIOINFORMATICS ORIGINAL PAPER

Vol.22no.202006,pages2500–2506

doi:10.1093/bioinformatics/btl424 BIOINFORMATICS ORIGINAL PAPER

Gene expression

Group testing for pathway analysis improves comparability

of different microarray datasets

Theodora Manoli1,2,3,Norbert Gretz2,Hermann-Josef Gro¨ne3,Marc Kenzelmann3, Roland Eils1and Benedikt Brors1,?

1Theoretical Bioinformatics,German Cancer Reseach Center,69120Heidelberg,Germany,2Medical Research Center,University Hospital Mannheim,68167Mannheim,Germany and3Cellular and Molecular Pathology, German Cancer Research Center,69120Heidelberg,Germany

Received on March8,2006;revised on July22,2006;accepted on July28,2006

Advance Access publication August7,2006

Associate Editor:David Rocke

ABSTRACT

Motivation:The wide use of DNA microarrays for the investigation of the cell transcriptome triggered the invention of numerous methods for the processing of microarray data and lead to a growing number of microarray studies that examine the same biological conditions. However,comparisons made on the level of gene lists obtained by different statistical methods or from different datasets hardly converge. We aimed at examining such discrepancies on the level of apparently affected biologically related groups of genes,e.g.metabolic or signal-ling pathways.This can be achieved by group testing procedures, e.g.over-representation analysis,functional class scoring(FCS),or global tests.

Results:Three public prostate cancer datasets obtained with the same microarray platform(HGU95A/HGU95Av2)were analyzed. Each dataset was subjected to normalization by either variance stabilizing normalization(vsn)or mixed model normalization(MMN). Then,statistical analysis of microarrays was applied to the vsn-normalized data and mixed model analysis to the data normalized by MMN.For multiple testing adjustment the false discovery rate was cal-culated and the threshold was set to0.05.Gene lists from the same method applied to different datasets showed overlaps between42 and52%,while lists from different methods applied to the same dataset had between63and85%of genes in common.A number of six gene lists obtained by the two statistical methods applied to the three data-sets was then subjected to group testing by Fisher’s exact test.Group testing by GSEA and global test was applied to the three datasets,as well.Fisher’s exact test followed by global test showed more consistent results with respect to the concordance between analyses on gene lists obtained by different methods and different datasets than the GSEA.However,all group testing methods identified pathways that had already been described to be involved in the pathogenesis of prostate cancer.Moreover,pathways recurrently identified in these analyses are more likely to be reliable than those from a single analysis on a single dataset.

Contact:b.brors@dkfz.de

Supplementary Information:Supplementary Figure1and Supplementary Tables1–4are available at Bioinformatics online.1INTRODUCTION

DNA microarrays accelerated dramatically the gene expression pro?ling of cells,and became therefore an important tool in many biomedical applications.In cancer research,microarray exp-eriments are frequently performed for tumour classi?cation and identi?cation of marker genes(van’t Veer et al.,2002;Golub et al.,1999;Giltnane and Rimm,2004).When results obtained by different microarray studies examining the same biological con-ditions,e.g.differential expression between tumour and normal samples,are compared,the lists of differentially expressed genes hardly overlap(Ein-Dor et al.,2005).Moreover,numerous statis-tical methods that are being used for the processing of microarray data exist,and result in dissimilar lists of differentially expressed genes as well(Allison et al.,2006).

A recent addition to the repertoire of analysis methods is group testing,i.e.testing whether prede?ned lists of genes that belong to,e.g.a metabolic pathway,the same cellular function or cellular component are signi?cantly changed as a group in a microarray dataset(Curtis et al.,2005).Three approaches for this task are:(1) an over-representation analysis(ORA),where the genes in the pre-de?ned lists are analyzed to see which categories are represented more than expected by chance(Draghici et al.,2003);(2)a func-tional class scoring(FCS;Pavlidis et al.,2004;Mootha et al.,2003), where the genes are ranked based on the correlation between their expression and the given phenotype and(3)a global test looking for associations between gene expression in prede?ned gene sets and a target variable(Goeman et al.,2004).

Until now,results coming from different datasets and statistical methods have only been compared on the level of lists of differen-tially expressed genes.The goal of this study is to extend the com-parison of different statistical methods and datasets to the level of affected pathways,and to compare the output of three recent group testing methods used for pathway analysis.Three public prostate cancer datasets were subjected to two distinct statistical analyses of differential expression,the Statistical Analysis of Microarrays (SAM;Tusher et al.,2001)and Mixed Model Analysis(MMA; Hsieh et al.,2003;Chu et al.,2002).The six lists of genes obtained from these analyses were then subjected to ORA by Fisher’s exact test(Draghici et al.,2003).Normalized data of the three datasets

?To whom correspondence should be addressed.

ó2006The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(https://www.docsj.com/doc/a718053019.html,/licenses/ by-nc/2.0/uk/)which permits unrestricted non-commercial use,distribution,and reproduction in any medium,provided the original work is properly cited.

were subjected to FCS by GSEA(Mootha et al.,2003;Sweet-Cordero et al.,2005)and to global test(Goeman et al.,2004).

2METHODS

2.1Public dataset collection and pre-processing

Data for this study were downloaded from public websites(Table1)and were pre-processed by software packages included in the R-project (R Development Core Team,2004;Ihaka and Gentleman,1996),Biocon-ductor(Gentleman et al.,2004),and SAS Microarray1.3(SAS Institute Inc, 2004).In all cases raw data were imported from CEL?les.Normalization was carried out using the vsn(Huber et al.,2002)or MMN(Hsieh et al., 2003;Chu et al.,2002)algorithms with default parameters as implemented in the Bioconductor package vsn1.5.0or SAS Microarray1.3,respectively. Data were two-base log-transformed.Vsn-normalized data were sum-marized by the medianpolish method(Tukey,1977).To calculate fold changes for vsn-normalized expression values the robust estimator expehex1Tàhex2TTwas used(Huber et al.,2003).For MMN data,summa-rization of probes was only necessary to calculate fold changes;this was done by calculating the median of each probe-set.Fold changes were then obtained by dividing the two averages.

2.2Statistical analysis

For the identi?cation of differentially expressed genes,SAM(Tusher et al., 2001),as implemented in the siggenes1.2.11Bioconductor package,has been applied on vsn-normalized data and MMA(Hsieh et al.,2003;Chu et al.,2002),as implemented in SAS Microarray1.3,has been applied on MMN-normalized data.In all three datasets the same two classes,tumour versus normal,were compared.For multiple testing adjustment,the false discovery rate(FDR)was calculated,using the algorithm of Storey and Tibshirani(2003)for SAM and the algorithm of Benjamini and Hochberg(1995)for MMA.A threshold of0.05was used.

2.3Group testing for pathway analysis

To identify pathways that are likely to be affected by differential expression three approaches were used;an ORA approach using Fisher’s exact test as described by Draghici et al.(2003),an FCS approach using a modi?ed GSEA as described by Sweet-Cordero et al.(2005)and the global test approach as described by Goeman et al.(2004)and as implemented in the Bioconductor package globaltest3.0.4.We used a total number of 227pathway lists from which132were generated from the KEGG database (Kyoto Encyclopedia of Genes and Genomes,http://www.genome.ad.jp/ kegg/pathway.html)using the Bioconductor annotation package hgu95av2 1.8.4.A number of95pathways was generated manually(M.Kenzelmann).2.4Fisher’s exact test(Draghici et al.,2003)

We consider that there are N single-symbol-annotated genes on the micro-array(replicates were averaged by calculating the mean),which are either signi?cantly differentially expressed(S)or not(F),and either belong to a pre-de?ned pathway list(P)or not(NP),see Table2.If we pick randomly P genes,we would like to estimate the probability of having exactly a genes in S.The p-value of having a genes or fewer in S can be calculated by summing the probabilities of a random list of K genes having1,2,...,a genes in S:

p?1à

X a

i?0

S

i

F

Pài

N

P

e1T

This is a one-sided test in which the P values correspond to over-represented lists of genes.

A review about similar current tools used for group testing on the level of Gene Ontology(GO)terms was given by Khatri and Draghici (2005).

2.5GSEA(Mootha et al.,2003;Sweet-Cordero

et al.,2005)

An earlier version of this approach,called also gene set enrichment analysis (GSEA),has previously been described by Lamb et al.(2003)and Mootha et al.(2003).This procedure was extended by Sweet-Cordero et al.,2005to address the case of multiple gene sets as well as multiple datasets.A re?ne-ment of the GSEA methodology with a broader applicability along several kinds of datasets has been given by Subramanian et al.(2005).We use the basic GSEA procedure as described by Sweet-Cordero et al.(2005),apply-ing a phenotype permutation but no gene permutation.This is based on a maximum deviation statistic of two empirical distribution functions. First,the genes are ranked using the SNR(signal to noise ratio)with respect to their correlation with the phenotype of interest,in our case the comparison of tumour tissue versus normal tissue.The SNR is de?ned as SNR?j(m C–m T)j/(s C+s T),where,m C,m T,s C and s T are the mean expression values and the standard deviations of the control group C and the test group T,respectively.Second,an enrichment measure ES is calculated and assigned to each gene set as following.If L?{g1,...,g N}are the ranked genes,the two empirical cumulative distribution functions are de?ned as

P hiteG?D?iT?

Card?g j i2G

N H

P misseG?D?iT?

Card?g j i=2G

H

,

e2T

where G is the gene set that is to be tested,D the dataset under investigation, N H the number of genes in the gene set,Card?g j i2G the number of genes (cardinality)ranked above the i th gene that are in the gene set(‘hits’)and Card?g j i=2G the number of genes(cardinality)ranked above the i th gene that are not in the gene set(‘miss’).

Table1.Key characteristics of the microarray data used in this study Study Platform Sample

Welsh et al.(Welsh) (Welsh et al.,2001)HGU95A32:normal{8},

tumour{24}

Singh et al.(Singh) (Singh et al.,2001)HGU95Av2102:normal{50},

tumour{52}

Ernst et al.(Ernst) (Ernst et al.,2002)HGU95A26:normal{9},

tumour{17}

All datasets were consisting of Affymetrix oligonucleotide microarrays of the HGU95A/ HGU95Av2series with12,626probe sets.The numbers in curly brackets denote the number of samples in each category.Table2.Gene categorization for group testing with Fisher’s exact test approach

Significant Not significant Sum Genes in P a b P Genes not in P g d NP Sum S F N

Group testing for pathway analysis

2501

The enrichment score ES is the maximum difference between P hit and P miss,i.e.

ESeG?DT?signeP hiteG?D?iTàP misseG?D?iTT

·max

i j P hiteG?D?iTàP misseG?D?iTj:

e3T

Finally we calculate a nominal p-value to estimate the statistical signi?cance of the enrichment score ES.This is done by permuting the class labels999times to produce reshuf?ed datasets D(p).Then we re-compute ranked lists by calculating the SNR of D(p).After that we calculate the enrichment score of each gene set for the new ranked lists,w p?ESeG?DepTT.The nominal p-value of a gene set is determined by:

p?

Card?w peG?DT>ESeG?DT

p

:e4T2.6Global test(Goeman et al.,2004)

This test investigates whether samples with similar clinical outcomes tend to have similar gene expression patterns.For a signi?cant result,it suf?ces if many genes in the group are correlated with the outcome and not necessarily have similar expression patterns.The model used is

EeY i j bT?hà1at

X m

j?1x ij b j

!

;e5T

where Y i is the outcome of the sample i,h a link function(e.g.the logit function),a an intercept,x ij an element of the n·m data matrix of samples i and genes j,and b j the regression coef?cient for gene j (j?1,...,m).

To test whether there is a predictive effect of the gene expressions on the clinical outcome,the null hypothesis that all regression coef?cients are zero is tested,H0:b1?b2?...?b m?0.The statistic Q used for testing H0in equation(5)can be written as:

Q?

1

2X n

i?1

X n

j?1

R ijeY iàmTeY jàmT;e6T

where m?hà1eaTis the expectation of Y under H0,m2is the second central moment of Y under H0,R?e1/mTXX0the covariance matrix of the gene-expression patterns between the samples where X i(i?1,...,m)the n·1 vector of the gene expressions of gene i,andeYàmTeYàmT0the covariance matrix of the clinical outcomes of the samples.

3RESULTS

Three public datasets(Table1)were used to compare different statistical methods applied to these datasets on the level of apparently affected pathways.All three studies used the HGU95A(Welsh and Ernst)or HGU95Av2(Singh)microarray platform from Affymetrix,and were consisting of the same two sample classes,normal prostate and prostate cancer.Each dataset was subjected to normalization by either vsn or MMN.Then,SAM was applied to the vsn-normalized data and MMA to the data normalized by https://www.docsj.com/doc/a718053019.html,parisons were made between prostate tumour and normal prostate tissue to detect genes that are signi?-cantly differentially expressed under these conditions.For multiple testing adjustment the FDR was calculated using the algorithm of Storey and Tibshirani for SAM and the algorithm of Benjamini and Hochberg for MMA.A threshold of0.05was used to assign differentially expressed genes.All differentially expressed genes with their signi?cance values and fold-changes are to be found in Supplementary Table1.The numbers of these genes and their overlap with those obtained from other statistical methods and datasets are shown by Venn diagrams(Fig.1).Figure1a and b show the numbers of genes obtained by SAM or MMA applied to three datasets.The intersections of all three datasets contains 146or132genes,respectively,which represent only52or48%of the smallest sets of signi?cantly differentially expressed genes, which are from the data of https://www.docsj.com/doc/a718053019.html,paring the overlaps between SAM or MMA genes for the three datasets(Fig.1c–e),the dataset of Welsh shows the highest rate of common genes of84%,while the datasets of Singh and Ernst show rates of63or65%,respec-tively.Finally,the common differentially expressed genes between SAM and MMA were compared with each other (Fig.1f).Here,the overall overlap of76genes represents just the42%of the smallest set of signi?cantly differentially expressed genes(dataset of Ernst).

Although the overlaps between different methods or between different datasets appear to be rather small,these are better com-pared by concordance plots that allow us to examine how big these discrepancies really are(Fig.2,Supplementary Fig.1).These plots show the numbers of common genes between signi?cantly differ-entially expressed genes found by one analysis(y-axis)along the ranked list of all examined genes according to another analysis (x-axis).The area under the curve(AUC)determines the extent of concordance between the two analyses being compared.Hence, curves that are fast steeply increasing indicate a high

concordance Fig.1.Venn diagrams representing the numbers of significantly differen-tially expressed genes and the overlaps of sets obtained from two different statistical methods and three datasets.The upper magenta and cyan diagrams show the overlaps of SAM and MMA genes between the three datasets, respectively.The middle Venn diagrams show the overlaps between SAM and MMA genes for the three datasets separately.The bottom diagram shows the overlaps between the intersections of the middle row.

T.Manoli et al. 2502

of the genes presented on the y -axis with the second analysis pre-sented on the x -axis (e.g.Fig.2i),i.e.the genes on the x -axis get also high ranks in the second analysis.On the contrary,curves tending to the 45 diagonal line from the lower left corner to the upper right corner of the plot denote no similarity between the results of the two analyses (Fig.2h).The ?rst six plots of both Figure 2and Supplementary Figure 1are comparisons between different analyses performed on the three data sets using the same statistical method (a–c:SAM and d–f:MMA).The dataset of Ernst shows the highest concordance of differentially expressed genes (large AUCs in Fig.2c and f).The Welsh and Singh datasets give concordance plots that are close to the 45 diagonal line,and this denotes that the differentially expressed genes of these data sets show a low concordance along ranked genes of other datasets (Fig.2a,b,d and e).In contrast,the concordance between the two statistical methods for same data sets (Fig.2g–i,Supplementary Fig.1g–i)was higher.SAM and MMA showed very good concor-dance rates for the dataset of Ernst,where all signi?cantly differ-entially expressed genes found with one method were among the ?rst 3000top rated genes with the other method.For the dataset of Welsh,>90%of the signi?cantly differentially expressed genes found with one method were among the top 4000ranked genes with the other method.The dataset of Singh showed,however,much lower concordance.This is presented by the short and not steeply ascending ?rst phase of the concordance curve (Fig.2h).

As the next step,three approaches of group testing for pathway analysis have been applied.Fisher’s exact test was applied to the six lists of signi?cantly differentially expressed genes coming from three datasets and two statistical methods.GSEA and global test were applied to the three vsn-normalized datasets.For Fisher’s exact test and GSEA,a threshold of 0.05for the p -values was set to identify signi?cantly regulated pathways.Because almost all examined pathways with the global test approach were assigned a p -value of <0.05we took the top 20high-rated pathways for further investigation.The affected pathways found by each pathway analysis method and their p -values are presented in Supplementary Tables 2–4.Supplementary Table 2presents the results obtained by Fisher’s exact test,and is a dual comparison of the outputs of pathway analyses applied to SAM and MMA gene lists for the same dataset and pathway analysis method.Supplementary Tables 3and 4present the results obtained by GSEA and the global test for each data set,respectively.The numbers of affected gene groups and

(a)

020004000600080001000012000

5001000150020002500

Number of rated SAM genes for the dataset Singh et al 2579 s i g n i f i c a n t S A M g e n e s f o r t h e d a t a s e t W e l s h e t a l

(b)

02000400060008000100001200005001000150020002500

3000

Number of rated SAM genes for the dataset Ernst et al 2948 s i g n i f i c a n t S A M g e n e s f o r t h e d a t a s e t S i n g h e t a l

(c)

020004000600080001000012000

050100150200

250Number of rated SAM genes for the dataset Welsh et al

280 s i g n i f i c a n t S A M g e n e s f o r t h e d a t a s e t E r n s t e t a l

(d)

020004000600080001000012000

500100015002000

Number of rated MMA genes for the dataset Singh et al 2184 s i g n i f i c a n t M M A g e n e s f o r t h e d a t a s e t W e l s h e t a l

(e)

02000400060008000100001200005001000

1500

Number of rated MMA genes for the dataset Ernst et al 1752 s i g n i f i c a n t M M A g e n e s f o r t h e d a t a s e t S i n g h e t a l

(f)

020004000600080001000012000

050100150200

250Number of rated MMA genes for the dataset Welsh et al

277 s i g n i f i c a n t M M A g e n e s f o r t h e d a t a s e t E r n s t e t a l

(g)

020004000600080001000012000

5001000150020002500

Number of rated MMA genes for the dataset Welsh et al 2579 s i g n i f i c a n t S A M g e n e s f o r t h e d a t a s e t W e l s h e t a l

(h)

0200040006000800010000120000500100015002000

2500

3000Number of rated MMA genes for the dataset Singh et al 2948 s i g n i f i c a n t S A M g e n e s f o r t h e d a t a s e t S i n g h e t a l

(i)

020004000600080001000012000

050100150200

250Number of rated MMA genes for the dataset Ernst et al

280 s i g n i f i c a n t S A M g e n e s f o r t h e d a t a s e t E r n s t e t a l

Fig.2.Concordance plots presenting the numbers of common genes between significantly differentially expressed genes found by one analysis (y -axis)along the ranked list of all examined genes according to another analysis (x -axis).(a –c)SAM analyses of different datasets are compared;(d –f)MMA analyses of different datasets;(g –i)SAM and MMA analyses of same datasets.

Group testing for pathway analysis

2503

their overlaps for each group testing method are presented in Table 3.

Figure 3summarizes the occurrences of the signi?cantly regu-lated pathways found with Fisher’s exact test (Fig.3a),GSEA (Fig.3b),and global test (Fig.3c),respectively.A total number of six Fisher’s exact test analyses have been applied on lists of signi?cantly differentially expressed genes found with either SAM or MMA for the three public datasets of Welsh,Singh and Ernst,while for each GSEA and global test only three analyses have been applied directly to normalized data of these data sets,respec-tively.By Fisher’s exact testing (Fig.3a)one pathway,‘androgen and prostate cancer’,was found to be signi?cantly regulated in all six analyses.Two pathways,‘ribosome’and ‘glutathione metabo-lism’,were found to be signi?cantly affected in ?ve analyses,six pathways in four analyses,four pathways in three analyses,17pathways in two analyses and 17pathways in only one analysis.GSEA (Fig.3b)gave no affected pathways in more than one anal-ysis.A total number of 23pathways has been obtained by all analyses.By global testing eight pathways have been obtained by two analyses,while 44pathways have been obtained by only one analysis.

Finally,the coincidence of affected pathways between the three group testing methods,Fisher’s exact test,GSEA and global test is presented (Fig.4).For this purpose,pathways found to be signi?-cantly regulated in at least four of the six Fisher’s exact test analyses and two of the three GSEA or global test analyses,were used.Three pathways,‘androgen and prostate cancer’,‘pyrimidine metabolism’and ‘nucleotide metabolism’,were found to be affected by two group testing methods.A number of 11pathways was found by only one method.

4DISCUSSION

In this study we examined the discrepancies of different statistical methods and datasets on the level of affected pathways,and com-pared the output of three recent group testing methods used for pathway analysis.Data of three public prostate cancer datasets were pre-processed by vsn or MMN,and were then subjected to SAM or MMA,respectively.The FDR was calculated for multiple testing adjustment,and the threshold was set to 0.05to assign differentially expressed genes.Three approaches of group testing for pathway analysis,Fisher’s exact test,GSEA and global test,were applied to the three public datasets.

Comparing the overlaps of genes obtained from the two statistical methods and three datasets,we conclude that both different statistical methods and different datasets examining the same Table 3.Numbers of affected pathways found with three statistical approaches for group testing (Fisher’s exact test,GSEA and global test),obtained from the three datasets of Welsh,Singh and Ernst

Fisher’s exact test GSEA

Global test

SAM MMA

Overlap Welsh

191914(74%)1120Singh 212111(52%)620Ernst 9

12

6(67%)

6

20

Overlap

3(33%)

2(17%)

0(0%)

0(0%)WelshSAM WelshMMA SinghSAM SinghMMA ErnstSAM ErnstMMA

Ascorbate and aldarate metabolism (00053)

Gap junction proteins connexins

Signal transduction in cancer Fatty acid metabolism (00071)Tyrosine metabolism (00350)Camp calcium signalling Pantothenate and CoA biosynthesis (00770)

Glycolysis and gluconeogenesis

Selenoamino acid metabolism (00450)

Krebs tca cycle

Glycosphingolipid metabolism (00600)

ATP synthesis (00193)

Trna synthetases Alzheimer’s disease (05010)

G protein signaling

Glycogen metabolism Glycine, serine and threonine metabolism (00260)

BetaAlanine metabolism (00410)

Purine metabolism (00230)

Reductive carboxylate cycle (CO2 fixation) (00720)

Stress and toxicity

Proteasome (03050)Translation factors Oxidative phosphorylation (00190)

Electron transport chain

Fatty acid biosynthesis (path 2) (00062)

Stem cell

AminoacyltRNA biosynthesis (00970)

Bile acid biosynthesis (00120)

Protein export (03060)

Fructose and mannose metabolism (00051)

Osteogenesis

Aminosugars metabolism (00530)

Pentose phosphate pathway (00030)Propanoate metabolism (00640)Valine, leucine and isoleucine degradation (00280)

Urea cycle and metabolism of amino groups (00220)Prion disease (05060)

Nucleotide metabolism Pyrimidine metabolism (00240)

Hypoxia

Pentose phosphate pathway

Arginine and proline metabolism (00330)

Cholera Infection (05110)

Glutathione metabolism (00480)

Ribosome (03010)

Androgen and prostate cancer

Welsh Singh Ernst

Stem cell

Ovarian infertility genes

Sulfur metabolism (00920)MAPK signaling pathway (04010)

Tryptophan metabolism (00380)Histidine metabolism (00340)P53 signalling

Pentose phosphate pathway (00030)

Cell cycle (04110)

Androgen and estrogen metabolism (00150)

One carbon pool by folate (00670)

Vitamin B6 metabolism (00750)Cancer drug resistance

Glycine, serine and threonine metabolism (00260)

Fatty acid biosynthesis (path 2) (00062)

G protein receptor coupled signalling C21Steroid hormone metabolism (00140)

Hypoxia

OGlycans biosynthesis (00512)

Pentose and glucuronate interconversions (00040)

Monoamine gpcrs

Phospholipid degradation (00580)

C21 steroid hormone metabolism Insulin metabolism

1,1,1Trichloro2,2bis(4chlorophenyl)ethane (DDT) degradation (00351)

Androgen and estrogen metabolism

Fatty acid biosynthesis (path 1) (00061)

Prostaglandin and leukotriene metabolism (00590)

Eicosanoid synthesis

Alkaloid biosynthesis II (00960)

Neuroactive ligandreceptor interaction (04080)

Adhesion extracellular matrix

Glycolysis / Gluconeogenesis (00010)

Integrinmediated cell adhesion (04510)Starch and sucrose metabolism (00500)Arginine and proline metabolism (00330)Wnt signalling

Dendritic and antigen presenting

Galactose metabolism (00052)Pantothenate and CoA biosynthesis (00770)

Valine, leucine and isoleucine degradation (00280)

Tyrosine metabolism (00350)

Gpcrs class a rhodopsin like Estrogen and breast cancer Nucleotide metabolism Phenylalanine metabolism (00360)

Stress and toxicity

Pyrimidine metabolism (00240)

Purine metabolism (00230)Androgen and prostate cancer

Gap junction proteins connexins

Fructose and mannose metabolism (00051)

Welsh Singh Ernst

Neurodegenerative Disorders (01510)

Pyrimidine metabolism (00240)

Translation factors

Electron transport chain

Ethylbenzene degradation (00642)

Purine metabolism (00230)

Cholera Infection (05110)Glycosphingolipid metabolism (00600)

Ribosome (03010)

Fatty acid synthesis Glutathione metabolism (00480)

Nucleotide metabolism

Valine, leucine and isoleucine degradation (00280)

Fructose and mannose metabolism (00051)

Androgen and prostate cancer

Tyrosine metabolism (00350)Pentose phosphate pathway Urea cycle and metabolism of amino groups (00220)

Glycine, serine and threonine metabolism (00260)Chondroitin / Heparan sulfate biosynthesis (00532)Arginine and proline metabolism (00330)

Prion disease (05060)

Glycogen metabolism (a)

(b)

(c)

Fig.3.Coincidence of affected pathways found with (a)Fisher’s exact test,(b)GSEA or (c)the global test from six different lists of genes.Each colour box designates that the corresponding pathway is significantly regulated in the corresponding list,coming from a specific dataset (Welsh,Singh or Ernst)and,for the case of Fisher’s exact test,a specific statistical analysis (SAM or MMA).Significantly regulated pathways in 6lists of genes are demonstrated in magenta,significantly regulated pathways in 5,4,3,2or 1lists of genes are shown in red,blue,yellow or grey,respectively.The numbers in parenthesis following each pathway name denote the KEGG-ID (http://www.genome.ad.jp/kegg/pathway.html)for pathways coming from the KEGG pathway database.Pathways without number were complied and curated manually (M.Kenzelmann).

T.Manoli et al.

2504

biological condition (in our case prostate cancer)lead to signi?cant discrepancies.Different datasets showed higher dissimilarities in the obtained signi?cantly differentially expressed genes than dif-ferent statistical methods did.This observation was con?rmed by investigating the concordance of a list of differentially expressed genes found by one analysis along the ranked list of all examined genes in another analysis.In general,genes obtained from the data-set of Ernst showed a higher concordance because of the smaller numbers of differentially expressed genes found in this dataset.These genes are expected to be the highly ranked among prostate cancer genes.Genes obtained from the dataset of Singh showed,in contrary,the worst concordance.

The problem of having a small overlap between gene sets coming from different datasets has been also pointed out by Ein-Dor et al .(2005).In this study one single dataset was analyzed by a single method and it was shown that the resulting set of genes is strongly in?uenced by the subset of patients used for gene selec-tion.An explanation would be that there is a high number of dif-ferentially expressed genes,many of which are highly correlated.Which of them are chosen as the top-ranked genes is more or less arbitrary and depends on the analysis method or the set of samples from which the genes were inferred.One would expect,however,that these discrepancies are less pronounced when the genes are mapped to biological pathways.

Comparing the results of the three group testing methods (Fig.3),Fisher’s exact test followed by global test showed the highest over-lap between affected pathways inferred from different datasets.‘Androgen and prostate cancer’was the pathway found to be appar-ently affected in all six Fisher’s exact test analyses and in two global test analyses,and this supports the validity of these results.The GSEA gave no overlaps,which can be partly explained by the smaller numbers of apparently affected pathways gained by this method.However,most of the obtained pathways were also high rated pathways by the other two methods.As expected,results of group testing applied on different datasets were more discrepant

than results of group testing applied on lists of differentially expressed genes obtained by different statistical methods (Fig.3a).Examining the coincidence of affected pathways between the three group testing methods,Fisher’s exact test,GSEA and global test (Fig.4),we observed that different methods gave mainly diverging results.Three pathways,‘androgen and prostate cancer’,‘pyrimidine metabolism’and ‘nucleotide metabolism’,were found to be affected by two methods (Fisher’s exact test and global test).GSEA gave,as mentioned above,no overlaps at all.

Many of the pathways found to be affected by differential exp-ression are already known to be involved in prostate cancer patho-genesis.‘Androgen and prostate cancer’has a clear connection to prostate cancer as they were manually created from literature information on these diseases (M.Kenzelmann).Pathways from the group of nucleotide metabolism,amino acid metabolism,carbohydrate metabolism,as well as pathways like ‘ribosome’are characteristic for fast proliferating tumour cells.‘Glutathione metabolism’plays an important role in defense against reactive

oxygen species,xenobiotics and heavy metals (Mendoza-Co

′zatl et al .,2005),while glutathione S-transferase pi (GSTP1)is a characteristically down-regulated marker gene in prostate cancer (Nakayama et al .,2004).‘Gap junction proteins connexins’marks the increased cell communication in cancer for processes like apoptosis,differentiation and tissue homeostasis,and for activa-tion of calcium and MAPK signalling pathways (http://www.genome.ad.jp/kegg/pathway.html).‘Hypoxia’can be related to the increased intracellular redox state of prostate cancer cells,associated to the high oxidizing power of the fatty acid synthesis (FAS)pathway,that yields expression of hypoxia-regulated genes (Hochachka et al .,2002).An increased intracellular redox state yields also an increase in the expression of the intrinsic prion protein (PrPc),suggesting the possible participation of PrPc in antioxidative defense (Sauer et al .,1999)and explaining the high occurrence of ‘prion disease’in our results.

Even a pathway as remote as ‘Cholera-infection’yields some interesting results,as it contains genes of the adenylate cyclase signaling,phospholipase C and other factors that are also changed in tumour cells.

5CONCLUSION

In conclusion,group testing applied to different datasets yields interesting common results,diminishing the large discrepancies observed in direct comparisons of lists of differentially expressed genes obtained not only from different datasets,but also by different statistical methods.Moreover,the multiple microarray analyses performed in this study result in discriminative pathway regulation signatures that are found and validated by different laboratories and microarray analysis methods.Pathways obtained by these anal-yses are likely to be more robust than those generated by a single analysis on a single dataset.

The three group testing methods used in this study differed in their results.Fisher’s exact test showed the most consistent results with respect to the concordance between analyses on gene lists obtained by different methods from different datasets.Global test showed to a lesser extend consistent results between analyses applied to different datasets,while GSEA showed no overlaps between results coming from different datasets.All group

testing

Fig.4.Coincidence of affected pathways along the three different pathway analysis methods,Fisher’s exact test,GSEA and global test.Pathways found to be affected in at least four of six Fisher’s exact test analyses,or two of three GSEA or global test analyses,are presented.Yellow and grey boxes refer to significantly regulated pathways found with two or one pathway analysis methods,respectively.The numbers in parenthesis following each pathway name denote the KEGG-ID (http://www.genome.ad.jp/kegg/pathway).

Group testing for pathway analysis

2505

methods gave pathways that had already been described to be involved in the pathogenesis of prostate cancer. ACKNOWLEDGEMENTS

The authors acknowledge financial support by the BMBF (BioFuture;0311880A)and the National Genome Research Network(01GR0450).T.M.receives a stipend from the DFG Graduiertenkolleg886.Funding to pay the Open Access publication charges was provided by the German Federal Ministry of Research and Education(grant01GR0450).

Conflict of Interest:none declared.

REFERENCES

Allison,D.B.et al.(2006)Microarray data analysis:from disarray to consolidation and consensus.Nat.Rev.Genet.,7,55–65.

Benjamini,Y.and Hochberg,Y.(1995)Controlling the false discovery rate:a practical and powerful approach to multiple testing.J.R.Statist.Soc.B,57,289–300. Chu,T.M.et al.(2002)A systematic statistical linear modeling approach to oligonu-cleotide array experiments.Math.Biosci.,176,35–51.

Curtis,R.K.et al.(2005)Pathways to the analysis of microarray data.Trends Biotech-nol.,23,429–435.

Draghici,S.et al.(2003)Global functional pro?ling of gene expression.Genomics,81, 98–104.

Ein-Dor,L.et al.(2005)Outcome signature genes in breast cancer:is there a unique set?

Bioinformatics,21,171–178.

Ernst,T.et al.(2002)Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma:a gene expression analysis on total and microdis-sected prostate tissue.Am.J.Pathol.,160,2169–2180.

Gentleman,R.C.et al.(2004)Bioconductor:open software development for compu-tational biology and bioinformatics.Genome Biol.,5,R80.

Giltnane,J.M.and Rimm,D.L.(2004)Technology insight:Identi?cation of biomarkers with tissue microarray technology.Nat.Clin.Pract.Oncol.,1,104–111. Goeman,J.J.et al.(2004)A global test for groups of genes:testing association with a clinical outcome.Bioinformatics,20,93–99.

Golub,T.R.et al.(1999)Molecular classi?cation of cancer:class discovery and class prediction by gene expression monitoring.Science,286,531–537. Hochachka,P.W.et al.(2002)Going malignant:the hypoxia-cancer connection in the prostate.Bioessays,24,749–757.

Hsieh,W.-P.et al.(2003)Mixed-model reanalysis of primate data suggests tissue and species biases in oligonucleotide-based gene expression pro?les.Genetics,165, 747–757.Huber,W.et al.(2002)Variance stabilization applied to microarray data calibration and to the quanti?cation of differential expression.Bioinformatics,18(Suppl.1), S96–S104.

Huber,W.et al.(2003)Parameter estimation for the calibration and variance stabilization of microarray data.Stat.Appl.Genet.Mol.Biol.,2,3.

Ihaka,R.and Gentleman,R.(1996)R:a language for data analysis and graphics.

https://www.docsj.com/doc/a718053019.html,put.Graph.Stat.,5,299–314.

Khatri,P.and Draghici,S.(2005)Ontological analysis of gene expression data: current tools,limitations,and open problems.Bioinformatics,21,3587–3595. Lamb,J.et al.(2003)A mechanism of cyclin D1action encoded in the patterns of gene expression in human cancer.Cell,114,323–334.

Mendoza-Co′zatl,D.et al.(2005)Sulfur assimilation and glutathione metabolism under cadmium stress in yeast,protists and plants.FEMS Microbiol.Rev.,29, 653–671.

Mootha,V.K.et al.(2003)PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.Nat.

Genet.,34,267–273.

Nakayama,M.et al.(2004)GSTP1CpG island hypermethylation as a molecular biomarker for prostate cancer.J.Cell Biochem.,91,540–552.

Pavlidis,P.et al.(2004)Using the gene ontology for microarray data mining:a comparison of methods and application to age effects in human prefrontal cortex.

Neurochem.Res.,29,1213–1222.

R Development Core Team(2004)R:A language and environment for statistical computing.R Foundation for Statistical Computing Vienna,Austria, ISBN3-900051-07-0.

SAS Institute Inc(2004)SAS Scienti?c Discovery Solutions Supplement:SAS Microarray1.3.Cary,NC.

Sauer,H.et al.(1999)Redox-regulation of intrinsic prion expression in multicellular prostate tumor spheroids.Free Radic.Biol.Med.,27,1276–1283.

Singh,D.et al.(2002)Gene expression correlates of clinical prostate cancer behavior.

Cancer Cell,1,203–209.

Storey,J.D.and Tibshirani,R.(2003)Statistical signi?cance for genomewide studies.

Proc.Natl https://www.docsj.com/doc/a718053019.html,A,100,9440–9445.

Subramanian,A.et al.(2005)Gene set enrichment analysis:a knowledge-based approach for interpreting genome-wide expression pro?les.Proc.Natl Acad.

https://www.docsj.com/doc/a718053019.html,A,102,15545–15550.

Sweet-Cordero,A.et al.(2005)An oncogenic KRAS2expression signature identi?ed by cross-species gene-expression analysis.Nat.Genet.,37,48–55.

Tukey,J.W.(1977)Exploratory Data Analysis.Addison-Wesley,Reading,MA. Tusher,V.G.et al.(2001)Signi?cance analysis of microarrays applied to the ionizing radiation response.Proc.Natl https://www.docsj.com/doc/a718053019.html,A,98,5116–5121.

van’t Veer,L.J.et al.(2002)Gene expression pro?ling predicts clinical outcome of breast cancer.Nature,415,530–536.

Welsh,J.B.et al.(2001)Analysis of gene expression identi?es candidate markers and pharmacological targets in prostate cancer.Cancer Res.,61,5974–5978.

T.Manoli et al. 2506

管理运筹学期末试卷B

一、 二、 三、 填空题(每小题 分,共 ?分) 、设原??问题为?????? ?≥-=++-≥--≤++++-= ,0,5232 4 7 532min 3213213213213 21无约束x x x x x x x x x x x x x x x Z 则它的标准形和对偶规划问题分别为:________________________ 和 ________________________。 、用分枝定界法求整数规划12 12121121min 5 2 56 30 4,0Z x x x x x x x x x x =---≥-??+≤?? ≤??≥?且为整数 的解时,求得放松问题的解为? = ? ? ? ? ? ?,则可将原问题分成如下两个子问题 与 求解。 、右图的最小支撑图是。 、右边的网络图是标号算法中的图,其中每条弧上的数 表示其容量和流量。该图中得到的可行流的增广链 (-3,1) (2,1) ②5(4) ④ ① 6(6) 6(4) ⑥ (0, ∞) 8(8) 3(2 ) 9(9)(5,1)

为: ,在其上可增的最大流量 为 。 、已知某线性规划问题,最优单纯形表如下 则其最优解为: ,最优值 max Z 。 二、单项选择题(每小题 分,共 分) 、下列表格是对偶单纯形表的是( ? )

、关于线性规划模型的可行域,叙述正确的为( ) ?、可行域必有界; 、可行域必然包括原点; 、可行域必是凸的; 、可行域内必有无穷多个点。 、在运输问题中如果总需求量大于总供应量,则求解时应( ) ?、虚设一些供应量; ?、虚设一个供应点; 、根据需求短缺量,虚设多个需求点; ?、虚设一个需求点。 、下列规划问题不可用动态规划方法求解的是( ) ?、背包问题; ?、最短路径问题 、线性规化: ???≥≥=++++=0 ,010 34..max 321 3 32211y x x x x t s x c x c x c Z ?、22 min (,)(2)3(1).. 460,0f x y x y s t xy y x y ?=++-?+

精读课文和略读课文的异同

精读课文和略读课文的异同 双柏妥甸小学:鲁先丽 摘要:新课标指出:各个学段的阅读教学都要重视朗读和默读。加强对阅读的指导,让学生逐步学会精读,略读和浏览,可见略读只是一种与精读和浏览并列的阅读方法。而略读课文作为课文的一种形式呈现在师生面前时,它只是个例子,一个提供教师教与学生学习略读的载体。略读课文中并不排斥精读,因此我认为略读课文中可以略中显精,培养学生掌握一些学习课文的方法。 略读课文的教学,最关键的是教师自身对文本的认真解读和准确把握,要使课堂在思路清晰、条理简约的基础上不失丰赡,应是“教”略而“学”丰。这个“略”度应该介于精读与独立阅读之间,不是囫囵吞枣,更不是越俎代庖牵着学生走,同时在学生自读感悟的基础上又不失教师有效的引导,让学生沉浸在文本之中,和文本一起呼吸、一起慨叹、一起喜怒哀乐,在实践中掌握读书方法,逐步提高独立阅读的能力,促进学生语文素养的形成和发展,这其实是快乐的心灵之旅,“精略相辅”的幸福之旅!长久以来,略读课文在语文教学中处于比较尴尬的境地:一方面,它是课文中的组成部分,不教不行;另一方面,正因为它是“略读”课文,因此,在教学中往往被大多教师所忽视,在实际教学中,教师往往轻描淡写,一读而过,学生对课文也没留下多大印象。长此以往,限制了学生的阅读能力发展。对此,我们必须重新审视略读课文教学,采取有效的教学策略,使略读课文教学达到它应有的目标。以下是我在略读课文教学过程中的一些想法和采取的策略。 策略一:紧抓提示,凸显重点 我们知道略读课文一般只有一课时,在这短短的一课时中,教师快速有效地抓准略读课文的教学重点,使略读课文和精读课文形成一个系统,形成教学合力,更好地发挥训练阅读,迁移能力和陶冶情操的功能。如何抓?从哪里抓?每篇略读课文前的导语为我们提供了很好的借鉴。人教版实验教材在每一课略读课文前都有一段承上启下的提示语从中体会到了什么。有条件的还可以搜集有关丝绸之路的故事和同学交流。提示语优美生动,既激发了学生的阅读兴趣,延续了本组课文的主题,又明确提出了这篇课文的阅读要求。我们可以把这段提示语概括为两个方面: 一、读课文,了解课文讲了哪些内容,从中体会到了什么。 这是要求我们在教学初始引导学生整体把握课文内容,了解文中介绍的主要内容和历史意义,激发学生热爱祖国西部的情感。 二、搜集有关丝绸这路的故事和同学交流。 这点则是要求我们在学完课文的同时,能够引导学生课后去搜集资料,培养学生搜集信息的能力,同时也丰富学生的课外知识,增进与同学间的合作。 像这样,对提示语进行二次解读,既有助于我们教师找准重点,又能及时有效地展开略读课文的教学。 策略二:注重预习,培养自主 苏霍姆林斯基曾经说过这样一段精辟的论语:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。在儿童的精神世界里,这种需要特别强烈。”在教学中,教师应根据学生的这一心理特点,激

管理运筹学期中复习题答案

《管理运筹学》期中测试题 第一部分 线性规划 一、填空题 1.线性规划问题是求一个 目标函数 在一组 约束条件 下的最值问题。 2.图解法适用于含有 两个 _ 变量的线性规划问题。 3.线性规划问题的可行解是指满足 所有约束条件_ 的解。 4.在线性规划问题的基本解中,所有的非基变量等于 零 。 5.在线性规划问题中,基本可行解的非零分量所对应的列向量线性 无 关 6.若线性规划问题有最优解,则最优解一定可以在可行域的 顶点_ 达到。 7.若线性规划问题有可行解,则 一定 _ 有基本可行解。 8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其 可行解 的集合中进行搜索即可得到最优解。 9.满足 非负 _ 条件的基本解称为基本可行解。 10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰变量在目标函数中的系数为 正 。 11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入 松弛 _ 变量。 12.线性规划模型包括 决策变量 、目标函数 、约束条件 三个要素。 13.线性规划问题可分为目标函数求 最大 _ 值和 最小 _值两类。 14.线性规划问题的标准形式中,约束条件取 等 _ 式,目标函数求 最大 _值,而所有决策变量必须 非负 。 15.线性规划问题的基本可行解与基本解的关系是 基本可行解一定是基本解,反之不然 16.在用图解法求解线性规划问题时,如果取得最值的等值线与可行域的一段边界重合,则 _ 最优解不唯一 。 17.求解线性规划问题可能的结果有 唯一最优解,无穷多最优解,无界解,无可行解 。 18.如果某个约束条件是“ ”情形,若化为标准形式,需要引入一个 剩余 _ 变量。 19.如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j = X j ′ - X j 〞 j 。 20.表达线性规划的简式中目标函数为 线性函数 _ 。 21.线性规划一般表达式中,a ij 表示该元素位置在约束条件的 第i 个不等式的第j 个决策变量的系数 。 22.线性规划的代数解法主要利用了代数消去法的原理,实现_ 基变量 的转换,寻找最优解。 23.对于目标函数最大值型的线性规划问题,用单纯型法代数形式求解时,当非基变量检验数_ 非正 时,当前解为最优解。 24.在单纯形迭代中,选出基变量时应遵循_ 最小比值 法则。 二、单选题 1. 如果一个线性规划问题有n 个变量,m 个约束方程(m

精读课文和略读课文的授课区别

关于精读课文和略读课文的区别 在小学语文教材中,精读课文的编排占据主体地位。就其涵盖的内容而言,包含了字词、句、段、篇等语文基本功训练项目,范围十分广泛,知识含量极高,是进行语文基本功训练的主要凭借。由此可见,精读课文的教学在小学语文教学中处于重中之重的地位,它是完成小学语文教学任务的重要途径。但是,就篇幅而言,略读课文在小学中段所占比例较小,但到了高段则是二分之一。因此略读课文的教学同样不可忽视。下面我就精读课文和略读课文教学谈谈区别。 精读。特级教师林润生是这样说的:"精读课文的教学,应让学生拥有完整的阅读过程,经历精读与略读,朗读与默读,自悟与交流,思考与想象,课文阅读与资料收集利用,感知内容与领悟感情,理解与积累运用语言的过程。以此让学生经历了完整的阅读过程,从而激发学生对大自然的热爱。.通过品词、析句,感情朗读,想象画面,让学生感悟语言生动形象和描写的优美。 略读课更需整体把握,不宜肢解课文,应采取读几遍的方法。如,采用自己喜欢的读书方式一读,读对读通,口诵新惟;二读,画画批批,粗知大意;三读,交流收获(可以是受到教育启发的,可以是好词佳句的,可以是文章写法的,可以是读书方法的),积累语言。 略读教学不等于略学。略读课文就是让孩子在精读课文中学到的方法运用到自己的学习中,并在读中掌握读书方法,提高阅读能力,我们要敢于放手,不要将课文"嚼"得过烂再"喂"给学生,教师的作用就在于适当点拨和引导。这就对教师提出了更严的要求,我们要注意讲读与自读的知识迁移与能力训练的衔接,完成"教"向"学"的过渡转化,还要加以充分恰当的引导和适度的调控,促进学生阅读水平的提高。 粗知大意并不是浅知。略读课文不像精读课文那么严格细致,只要求粗知文章大意。但这里所说的"粗知"是相对精读课文而言的,略读课文少了识字、学词学句等许多头绪,教总之,精读课文的教学,要紧扣教材的特点,精心设计教学方案,要注意发挥学生学习的积极性和主动性,引导学生进行探究、合作学习,要充分发挥教师的主导作用,要协调好个体学习与合作学习的关系,整体感悟和重点探究的关系,从而提高教学效率。而略读课文首先是在阅读内容上应"不求甚解",在阅读技能培养上更强调运用。如叶老所说:"就教学而言,精读是主体,略读只是补充;但是就效果而言,精读是准备,略读才是应用。"略的是教师的教,不能略的是学生的学。我们应该把"略读"提升到一个应有的高度,以求最大限度地扩张课堂,拓展课文,促进"学生语文素养的形成和发展"。

学习略读课文方法

谈略读课文的教学方法 人教版教材中从三年级开始就有略读课文,三上的32篇课文中有8篇是略读,占总数的25%;四上的32篇课文中有14篇是略读课文,约占总数的44%;五六年级则占到了50%左右。从中,我们可以看出编辑的用心。但是,很多老师把略读课文上成精读课,也存在着略读课文怎么上的问题,什么可以略,什么不可以略?略读课文可以上成精读课文吗?还有,学生的阅读能力不高,一个重要的原因是:教学中,略读课文把握的不好。这些问题都困扰着我们,所以,略读课文的专项研讨变得非常重要。 叶圣陶先生曾经指出:“就教学而言,精读是主体,略读只是补充;但是就效果而言,精读是准备,略读才是应用。”“如果只注意于精读,而忽略了略读,功夫便只做得一半。”这些话十分精辟地阐述了精读与略读的关系,道出了略读课文教学的重要功能。《语文课程标准》也指出:“学会运用多种阅读方法。”“加强对阅读方法的指导,让学生逐步学会精读、略读和浏览。”一、明确目标 人教版课标实验教材对略读课的教学要求是:内容上,理解内容的要求要低于精读课文,一般是“粗知文章大意”,只要抓住重点、难点,帮助学生大体理解课文内容即可,词句的理解不作为重点;方法上,教师要更加放手,要让学生运用在精读课文学习中获得的知识与方法,自己把课文读懂,在实践中掌握读书方法,提高阅读能力。二、因“材”施教 教材虽然不是唯一的教学资源,但它是重要的教学资源。 1.根据课文结构因“材”施教。每一篇略读课文前都有阅读提示。阅读提示从激发阅读兴趣入手,一般提出一两个问题,侧重引导学生理解主要内容、揣摩教学思路,或引导学生从所阅读的文章扩展开去。对大多数略读课文来讲,教师根据阅读提示组织教学活动,皆可做到“提纲挈领”;学生根据阅读提示自主阅读学习。 2.根据课文特点因“材”施教每一篇略读课文,皆有它自己的特点。我们应根据课文自身的特点展开教学,既遵循文本正确的价值取向,又注意提高学生的学习兴趣。三、把握好教学的尺度 在略读课文的教学中,要把握好尺度,既不搞过细剖析,也不作随意教学,要确立略读课文教学的明确地位,发挥其应有的作用。教学中尤其要注意以下几点: 1.让学生自主学习。 略读课文要突出“略”字,略的是教师的精讲细说,强调“以学生自读为主”,让学生唱“主角”。教师不要包办代替,不要强行“灌输”,充分信任学生。教师甚至可以组织学生围绕某个重点、难点问题展开讨论、辩论,充分展示学生的独特思维和阅读体验,从而使学生既获得了知识,又锻炼了能力。 2.重“导”轻“教” 自读课文的教学强调“以学生的自读为主”,并不意味着忽视教师的“主导”作用。相反,略读课要真正达到“略”,教师就必须更加注重引导和调控。为了使教学中充分体现出“导”,教师应策划好课堂教学方法,及时、准确地评价学生的表现,激发学生的兴趣和自信心。 同时,略读课强调的是让学生学会阅读,教师要教学生如何去快速阅读,如何把握文章内容,而不是教学生具体的字、词、句等实实在在的考试知识。重“导”轻“教”,不是让教师退居幕后,而是要求教师发挥主导作用,引领学生深入、有效地开展有层次的阅读。 3.略读教学不等于略读,粗知大意并不是浅知。 略读教学是一种教学活动,它承担着更为广泛的任务,不仅是让学生在略读实践中获取信息,更重要的是要让学生在不断的实践中学习、学会略读方法,从而培养学生的阅读能力。教学中要授之以法,“教是为了不教。”

浅谈生物信息学在生物医药方面的应用

浅谈生物信息学在生物医药方面的应用 生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。是结合了计算机科学、数学和生物学的一门多学科交叉的学科。它依赖计算机科学、工程和应用数学的基础,依赖实验和衍生数据的大量储存。他将各种各样的生物信息如基因的DNA序列、染色体定位、基因产物的结构和功能及各种生物种间的进化关系等进行搜集、分类和分析,并实现全生命科学界的信息资源共享。 从生物信息学研究的具体内容上看,生物信息学可以用于序列分类、相似性搜索、DNA序列编码区识别、分子结构与功能预测、进化过程的构建等方面的计算工具已成为变态反应研究工作的重要组成部分。针对核酸序列的分析就是在核酸序列中寻找过敏原基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。针对蛋白质序列的分析,可以预测出蛋白质的许多物理特性,包括等电点分子量、酶切特性、疏水性、电荷分布等以及蛋白质二级结构预测,三维结构预测等。 基因芯片是基因表达谱数据的重要来源。目前生物信息学在基因芯片中的应用主要体现在三个方面。 1、确定芯片检测目标。利用生物信息学方法,查询生物分子信息数据库,取得相应的序列数据,通过序列比对,找出特征序列,作为芯片设计的参照序列。 2、芯片设计。主要包括两个方面,即探针的设计和探针在芯片上的布局,必须根据具体的芯片功能、芯片制备技术采用不同的设计方法。 3、实验数据管理与分析。对基因芯片杂交图像处理,给出实验结果,并运用生物信息学方法对实验进行可靠性分析,得到基因序列变异结果或基因表达分析结果。尽可能将实验结果及分析结果存放在数据库中,将基因芯片数据与公共数据库进行链接,利用数据挖掘方法,揭示各种数据之间的关系。 大规模测序是基因组研究的最基本任务,它的每一个环节都与信息分析紧密相关。目前,从测序仪的光密度采样与分析、碱基读出、载体标识与去除、拼接与组装、填补序列间隙,到重复序列标识、读框预测和基因标注的每一步都是紧

管理运筹学模拟试题及答案

四 川 大 学 网 络 教 育 学 院 模 拟 试 题( A ) 《管理运筹学》 一、 单选题(每题2分,共20分。) 1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规 划问题求解,原问题的目标函数值等于( C )。 A. maxZ B. max(-Z) C. –max(-Z) D.-maxZ 2. 下列说法中正确的是( B )。 A.基本解一定是可行解 B.基本可行解的每个分量一定非负 C.若B 是基,则B 一定是可逆D.非基变量的系数列向量一定是线性相关的 3.在线性规划模型中,没有非负约束的变量称为 ( D ) 多余变量 B .松弛变量 C .人工变量 D .自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( A )。 A.多重解 B.无解 C.正则解 D.退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( D )。 A .等式约束 B .“≤”型约束 C .“≥”约束 D .非负约束 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( B )。 A.多余变量 B.自由变量 C.松弛变量 D.非负变量 7.在运输方案中出现退化现象,是指数字格的数目( C )。 A.等于m+n B.大于m+n-1 C.小于m+n-1 D.等于m+n-1 8. 树T的任意两个顶点间恰好有一条( B )。 A.边 B.初等链 C.欧拉圈 D.回路 9.若G 中不存在流f 增流链,则f 为G 的 ( B )。 A .最小流 B .最大流 C .最小费用流 D .无法确定 10.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足( D ) A.等式约束 B.“≤”型约束 C.“≥”型约束 D.非负约束 二、多项选择题(每小题4分,共20分) 1.化一般规划模型为标准型时,可能引入的变量有 ( ) A .松弛变量 B .剩余变量 C .非负变量 D .非正变量 E .自由变量 2.图解法求解线性规划问题的主要过程有 ( ) A .画出可行域 B .求出顶点坐标 C .求最优目标值 D .选基本解 E .选最优解 3.表上作业法中确定换出变量的过程有 ( ) A .判断检验数是否都非负 B .选最大检验数 C .确定换出变量 D .选最小检验数 E .确定换入变量 4.求解约束条件为“≥”型的线性规划、构造基本矩阵时,可用的变量有 ( ) A .人工变量 B .松弛变量 C. 负变量 D .剩余变量 E .稳态 变量 5.线性规划问题的主要特征有 ( ) A .目标是线性的 B .约束是线性的 C .求目标最大值 D .求目标最小值 E .非线性 三、 计算题(共60分) 1. 下列线性规划问题化为标准型。(10分)

精读课文与略读课文的区别

精读课文和略读课文的区别与教学重点 在小学语文教材中,精读课文的编排占据主体地位。就其涵盖的内容而言,包含了字词、句、段、篇等语文基本功训练项目,范围十分广泛,知识含量极高,是进行语文基本功训练的主要凭借。由此可见,精读课文的教学在小学语文教学中处于重中之重的地位,它是完成小学语文教学任务的重要途径。但是,就篇幅而言,略读课文在小学中段所占比例较小,但到了高段则是五五分成。因此略读课文的教学同样不可忽视。今天,我就以小学三年级的第一单元的教学为切入点来谈谈精读课文和略读课文教学的区别。 一、从教学目标上谈。 本单元文前三篇课文为精读课文,后一篇是略读课文,四篇课文从多角度地展现了大自然的美。我们可以从这些绿柳飞燕、鸟语花香、潺潺流水中,感受春天的来临,倾听大自然的声音,欣赏大自然的美景,从而激发热爱大自然的感情。我认真阅读了四篇课文,分析了教材说明,确立了: 精读课文的教学目标是: 1、加强词、句的训练。 2、重视朗读的指导和训练。朗读是最经常、重要的阅读训练,也是理解课文内容,也是体会课文思想感情的主要方法。 3、了解作者观察的方法,积累文中的优美句段。

阅读课文的教学目标: 1、用多种阅读方法获取重要信息,进行略读能力的训练,粗知文章的大意。略读课上,要更注重略读方法的运用,如扫读、跳读等,训练学生快速默读的方法,提高阅读的速度。 2、通过自主阅读获取信息,培养独立阅读能力,同时体现教师的引导作用。 3、加强课内外联系,沟通课内外阅读,适度拓展和延伸。略读课文的教学应该成为联系课内外阅读的桥梁,让学生在教师的指导下,尝试运用精读课.习得的方法独立阅读,实现向课外完全独立阅读的过渡,适当向课外拓展、延伸。 二、从教学过程上谈。 就精读课文《荷花》而言,可以这样教学: 1、精读。特级教师林润生是这样说的:"精读课文的教学,应让学生拥有完整的阅读过程,经历精读与略读,朗读与默读,自悟与交流,思考与想象,课文阅读与资料收集利用,感知内容与领悟感情,理解与积累运用语言的过程。"他是这样设计《荷花》这一课的:课始让学生比赛谁对荷花了解的多少,课中通过五读课文(一读整体感知,二读领悟感情,三读再悟情感,四读升化情感,五读积累语句),让学生抓住重点词句朗读、揣摩、体会情感,联系上下文和联系有关资料深入领会重点语句的含义,深刻感受课文情感--大自然的优美。课末让学

管理运筹学模拟试题附答案

四川大学网络教育学院模拟试题( A ) 《管理运筹学》 一、单选题(每题2分,共20分。) 1.目标函数取极小(minZ)的线性规划问题可以转化为目标函数取极大的线性规 划问题求解,原问题的目标函数值等于(C)。 A. maxZ B. max(-Z) C. –max(-Z) D.-maxZ 2.下列说法中正确的是(B)。 A.基本解一定是可行解B.基本可行解的每个分量一定非负 C.若B是基,则B一定是可逆D.非基变量的系数列向量一定是线性相关的3.在线性规划模型中,没有非负约束的变量称为( D ) 多余变量B.松弛变量C.人工变量D.自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得 ( A )。 A.多重解B.无解C.正则解D.退化解5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验 但不完全满足( D )。 A.等式约束 B.“≤”型约束 C.“≥”约束 D.非负约束 y是( B )。 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i A.多余变量B.自由变量C.松弛变量D.非负变量 7.在运输方案中出现退化现象,是指数字格的数目( C )。 A.等于m+n B.大于m+n-1 C.小于m+n-1 D.等于m+n-1 8.树T的任意两个顶点间恰好有一条(B)。 A.边B.初等链C.欧拉圈D.回路9.若G中不存在流f增流链,则f为G的( B )。 A.最小流 B.最大流 C.最小费用流 D.无法确定 10.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验 但不完全满足( D ) A.等式约束B.“≤”型约束C.“≥”型约束D.非负约束二、多项选择题(每小题4分,共20分) 1.化一般规划模型为标准型时,可能引入的变量有() A.松弛变量 B.剩余变量 C.非负变量 D.非正变量 E.自由变量 2.图解法求解线性规划问题的主要过程有() A.画出可行域 B.求出顶点坐标 C.求最优目标值 D.选基本解 E.选最优解 3.表上作业法中确定换出变量的过程有() A.判断检验数是否都非负 B.选最大检验数 C.确定换出变量 D.选最小检验数 E.确定换入变量 4.求解约束条件为“≥”型的线性规划、构造基本矩阵时,可用的变量有()A.人工变量 B.松弛变量 C. 负变量 D.剩余变量 E.稳态变量 5.线性规划问题的主要特征有() A.目标是线性的 B.约束是线性的 C.求目标最大值 D.求目标最小值 E.非线性 三、计算题(共60分) 1. 下列线性规划问题化为标准型。(10分) 1 / 17

五年级语文:精读与略读课文

小学语文新课程标准教材 语文教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 语文教案 / 小学语文 / 小学五年级语文教案 编订:XX文讯教育机构

精读与略读课文 教材简介:本教材主要用途为通过学习语文的内容,培养学生的阅读能力、交流能力,学习语文是为了更好的学习和工作,为了满足人类发展和实现自我价值的需要,本教学设计资料适用于小学五年级语文科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 一个人要积累知识,就必须读书。对重要的文章和书籍,要认真读反复读,要逐字逐句地深入钻研,对重要的语句和章节所表达的思想内容还要做到透彻理解。这就是精读。我们所读的课文,都是经过精心编选的,对我们学习语文很有帮助,因此须要精读。 然而,人的精力是有限的,而书籍却浩如烟海,谁也不可能读完所有的书,更不可能对每本书每篇文章都去精读。为了获取更多的知识,更多的信息,又必须读大量的书,因此我们还要学会略读。 略读就大略的读。略读可以增加阅读量。通过略读,可以用较少的时间浏览大量的书刊,从而扩大自己的知识面,获得对有关读物的总的认识,便于以后需要的时候去查找。略读又是精读的基础。通过泛读,可以在很短的时间内知道一篇文章或一本书的基本内容,从而确定它是否须要精读,或哪些地方需要精读。 怎样进行泛读呢? 如果面对一大堆读物,我们可以将每本书的内容提要、前言、章节、目录等很快地从头

到尾看一遍,这样就能大致了解每本书的梗概、特点和应用范围。对于一本读物来说,可以几段几段地粗读,也可几页几页地翻阅,而不要探究某个字、词或句子的意思。俗话说的“一目十行”就是指这种走马观花式的快速阅读方法。 为了提高读书速度,略读通常采用默读的方式。 当然,泛读也并不是读完了事,每次泛读完毕,也应想一下所读的东西,最好用简炼的语言概括一个读物内容。 只要我们善于把精读和略读结合起来,就能取得最佳的读书效果。 XX文讯教育机构 WenXun Educational Institution

例谈小学略读课文教学策略

例谈小学略读课文教学策略 长久以来,略读课文在语文教学中处于比较尴尬的境地:一方面,它是课文中的组成部分,不教不行;另一方面,正因为它是“略读”课文,因此,在教学中往往被大多教师所忽视,在实际教学中,教师往往轻描淡写,一读而过,学生对课文也没留下多大印象。长此以往,限制了学生的阅读能力发展。对此,我们必须重新审视略读课文教学,采取有效的教学策略,使略读课文教学达到它应有的目标。以下是我在略读课文教学过程中的一些想法和采取的策略。 策略一:紧抓提示,凸显重点 我们知道略读课文一般只有一课时,在这短短的一课时中,教师快速有效地抓准略读课文的教学重点,使略读课文和精读课文形成一个系统,形成教学合力,更好地发挥训练阅读,迁移能力和陶冶情操的功能。如何抓?从哪里抓?每篇略读课文前的导语为我们提供了很好的借鉴。人教版实验教材在每一课略读课文前都有一段承上启下的提示语,如五年级下册册《丝绸之路》的提示语是这样写的: 祖国的西部有美丽的自然风光,还有灿烂的历史文化。著名的丝绸之路,就是其中光辉的一页。读读下面这篇课文,想想课文讲了哪些内容,从中体会到了什么。有条件的还可以搜集有关丝绸之路的故事和同学交流。 这段提示语优美生动,既激发了学生的阅读兴趣,延续了本组课文的主题,又明确提出了这篇课文的阅读要求。我们可以把这段提示语概括为两个方面: 一、读课文,了解课文讲了哪些内容,从中体会到了什么。 这是要求我们在教学初始引导学生整体把握课文内容,了解文中介绍的主要内容和历史意义,激发学生热爱祖国西部的情感。 二、搜集有关丝绸这路的故事和同学交流。 这点则是要求我们在学完课文的同时,能够引导学生课后去搜集资料,培养学生搜集信息的能力,同时也丰富学生的课外知识,增进与同学间的合作。 像这样,对提示语进行二次解读,既有助于我们教师找准重点,又能及时有效地展开略读课文的教学。 策略二:注重预习,培养自主 苏霍姆林斯基曾经说过这样一段精辟的论语:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。在儿童的精神世界里,这种需要特别强烈。”在教学中,教师应根据学生的这一心理特点,激发学生的学习兴趣,培养自主学习的能力。

《运筹学》期末考试试卷A答案

《运筹学》试题样卷(一) 一、判断题(共计10分,每小题1分,对的打√,错的打X ) 1. 无孤立点的图一定是连通图。 2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。 3. 如果一个线性规划问题有可行解,那么它必有最优解。 4.对偶问题的对偶问题一定是原问题。 5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换 入变量。 6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。 7. 度为0的点称为悬挂点。 8. 表上作业法实质上就是求解运输问题的单纯形法。 9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。 二、建立下面问题的线性规划模型(8分) 某农场有100公顷土地及15000元资金可用于发展生产。农场劳动力情况为秋冬季3500人日;春夏季4000人日。如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900 元 / 每头奶牛。养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。农场现有鸡舍允许最多养1500 三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54 ,x x 为松弛变量,问

(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分) (3)直接由上表写出对偶问题的最优解。(1分) 四、用单纯形法解下列线性规划问题(16分) s. t. 3 x1 + x2 + x3?60 x 1- x 2 +2 x 3?10 x 1+x 2-x 3?20 x 1,x 2 ,x 3?0 五、求解下面运输问题。(18分) 某公司从三个产地A1、A2、A3将物品运往四个销地B1、B2、B3、B4,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如表所示: 问:应如何调运,可使得总运输费最小? 六、灵敏度分析(共8分) 线性规划max z = 10x1 + 6x2 + 4x3 s.t. x1 + x2 + x3 ?100 10x1 +4 x2 + 5 x3 ?600 2x1 +2 x2 + 6 x3 ?300 x1 , x2 , x3 ?0 的最优单纯形表如下: (1)C1在何范围内变化,最优计划不变?(4分) (2)b1在什么范围内变化,最优基不变?(4分) 七、试建立一个动态规划模型。(共8分)

略读课与精读课的区别

略读课与精读课的区别 关于略读课,始于2008年冬天的大讨论已历时近两年,但是,无论是各级名师的观摩课、示范课,还是一般教师的公开课,或是刊物上发表的教学设计、教学实录,只要公开展示,就几乎“涛声依旧”——上成“原版”或“缩微版”的精读课。为何?首先,对于略读课的性质、定位存在分歧或模糊认识;其次,即便认识一致将其落实于实践也需要一个过程;再次,还有另一个重要原因不容忽视,那就是惯性的作用——轻车熟路地套用精读课的教学模式。眼下,继续澄清对于略读课的模糊认识有其必要性,而为其构建易于为广大一线教师所掌握的教学模式更必须摆上日程。构建略读课的教学模式固然应以正确认识其性质、定位为先决条件和起点,但克服惯性作用也至关重要,否则无法摆脱业已驾轻就熟的教学模式的影响,也就不会有真正意义上的略读课。诚然,“教无定法”,略读课不能囿于一式,但不管何种模式,都应在以下诸方面别于精读课: 顾名思义,人们往往根据“精读”和“略读”的涵义去界定“精读课”和“略读课”的性质、定位,这虽符合一般逻辑,在这里却是实实在在的望文生义。从上个世纪八十年代起,语文教材就有一类课文和二类课文,在中学分别称为“讲读课文”和“自读课文”,在小学分别称为“讲读课文”和“阅读课文”。进入2000年以后,部分课标本实验教材分别称为“教读课文”和“自读课文”或者“主体课文”和“拓展阅读课文”,而多数则分别改称为“精读课文”和“略读课文”。二类课文性质为何?1986年版《小学语文教学大纲》指出:“对阅读课文,教师要着重指导学生运用从讲读课中学到的学习方法进行阅读。”明确其半独立阅读的性质。2000年小学语文大修订版教材出版,由人教社小语室编著的《教师用书》指出:“略读课文具有较明显的独立阅读的性质。安排略读课文,主要是引导学生把从精读课文中学到的语文基本功,用于阅读实践,逐步培养独立阅读能力。”命名虽异,半独立阅读的性质不变。一、二课文是相对的关系,二类课文的“半独立”,意味着一类课文的“不独立”。“不独立”和“半独立”显示教师和学生在教学中的地位和作用有异,表明教师指导和学生参与的程度有别,而这正决定了二者性质和定位的不同。在两类课文所有的名称中,“教读课文”和“自读课文”彰显了师生在其中的不同地位和作用,比较准确地揭示了二者的性质和定位。而“精读”和“略读”是两种粗细不同的阅读方法,以此命名课

管理运筹学期末试卷题目B卷

运筹学期末试卷(B卷) 系别:工商管理学院专业:考试日期:年月日姓名:学号:成绩: 1.[10分] 匹克公司要安排4个工人去做4项不同的工作,每个工人完成各项工作所消耗的时间(单位:分钟)如下表所示: 要求:(1)建立线性规划模型(只建模型,不求解) (2)写出基于Lindo软件的源程序。 2.[15分]某公司下属甲、乙两个厂,有A原料360斤,B原料640斤。甲厂用A、B两种原料生产x1,x2两种产品,乙厂也用A、B两种原料生产x3,x4两种产品。每种单位产品所消耗各种原料的数量及产值、分配等如下

(1) 建立规划模型获取各厂最优生产计划。 (2) 试用图解法 求解最优结果。 3.[10分] 考虑下面的线性规划问题: 目标函数:Min Z=16x 1+16x 2 +17x 3 约束条件: 利用教材附带软件求解如下: **********************最优解如下************************* 目标函数最优值为 : 148.916 变量 最优解 相差值 ------- -------- -------- x1 7.297 0 x2 0 .703 x3 1.892 0 约束 松弛/剩余变量 对偶价格 ------- ------------- -------- 13123123123300.56153420,,0 x x x x x x x x x x x +≤-+≥+-≥≥

1 20.811 0 2 0 -3.622 3 0 -4.73 目标函数系数范围: 变量下限当前值上限 ------- -------- -------- -------- x1 1.417 16 16.565 x2 15.297 16 无上限 x3 14.4 17 192 常数项数范围: 约束下限当前值上限 ------- -------- -------- -------- 1 9.189 30 无上限 2 3.33 3 15 111.25 3 -2.5 20 90 试回答下列问题: (1)第二个约束方程的对偶价格是一个负数(为-3.622),它的含义是什么? (2)x2有相差值为0.703,它的含义是什么? (3)请对右端常数项范围的上、下限给予具体解释,应如何应用这些数

对略读课文教学的实践与思考

对略读课文教学的实践与思考长久以来,由于受应试教育的影响(略读课文不列入考试范围),许多老师只重视精读课文的教学,对略读课文的教学研究甚少,不能很好地把握它的特点,在实际的教学中,往往出现两种倾向,要么与精读课文的教学没有什么区别,字词句段、篇章结构,面面俱到、精雕细琢;要么就轻描淡写、囫囵吞枣,一读带过,学生根本没有留下什么印象。那么,略读课文教学的目标究竟又是什么?教学中又如何体现它的教学特点呢?我们通过对人教版三上《一幅名扬中外的画》一课的教学实践,有了一些思考,下面谈谈对略度课文教学的认识。 一、领会略读课文的编排意图 叶圣陶曾经说过:“就教学而言,精读是主体,略读只是补充;但是就效果而言,精读是准备,略读才是应用。”“如果只注意于精读,而忽略了略读,功夫便只做得一半”。“精读文章,只能把它认作例子与出发点,既熟习了例子,只定了出发点,就得推广开来,阅读略读书籍。”叶老已经十分精辟地阐述了精读与略读的关系,精读是略读的基础,略读是精读的补充,它们都是阅读的最基本的方法,有着各自不同的作用,略读与精读一样重要。《语文课程标准》也指出:“学会运用多种阅读方法。”“加强对阅读方法的指导,让学生逐步学会精读、略读和浏览。”这里同样提出了略读的要求。其实,在信息时

代,略读更能迅速、便捷地获取大量信息,在日常生活中,略读比精读应用更为广泛。 以上着力强调了略读的重要性,有利于我们正确领会略读课文教学的编写意图。人教版新课程实验教材从二年级下册开始安排略读课文,并提出了对这类课文教学的要求:一是从内容上说,理解课文的要求要低于精读课文的教学,一般是“粗知课文大意”,只要抓住重点、难点帮助学生理解即可,词句的理解不作为训练的重点。二是从方法上说,教师要更加放手,主要靠学生自己把课文读懂,并在读中掌握读书方法,提高阅读能力。由此可见,编者安排略读课文的教学,目的之一是要我们训练学生略读的能力,不要求咬文嚼字,只要求“粗知课文大意”;目的之二是让我们培养学生独立阅读的能力,自己把课文读懂,在实践中掌握读书方法。二、明确略读课文教学的目标 基于以上对略读课文教学的认识,它的主要教学目标可以为: 1.用多种阅读方法获取重要信息,尤其要进行略读能力的训练,读懂文章的大意。略读课上,要更注重略读方法的运用,如扫读、跳读等,训练学生快速默读的方法,提高阅读的速度,当然也不排斥精读方法的融合运用。 2.通过自主阅读获取信息,培养独立阅读能力。略读课是学生独立阅读的实践机会,个体自读和合作交流是略读课文

《管理运筹学》期末考试试题

《管理运筹学》期末考试试题 一、单项选择题(共5小题,每小题3分,共15分) 1.如果一个线性规划问题有n个变量,m个约束方程(m

3. 写出下面线性规划问题的对偶问题: 123123123123123min z 25, 258, 23 3,.. 4 26, ,,0. x x x x x x x x x s t x x x x x x =++-+≤??++=??-+≤??≥? 四、计算下列各题(每题20分,合计40分) 1. 用单纯形法求解下列线性规划的最优解: 012121212max 2..32250,0x x x s t x x x x x x =+??≤??≤??+≤??≥≥? 2.用割平面法求解整数规划问题。 12 121212 max 7936735,0,z x x x x x x x x =+-+≤??+≤??≥?且为整数

如何处理精读课文和略读课文

如何处理精读课文和略读课文 略读课作为一种课程形态出现在教材中,主要目的就是为了培养学生的略读能力。因此,略读课的教学应该重视略读方法的训练。著名特级教师王燕骅老师说:“略读课文的教学应当是…教?略,而学要…丰?;应当是…教?略,而…学?不略。”叶圣陶先生也谈过,略读的略字,一半系就教师的指导而言,只须提纲挈领的指导;一半系就学生的功夫而言,还是要像精读那样仔细咬嚼……所以,略读课文教学的追求是──在“精”与“略”之间行走,重其所重,略其所略。整体把握求“略”,教师指导和学生所花的时间略;重点感悟求“精”,对于文章的重点、精彩之处还是要引导学生细细品读。 “精略相辅,略中有精,…教?略而…学?不略”,略读课文教学定位的确定,正为我们略读教学的探索指明了方向,我们认为可用如下方法进行教学。 (一)整体感知求“略” 对课文的内容、词句、结构、表达方法,在整体感知的阶段,力求放开,从略处理。只求尽量快地尽量多地略读浏览,搜集信息,多角度、多方位地粗知文章大意,对全文形成一个比较粗略的整体认识。 1.整体性阅读。整体性阅读是对于课文从整体上快速理解的阅读方法,速读的主要程序是了解文章题目、人物(景物)、时间、地点、主要事件(景物特点)、自己的感受体会等。 如请同学们根据阅读提示,采用自己喜欢的方式阅读课文,力求读通读顺;对长的、难读的句子可以多读几遍;同时,边读边想阅读提示中的问题,然后尝试利用查字典等方法解决问题,在自己感受最深和感觉还有问题的地方做上记号。 2.寻找式阅读。是寻找特定信息的一种阅读方法。学生可以根据阅读提示所提示的问题寻找信息,也可以根据自己在整体性阅读中所发现的问题寻找信息。 略读课文前面的“阅读提示”,除了用于激发学生的阅读兴趣外,还着重对课文的主旨和阅读方法、学习的重难点、语文实践的拓展点给予提纲挈领性的导向。因此要引导学生对照“阅读提示”进行自主读书——或朗读,或默读,或高声诵读,或轻声低吟,或就精彩片断反复品读,或对部分描述扫视而过,从而粗知大意。 3.浏览式阅读。只求了解大体内容而不顾细枝末节,不阅读全文就能掌握材料内容的一种阅读方法。浏览式阅读法的程序:①看目录或标题,选择自己感兴趣的内容。②浏览正文,有选择性地阅读文章中的某些部分。③整理收获。读后概括中心思想、文章要点,以形成总的印象。 读通课文,整体把握是略读教学很重要的一步,为下一步理解课文作铺垫。只有读准了,读通了,读顺了,才会有下一步的“我自己读懂了”。 (二)重点感悟求“精” 编者定为略读课文,定有其道理,我们把握时要注意这一点,与精读课文有所区别,但也要尽可能觅到“精教精学”的乐趣。在略读整体感知的基础上,对课文特别是“阅读提示”所要求的重点进行探究时要采用精读方法,通过小组学习,通过研读形式,进行比较集中深入的感悟,追求──“精略相辅,略中有精,教略而学不略”。 1.主线点拨法。从方法上说,略读课文就是让孩子把在精读课文中学习到的方法运用到自己的学习中,并在读中掌握读书方法,提高阅读能力。教师的作用就在于适当点拨和引导,使学生的个性在课堂中张扬,阅读水平得到提高。我们认为围绕主线,精妙点拨是有效的方法。 2.重点突破法。人教版教材的略读课文中有不少文章和精读课文一样,文质兼美,情趣突出,可以深入文字,在教学中寻找适当的突破口、“感悟点”进行语言文字训练,引导学生细细品读文章的重点、精彩之处。 3.语言积累法。文字很美的文章,则注重语言积累。“美文诵读”是理解、感悟课文的捷径。学生在诵读中,积累了景物描写的语言和手法;在品词品句中,自然而然地就把这些好词佳句记忆在脑中,丰富了自己的“语言仓库”。

相关文档
相关文档 最新文档