文档视界 最新最全的文档下载
当前位置:文档视界 › 复数的乘法及其几何意义教案

复数的乘法及其几何意义教案

复数的乘法及其几何意义教案
复数的乘法及其几何意义教案

复数的乘法及其几何意义教案

教学目标

1.掌握用复数的三角形式进行乘法运算的法则及其推导过程.

2.掌握复数乘法的几何意义.

3.让学生领悟到“转化”这一重要数学思想方法.

4.培养学生探索问题、分析问题、解决问题的能力.

教学重点与难点

重点:复数的三角形式是本节内容的出发点,复数的乘法运算.

难点:复数乘法运算的几何意义,不易为学生掌握.

教学过程设计

师:前面我们学习了复数的代数形式的运算和复数的三角形式,请大家用5分钟的时间,完成以下两道题的演算.

(利用投影仪出示)

1.(1-2i)(2+i)(4+3i);

(5分钟后)

师:第1题检查了复数乘法运算,答案是25,第2题检查了复数的

请同学们再考虑下面一个问题:

如果把复数z1,z2分别写成

z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2).

z1·z2这乘法运算怎样进行呢?

想出算法后,请大家在笔记本上演算,允许同学之间交换意见.

(教师在教室里巡视,稍过几分钟,请一位已经做完的同学在黑板上写出推导过程)

学生板演:

z1·z2=r1(cosθ1+isinθ1)·r2(cosθ2+isinθ2)

=(r1cosθ1+ir1sinθ1)·(r2cosθ2+ir2sinθ2)

=(r1r2cosθ1cosθ2-r1r2sinθ1sinθ2)+i(r1r2sinθ1cosθ2+r1r2cosθ1sin θ2)

=r1r2[(cosθ1cosθ2-sinθ1sinθ2)+i(sinθ1cosθ2+cosθ1sinθ2]

=r1r2[cos(θ1+θ2)+isin(θ1+θ2)].

师:很好,你是怎样想出来的?为什么这样想?

生:我们已经学过复数的代数形式运算,因此把三角形式化为代数形式,按着代数形式的乘法运算法则就可以完成运算.根据数学求简的原则,运用三角公式把结果化简.

在已知的基础上发展和探索未知的东西,解题时,把未知转化成已知,这是重要的思想方法.我是根据这个思想才想出来的.

师:观察这个问题的已知和结论,同学们能发现有什么规律吗?

生:两个复数相乘,积的模等于各复数模的积,积的复角等于各复数的辐角的和.

师:利用这个结论,请同学们计算:

大家把计算过程写在笔记本上.

(教师请一位同学在黑板上板演)

教师提示:由于复数定义是形如a+bi(a,b∈R)的数,如果辐角是特殊角或特殊角的终边相同角,要化成代数形式.即

师:同学们已经发现,复数的三角形式的乘法运算若用

r1(cosθ1+isinθ1)·r2(cosθ2+isinθ2)=r1r2[cos(θ1+θ2)+isin(θθ2)]

1+

计算,简便得多.

这就是复数的三角形式乘法运算公式.

三角形式是由模和辐角两个量确定的,进行乘法运算时要清楚模怎样算?辐角怎样算?

使用复数的三角形式进行运算的条件是复数必须是三角形式的标准式,辐角不要求一定是主值.

同学们已经了解,复数通过几何表示,把复数与复平面内的点或从原点出发的向量建立起一一对应后,复数不仅取得了实际的解释,而且确实逐步展示了它的广泛应用.我们已经研究了复数加、减法的几何意义,并感觉到了它的用途,请大家讨论一下,学习了复数的三角形式运算对复数乘法的几何意义有什么启发呢?

(同学分组讨论,请小组代表发言.如果条件允许,在学生发言同时,用多媒体辅助教学,演示模伸缩情况,辐角终边的旋转)

生:复数的乘法对应的向量,就是由对应于被乘数所对应的向量按逆时针方向旋转一个角θ2(θ2>0,如果θ2<0,按顺时针方向旋转一个角|θ2|,再把其模变为原来的r2倍(r2>1,应伸长;0<r2<1,应缩短;r2=1,模长不变),所得的向量就表示积z1·z2.这是复数乘法的几何意义.

图形演示(如图8-7): =

1

·

2

师:现在我们研究问题.如图8-8,向量

与复数-1+i 对应,把

按逆

时针方向旋转120°,得到 ′.求与向量

′对应的复数.请同学们想一

想.

生:这是形数结合问题,给的题设情境是向量旋转,根据复数乘法的几何意

义,将向量 逆时针方向旋转120°,得到

′,由于模未发生变化,应当

对应复数乘以1·(cos120°+isin120°).

师:解此题复数是否一定化成三角形式?

生:复数与从原点出发的向量建立了一一对应关系,无论是代数形式还是三角形式都表示同一个复数和向量,运算结果是一个数,因此不一定化成三角形式,应根据需要来选择.

师:说得好,请同学们写一下解题过程. (找一名同学到黑板板演)

解:所求的复数就是-1+i乘以一个复数z0的积,这个复数z0的模是1,辐角的主值是120°.所求的复数是:

(-1+i)·1·(cos 120°+isin 120°)

师:为了巩固刚讨论过的复数三角形式的乘法运算公式及复数乘法的几何意义,请同学们继续完成以下练习.

(使用投影仪,映出练习题)

2.已知复数z0所对应的向量0,通过作图,画出下列复数z所对应的向

量.

(教师在教室里巡视,请三位演算错误的同学板演.)

师:这三位同学计算和画图对不对?如果有错误,错在哪里?怎样改正?

师:一人教训大家吸取,千万用复数三角形式的标准式进行复数三角形式的乘法运算.

哪位同学改正一下:

师:板演第1题的两位同学都注意到,不能直接使用三角形式进行加、减法计算,需化成代数形式才得以进行.

接下来看第2题的第(1)小题.

生丙:第(1)题画错了,应当把向量0按逆时针方向旋转60°,可板演图只转30°.

师:为什么?

生丙:乘数sin30°+icos 30°不是复数三角形式的标准式,应化为cos 60°+isin 60°,这样才能应用复数乘法的几何意义来解题.

师:同学们应注意到旋转的角度是辐角来确定的,而辐角的大小又是由复数的三角形式的标准式来确定.

现在看第2题的第(2)小题,将0逆时针旋转120°正确吗?为什么?

其模是1,说明模没有变化,只是把向量0绕原点O按逆时针旋转120°.

师:向量画的正确吗?若不正确,应当怎么画?

生戊:不正确,旋转120°后,取其反方向的向量,模不变,得到.也

可以先取0的反方向的向量,再逆时针旋转120°.

师:回答得很好,现在我们研究一道几何图形习题的解法,请看题目:

已知复平面内一个正方形的两个相邻顶点对应的复数分别为1+2i,3-5i,求与另外两个顶点对应的复数.

为了利于表达,设正方形ABCD,其中点A对应复数是1+2i,点B对应复数是3-5i,求点C、D对应的复数.如图8-11.

同学们开始讨论解法.

生M:这道题可以转化为解析几何题,点A坐标为(1,2),点B坐标是(3,-5).本题应当有两解.设边AB右侧的顶点是C和D,左侧的顶点是C′和D′.线段AB的长度是可求的.而|AD|=|AB|,|BD|=

次方程组,解这个方程组可得两组解,点D坐标求出,对应的复数亦可以写出.

师:点C怎么求呢?

生N:先求出BD的中点,这个中点也是AC的中点,再通过中点坐标公式求得点C的坐标.

师:很好.还有什么解法?

就求出D点对应的复数.

师:点C怎么求呢?

对应的复数.

师:生Q想到的解法更简单,求点C还有其他方法吗?

复数.

师:生H的方法最简单.请同学们在笔记本上用其中一种解法完成此题的演算.

(教师找一名同学到黑板板演)

解:向量对应的复数:(3-5i)-(1+2i)=2-7i.

向量对应的复数:(2-7i)(cos 90°+isin 90°)=(2-7i)·i=7+2i.

向量对应的复数:(1+2i)+(7+2i)=8+4i.

=10-3i.

如图,设点D′对应复数为a+b i(a,b∈R),

又设点C′对应复数为c+d i(c,d∈R),

因此另外两点对应的复数为:10-3i和8+4i;或-4-7i和6.

注意:如果板演有错误,应请同学们发现和纠正.

经常发生的错误有:

(1)=(3-5i)-(1+2i).

这里不能用等号,应写作“向量对应的复数是:(3-5i)-(1+2i);

(2)把向量对应的复数7+2i,错认为是点D对应的复数;

(要讲清只有当向量的起点在原点处,向量所对应的复数才是向量终点所对应的复数)

(3)只得出10-3i和8+4i一组解.

(建议学生自己动手画图,容易发现两组解)

师:通过此题,我们可以体会到代数问题和几何问题互相转化的思想在分析问题与解决问题中的重要作用.为了更好地领悟这一思想,请看:

如图8-12,已知平面内并列的三个相等的正方形,利用复数计算∠1+∠2+∠3的值.

同学们开始讨论解决:

生庚:复数运算的几何意义是在复平面内实施的,因此要建立直角坐标系.师:你分析得正确,如图8-13,建立坐标系.取正方形的边长为单位长1.

生辛:∠B1Ox=∠1,∠B2Ox=∠2,∠B3Ox=∠3,这样,∠1+∠2+∠3=∠B1Ox+∠B2Ox+∠B3Ox.而∠B1Ox,∠B2Ox,∠B3Ox可以分别看作B1,B2,B3三个点对应复数的辐角主值,下面应考虑B1,B2,B3对应复数是什么?

按着老师规定的单位长,B1,B2,B3三点对应的复数分别为1+i,2+i,3+i.

师:好,你先谈到这里,如果单位长度有新的规定,例如边长为2,则三点对应复数分别为2+2i,4+2i,6+2i,并未影响复数的辐角主值的大小,不过计算要繁一些.同学们继续讨论.

生壬:2+i,3+i的辐角主值都不是特殊角,只能查表求近似值再相加,误差较大.根据复数乘法的几何意义,积的辐角等于两个乘数辐角之和,可以先作乘法,看乘积是什么?假若其辐角主值也不是特殊角,但只取一次近似值.

师:你分析得很好,请你计算一下:

生寅:我想谈另外一种计算方法.因为r 1(cos θ1+isin θ1)·r 2(cos θ

2+isin θ2)

·r 3(cos θ3+isin θ3)=r 1r 2[cos (θ1+θ2)+isin (θ1+θ2)]·r 3(cos θ3+isin θ3)=r 1·r 2·r 3[cos (θ1+θ2+θ3)+isin (θ1+θ2+θ3)],因此(1+i )·(2+i )·(3+i )可以直接求出积的辐角.即

(1+i )(2+i )(3+i )=(1+3i )(3+i )=10i ,

师:想法很好,并把两个复数相乘加以发展,是个小发现.这里,应提醒大家,注意一个问题,即两个辐角主值相加,其结果不一定还是主值.

请同学们完成此题的演算. (教师找一名同学到黑板板演)

解:如图建立坐标系,由于平行线的内错角相等,∠1,∠2,∠3分别等于复数1+i ,2+i ,3+i 的辐角的主值,这样∠1+∠2+∠3就是积的辐角,而

(1+i )(2+i )(3+i )=(1+3i )(3+i )=10i ,

师:今天这节课,从知识上要掌握用复数的三角形式进行乘法运算的法则和乘法的几何意义及其推导过程.从思考方法上要善于从未知与已知、数与形以及复数的各种形式互相转换角度上考虑问题.现在布置作业:

1.课本习题:P203 练习1(4),3.

2.课本习题:P210 习题二十八 5.

3.补充题:

(1)在复平面内有两个点Z1和Z2,它们所对应的复数分别为1和2+i,以这两点为顶点作一个正三角形,求这正三角形第三个顶点Z3所表示的复数.

(2)z1,z2是不等于零的两个复数,它们在复平面内的对应点分

角形)

QR(字母顺序按逆时针方向),使|OR|=2|OP|,求动点R的轨迹.(椭

课堂教学设计说明

1.没有良好的基础知识是不可能有很好的数学能力的,深刻的理解、纯熟掌握也不是一次就能完成,因此课堂教学开始时,我安排了检查练习,起着承上启下的作用.

2.重视学生参与知识的发生、发展和被运用的过程,为了培养适应21世纪要求的创新人才,课堂教学的着眼点应放在学生能力的形成和发展上,需要学生去亲自想一想,动手算一算,动口说一说,从而培养学生敢于创造,逐渐学会创造.因此设计教案时强调了学生主体参与,但不能忽视老师的主导作用.

四川省岳池一中数学(人教A)选修2-2学案 复数的几何意义

§3.1.2 复数的几何意义 学习目标 : 1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系. 2.掌握实轴、虚轴、模等概念. 3.掌握用向量的模来表示复数的模的方法. 学习重点:复数的几何意义,理解复数相关概念. 学习难点:复数的几何意义,理解复数相关概念的运用. 课前预习案 教材助读: 阅读教材的内容,思考并完成下列问题: 1.复数的几何意义 (1)复平面的定义 建立了直角坐标系来表示复数的平面叫做________,x 轴叫做______,y 轴叫做______.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数. (2)复数与点、向量间的对应 ①复数z =a +b i(a ,b ∈R) 复平面内的点______; ②复数z =a +b i(a ,b ∈R) 平面向量___________. 2.复数的模 复数z =a +b i(a ,b ∈R)对应的向量为OZ →,则OZ → 的模叫做复数z 的模,记作|z |,且|z |= _________. 一、新课导学: 探究点一 复数与复平面内的点 问题1:实数可用数轴上的点来表示,类比一下,复数怎样来表示呢? 问题2:判断下列命题的真假: ①在复平面内,对应于实数的点都在实轴上;

②在复平面内,对应于纯虚数的点都在虚轴上; ③在复平面内,实轴上的点所对应的复数都是实数; ④在复平面内,虚轴上的点所对应的复数都是纯虚数; ⑤在复平面内,对应于非纯虚数的点都分布在四个象限. 探究点二复数与向量 问题1:复数与复平面内的向量怎样建立对应关系? 问题2:怎样定义复数z的模?它有什么意义? 二、合作探究 例 1:在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i对应的点 (1)在虚轴上;(2)在第二象限;(3)在直线y=x上,分别求实数m的取值范围. 例2:已知复数z=3+a i,且|z|<4,求实数a的取值范围. 三、当堂检测 1. 在复平面内,复数z=i+2i2对应的点位于() A.第一象限B.第二象限C.第三象限D.第四象限 2.实数m取什么值时,复数z=(m2+5m+6)+(m2-2m-15)i (1)对应的点在x轴上方;(2)对应的点在直线x+y+4=0上. 四、课后反思 课后训练案 1. 当2 3

3.1.3 导数的几何意义(优秀经典公开课比赛教案及联系解答)

3.1.3导数的几何意义 教学目标:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,知道导数的概念并会运用概念求导数. 教学重难点:函数切线的概念,切线的斜率,导数的几何意义 教学过程: 情景导入:如图,曲线C 是函数y=f(x)的图象,P(x0,y0)是曲线C 上的任意一点,Q(x0+Δx,y0+Δy)为P 邻近一点,PQ 为C 的割线,PM//x 轴,QM//y 轴,β为PQ 的倾斜角. .tan , ,:β=???=?=x y y MQ x MP 则 展示目标:见学案 检查预习:见学案 合作探究:探究任务:导数的几何意义 问题1:当点(,())(1,2,3,4)n n n P x f x n =,沿着曲线()f x 趋近于点00(,())P x f x 时,割线的变化 趋是什么? y x ??请问:是割线PQ 的什么?

新知:当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线 割线的斜率是:n k = 当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数 就是切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x ?→+?-'==? 新知: 函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率. 即k =000()()()lim x f x x f x f x x ?→+?-'=? 精讲精练: 例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况. 解:可用曲线 h(t) 在 t0 , t1 , t2 处的切线刻画曲线 h(t) 在上述三个时刻附近的变化情况. (1) 当 t = t0 时, 曲线 h(t) 在 t0 处的切线 l0 平行于 x 轴.故在 t = t0 附近曲线比较平坦, 几乎没有升降.(2)当 t = t1 时, 曲线 h(t) 在 t1 处的切线 l1 的斜率 h’(t1) <0 .故在t = t1 附近曲线下降,即函数 h(t) 在 t = t1 附近单调递减.(3)当 t = t2 时, 曲线 h(t) 在 t2处的切线 l2 的斜率 h’(t2) <0 .故在 t = t2 附近曲线下降,即函数 h(t) 在t = t2 附近也单调递减.从图可以看出,直线 l1 的倾斜程度小于直线 l2 的倾斜程度,这说明 h(t) 曲线在 l1 附近比在 l2 附近下降得缓慢。 例2 如图,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min)变化的函数图象.根据图象,估计t =0.2,0.4,0.6,0.8时,血管中药物浓度的瞬时变化率(精确到0.1)

复数几何意义的应用学案.

复数几何意义的应用学案 一、复数相关知识 1.复数z a bi (a,b R)的几何意义是什么? 2. I z I的几何意义是什么? 3. 复数z1,z 2差的模I Z1-Z 2 I的几何意义是什么? 二、轨迹问题 (一)圆的定义:平面内到定点的距离等于定长的点的集合(轨迹) 设Z(x,y)以Z0(x0, y0)为圆心,r(r 0)为半径的圆上任意一点,则点 Z(x,y)满足ZZ o r (r0) 1. 该圆向量形式的方程是什么 2. 该圆复数形式的方程是什么 3.该圆代数形式的方程是什么(二)椭圆的定义:平面内与两定点Z1,Z2的距离的和等于常数(大于乙Z2 ) 的点的集合(轨迹) 设Z(x, y)是以Z i(x i, y2)Z2(X2,y2)为焦点,2a为长轴长的椭圆的上任 意一点,则点Z(x, y)满足ZZ1ZZ22a (2a 乙Z?) 1.该椭圆向量形式的方程是什么

2.该椭圆复数形式的方程是什么 变式(1):在上面方程中若把"2a乙Z2"改为"2a Z1Z2"那么点Z的轨 迹是什么? 变式(2):在上面方程中若把"2a乙Z2"改为"2a Z1Z2"那么点Z的轨 迹是什么? (三)双曲线的定义:平面内与两定点Z1, Z2的距离的差的绝对值等于 常数(小于乙Z2 )的点的集合(轨迹) 设Z(x, y)是以Z i(x i, y2)Z2(X2, y2)为焦点,2a为实轴长的椭圆的上 任意一点,则点Z(x, y)满足ZZ1ZZJ 2a (2a 乙Z2) 1.该双曲线向量形式的方程是什么 2.该双曲线复数形式的方程是什么 变式(1):在上面方程中若把"2a乙Z2"改为"2a Z1Z2"那么点Z的轨 迹是什么? 变式(2):在上面方程中若把"2a乙Z2"改为"2a 0"那么点Z的轨迹是什么?

复数的几何意义--教案

复数的几何意义 教学目标 1. 了解复数的几何意义,会用复平面内的点和向量来表示复数。 2. 了解复数加、减法的几何意义,进一步体会数形结合的思想。 教学重点 复数的几何意义与复数的加、减法的几何意义。 教学过程 前面我们是从“数”的角度研究了复数的概念及其四则运算,本节课我们将从“形”的角度来研究复数的几何表示和复数加减法的几何意义。 一、 问题情境 我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示,那么,复数是否也能用点来表示呢? 二、 学生活动 知识回顾: ①形如bi a +的数叫复数,通常用字母z 表示,即bi a z +=),(R b a ∈,其中a 与b 分别叫做复数的实部与虚部。???=≠=+=时为纯虚数)当虚数 (实数 (复数0)(0) 0a b b bi a z 。 ②两个复数相等的充要条件是它们的实部与虚部分别相等 即 ???==?+=+d b c a di c bi a 。 问题1 复数相等的充要条件表明,任何一个复数bi a +都可以由一个有序实数对),(b a 惟一确定,而有序实数对),(b a 与平面直角坐标系中的点是一一对应的,那么,我们怎么用平面内的点来表示复数呢?

问题2 我们知道平面直角坐标系中的点A 与以原点O 为起点、A 为终点的向量OA 是一一对应的,那么复数能用平面向量来表示吗? 三、 建构数学 师生共同活动: 1. 在平面直角坐标系xOy 中,以复数bi a z +=的实部a 为横坐标、虚部b 为纵坐标就确定了点),(b a Z ,我们可以用点),(b a Z 来表示复数bi a +,这就是复数的几何意义。 2. 建立了直角坐标系来表示复数的平面叫做复平面(也称为高斯平面),x 轴叫做实轴,y 轴叫做虚轴。实轴上的的点都表示实数,除原点外虚轴上的点都表示虚数。 3. 因为复平面内的点),(b a Z 与以原点O 为起点、Z 为终点的向量一一对应(实数0与零向量对应),所以我们也可以用向量OZ 来表示复数bi a +,这也是复数的几何意义。 4. 根据上面的讨论,我们可以得到复数bi a z +=、复平 面内的点),(b a Z 和平面向量OZ 这间的关系(如图)。今后, 常把复数bi a z +=说成点Z 或向量(并且规定相等的 向量表示同一个复数) 5. 相对于复数的代数形式bi a z +=,我们把点),(b a Z 称为复数z 的几何形式,向量称为复数的向量形式。 四、数学运用 运用1 (1)例1 在复平面内,分别用点和向量表示下列复数 4,i +2,i -,i 31+-,i 23-

导数的几何意义的教学设计

导数的几何意义 【教学目标】 1.理解切线的定义 2.理解导数的几何意义 3.学会应用导数的几何意义。 【教学重点与难点】 重点:理解导数的几何意义及应用于解决实际问题,体会数形结合的思想方法。 难点:发现、理解及应用导数的几何意义。 【教学过程】

第二步:求瞬时变化率()0000 () ()lim x f x x f x f x x ?→+?-'=?. (即0x ?→,平均变化率趋近..于的确定常数....就是该点导数.. ) (2) 类比平均变化率得出导数,同样我们可以利用平均变化率的几何意义,得出导数的几何意义,我们观察函数()y f x =的图象,平均变化 率()00() f x x f x y x x +?-?=?? 的几何意义是什么 生:平均变化率表示的是割线n PP 的斜率 教师板书,便于学生 数形结合探究导数的几何意义。 突破平均变化率的 几何意义,后面在表示割线斜率时能直接联系此知识。同时引出本节课的研究问题——导数几何意义是什么 二、引导探究、获得新知 1.得到切线的新定义 要研究导数的几何意义,结合导数的概念,即要探究0x ?→,割线的变化趋势....... , ◆多媒体显示: 曲线上点P 处的切线PT 和割线n PP ,演示点n P 从右边沿着曲线逼近点P ,即0x ?→,割线n PP 的变化趋势。 教师引导学生观察割线与切线是否有某种内在联系呢 生:先观察后发现,当0x ?→,随着点n P 沿着曲线逼近点P ,割 以求导数的两个步骤为......... 依据.. ,从平均变化率的几何意义入手探索导数的几何意义,抓住0x ?→的联系,在图形上从割线入手来研究问题。 用逼近的方法体会割线逼近切线。

《导数的几何意义》教学设计

《导数的几何意义》教学设计 安徽省宿州市宿州学院附属实验中学罗风云 一、教材依据 导数的几何意义是北京师范大学出版社出版的普通高中课程标准实验教科书选修1-1第三章第二节的内容。 二、设计思想 教材分析: 导数是微积分的重要部分,是从生产技术和自然科学的需要中产生的;同时,又促进了生产技术和自然科学的发展。它不但在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 本节内容分了两部分也即两个课时,一是导数的概念;二是导数的几何意义。之前学习的瞬时变化率是为了引出导数的概念,介绍导数的几何意义,是为了加深对导数概念的理解。教材中利用逼近方法,将割线趋于的确定位置的直线定义为曲线的切线,这种定义才反映了切线的真正本质,在教学中应使学生了解“从有限中找到无限,从暂时中找到永久,并使之确定起来”(恩格斯语)的微积分思想,让学生反复通过图形(数与形的结合)去认识和感受导数的几何意义——切线的斜率,并且注重引导他们学会数学思考的一种方式——几何直观,从而加深对导数概念的认识和理解。

学情分析: 设计理念: 学生为本,重视思维发生的过程,重视切线定义的形成过程,激发学生的学习兴趣,有意识培养学生的学习毅力。让学生学习有趣的数学,学习有用的数学,充分体现数学的应用价值、思维价值和人文价值。 三、教学目标 1.知识与技能目标: (1)使学生掌握切线的形成过程,理解函数)(x f 在0x x =处的导 数()0/x f 的几何意义就是函数)(x f 的图像在0x x =处的切线的斜率。 (数形结合),即:()()x x f x x f x f x ?-?+=→?)(lim 0000/=切线的斜率; (2)会利用导数的几何意义求曲线在某一点处的切线方程,体会“数形结合”的数学思想方法。 (3)通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应

北师大版数学高二-选修1学案 导数的几何意义

第二章 变化率与导数 第三课时 3.2.2 导数的几何意义 一、教学目标: 1、通过函数的图像直观地理解导数的几何意义; 2、理解曲线在一点的切线的概念; 3、会求简单函数在某点处的切线方程。 二、教学重点: 了解导数的几何意义 教学难点:求简单函数在某点出的切线方程 三、教学方法:探析归纳,讲练结合 四、教学过程: 复 习 回 顾 1.平均变化率 . ],[)()()(0)(00000的平均变化率在为函数称时,比值 当及其附近有定义,在点已知函数x x x x f x x f x x f x y x x x x f y ?+?-?+=??≠?== 2.瞬时变化率 . )() ()(0x 000的瞬时变化率在点则这个常数称为函数常数, 时,平均变化率 当x x f x x f x x f →?-?+→? 3.导数的定义 x x f x x f x f y x f x x x f x x x x ?-?+='''=→?=) ()(( lim )(|)()(000 00000,故或记作处的导数在为的瞬时变化率,就定义函数在 4.点斜式直线方程: y-y 0=k(x-x 0) 曲线的切线 y=f(x) y 0=f(x 0), y 1=f(x 1)

当自变量从x0变化到x1时,相应的函数值从f(x0)变化到f(x1) 自变量的增量△x= x1- x0 函数值的增量△y= f(x1)- f(x0) Q(x0+ △x,y0+ △y) △y=f(x0+ △x)-f(x0) 曲线在某一点处的切线的定义 设曲线C是函数y=f(x)的图象,在曲线C上取一点(x0,y0)及邻近一点(x0+△x,y0+△y) 过P,Q两点作割线当点Q沿着曲线无限接近于点P即△x→0时, 如果割线PQ有一个极 限位置PT, 那么直线PT叫做曲线在点P处的切线。

复数的几何意义 说课稿 教案 教学设计

复数的几何意义 一、教学目标: 1.理解复平面、实轴、虚轴等概念. 2.理解并掌握复数的几何意义,并能简单应用. 3.理解并会求复数的模,了解复数的模与实数绝对值之间的区别与联系. 二、教学重点: 重点:理解并掌握复数的几何意义. 难点:复平面内的点(,),,z a b OZ z a bi =+的关系;复数模的问题. 三、教学过程 【使用说明与学法指导】 1.课前用20分钟预习课本P 104-105内容.并完成书本上练、习题及导学案上的问题导学. 2.独立思考,认真限时完成,规范书写.课上小组合作探究,答疑解惑. 【问题导学】 1. 复平面? 2.复数的几何意义? 3.复数的模? 4.复平面的虚轴的单位长度是1,还是i? 【合作探究】 问题1:复数与复平面内点的关系 1.复数2z i =对应的点在复平面的( B ) A. 第一象限内 B. 实轴上 C. 虚轴上 D. 第四象限内 2.在复平面内,复数sin 2cos2z i =+对应的点位于( D ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3.在复平面内表示复数()3z m =-+的点在直线y x =上,则实数m 的值为 9 . 4.已知复数() ()2232z x x x i =--+-在复平面内的对应点位于第二象限,求实数x 的取值范围. 解:23x << 问题2:复数与复平面内向量的关系 1.向量1OZ 对应的复数是54i -,向量2OZ 对应的复数是54i -+,则1OZ +2OZ 对应的复数是 0 . 2. 复数43i +与25i --分别表示向量OA 与OB ,则向量AB 表示的复数是68i --.

3.1.2复数的几何意义(学、教案)

3. 1.2复数的几何意义 课前预习学案 课前预习: 1、复数与复平面的点之间的对应关系 1、复数模的计算 2、共轭复数的概念及性质 4、 提出疑惑: 通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点 疑惑内容 课内探究学案 学习目标: 1. 理解复数与复平面的点之间的一一对应关系 2.理解复数的几何意义 并掌握复数模的计算方法 3、理解共轭复数的概念,了解共轭复数的简单性质 学习过程 一、自主学习 阅读 课本相关内容,并完成下面题目 1、复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是 的 2、 叫做复平面, x 轴叫做 ,y 轴叫做 实轴上的点都表示 虚轴上的点除原点外,虚轴上的点都表示 3、复数集C 和复平面内所有的点所成的集合是一一对应关系,即 复数 ←???→一一对应复平面内的点 ←???→一一对应 平面向量 4、共轭复数 5、复数z =a +bi (a 、b ∈R )的模 二、探究以下问题 1、实数与数轴上点有什么关系?类比实数,复数是否也可以用点来表示 吗? 2、复数与从原点出发的向量的是如何对应的? 3、复数的几何意义你是怎样理解的? 4、复数的模与向量的模有什么联系? 5、你能从几何的角度得出共轭复数的性质吗? 三、精讲点拨、有效训练 见教案

反思总结 1、你对复数的几何意义的理解 2、复数的模的运算及含义 3共轭复数及其性质 当堂检测 1、判断正误 (1) 实轴上的点都表示实数,虚轴上的点都表示纯虚数 (2) 若|z 1|=|z 2|,则z 1=z 2 (3) 若|z 1|= z 1,则z 1>0 2、()12m z i =当<时,复数+m-1在复平面上对应的点位于( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 3、已知a ,判断z=i a a a a )22()42(22+--+-所对应的点在第几象限 4、设Z 为纯虚数,且|z+2|=|4-3 i |,求复数Z

模式一1.1.3导数的几何意义

1. 1.3导数的几何意义 课前预习学案 一. 预习目标 1.了解平均变化率与割线斜率之间的关系; 2.理解曲线的切线的概念; 3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题。 二. 预习内容 1.曲线的切线及切线的斜率 (1)如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时, 即0→?x 时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为 . (2)割线n PP 的斜率是00 ()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时, n k 无限趋近于切线PT 的斜率k ,即k = = 2.导数的几何意义 函数)(x f y =在0x x =处的导数等于在该点00(,())x f x 处的切线的斜率, 即0()f x '= . 三.提出疑惑 疑惑点 疑惑内容 课内探究学案 一. 学习目标 1.了解平均变化率与割线斜率之间的关系; 2.理解曲线的切线的概念; 3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题 二. 学习过程 (一)。复习回顾 1.平均变化率、割线的斜率 2。瞬时速度、导数 (二)。提出问题,展示目标 我们知道,导数表示函数)(x f y =在0x x =处的瞬时变化率,反映了函数)(x f y =在

0x x =附近的变化情况,导数0()f x '的几何意义是什么呢? (三)、合作探究 1.曲线的切线及切线的斜率 (1)如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么? (2)如何定义曲线在点P 处的切线? (3)割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? (4)切线PT 的斜率k 为多少? 说明: (1)当0→?x 时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数. (2)曲线在某点处的切线: 1)与该点的位置有关; 2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的; 如不存在,则在此点处无切线; 3)曲线切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多. 2.导数的几何意义 (1)函数)(x f y =在0x x =处的导数的几何意义是什么? (2)将上述意义用数学式表达出来。 (3)根据导数的几何意义如何求曲线在某点处的切线方程? 3.导函数 (1)由函数)(x f y =在0x x =处求导数的过程可以看到,当0x x =时,0()f x '是一个确定的数,那么,当x 变化时, ()f x '便是x 的一个函数,我们叫它为)(x f 的导函数. 注: 在不致发生混淆时,导函数也简称导数. (2)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数之间的区别与联系是什么? 区别: 联系: (四)。例题精析 例1 求曲线1)(2+==x x f y 在点)2,1(P 处的切线方程. 解: 变式训练1 求函数23x y =在点(1,3)处的切线方程. 例2 如图3.1-3,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h x x x =-++, 根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况. 解: 我们用曲线()h t 在0t 、1t 、2t 处的切线, 刻画曲线()h t 在上述三个时刻附近的变化情况. (1) 当0t t =时,曲线()h t 在0t 处的切线0l 的斜率 , 所以,在0t t =附近曲线比较平坦,几乎没有升降.

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

第三章 §3.1 3.1.2 复数的几何意义(优秀经典公开课比赛教案)

[A 组 学业达标] 1.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:z =-1-2i 对应点Z (-1,-2),位于第三象限. 答案:C 2.已知复数z =(m -3)+(m -1)i 的模等于2,则实数m 的值为( ) A .1或3 B .1 C .3 D .2 解析:依题意可得 (m -3)2+(m -1)2=2,解得m =1或3,故选A. 答案:A 3.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(-3,1) B .(-1,3) C .(1,+∞) D .(-∞,-3) 解析:由题意知????? m +3>0,m -1<0, 即-3

5.如果复数z 满足条件z +|z |=2+i ,那么z =( ) A .-34+i B.34-i C .-34-i D.34+i 解析:设z =a +b i(a ,b ∈R),由复数相等的充要条件,得????? a +a 2+ b 2=2,b =1,解得??? a =34,b =1, 即z =34 +i. 答案:D 6.在复平面内,复数z =sin 2+cos 2i 对应的点位于________象限. 解析:由π2<2<π,知sin 2>0,cos 2<0 ∴复数z 对应点(sin 2,cos 2)位于第四象限. 答案:第四 7.i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2=________. 解析:复数z 1=2-3i 对应的点为(2,-3),则z 2对应的点为(-2,3).所以z 2=-2+3i. 答案:-2+3i 8.已知在△ABC 中,AB →,AC →对应的复数分别为-1+2i ,-2-3i ,则BC →对应的 复数为________. 解析:因为AB →,AC →对应的复数分别为-1+2i ,-2-3i ,所以AB →=(-1,2),AC →= (-2,-3),又BC →=AC →-AB →=(-2,-3)-(-1,2)=(-1,-5),所以BC →对应的 复数为-1-5i. 答案:-1-5i

(浙江专版)201X年高中数学 第三章 数系的扩充与复数的引入 3.1.2 复数的几何意义学案 新人

3.1.2 复数的几何意义 预习课本P104~105,思考并完成下列问题 (1)复平面是如何定义的,复数的模如何求出? (2)复数与复平面内的点及向量的关系如何?复数的模是实数还是复数? [新知初探] 1.复平面 2.复数的几何意义 . 3.复数的模 (1)定义:向量OZ ―→ 的模r 叫做复数z =a +b i(a ,b ∈R)的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=r =a 2 +b 2 (r ≥0,r ∈R). [点睛] 实轴、虚轴上的点与复数的对应关系 实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是

z =0+0i =0,表示的是实数. [小试身手] 1.判断(正确的打“√”,错误的打“×”) (1)在复平面内,对应于实数的点都在实轴上.( ) (2)在复平面内,虚轴上的点所对应的复数都是纯虚数.( ) (3)复数的模一定是正实数.( ) 答案:(1)√ (2)× (3)× 2.已知复数z =i ,复平面内对应点Z 的坐标为( ) A .(0,1) B .(1,0) C .(0,0) D .(1,1) 答案:A 3.向量a =(1,-2)所对应的复数是( ) A .z =1+2i B .z =1-2i C .z =-1+2i D .z =-2+i 答案:B 4.已知复数z 的实部为-1,虚部为2,则|z |=________. 答案: 5 复数与点的对应关系 [典例] 求实数a 分别取何值时,复数z =a +3 +(a 2 -2a -15)i(a ∈R)对应的点Z 满足下列条件: (1)在复平面的第二象限内. (2)在复平面内的x 轴上方. [解] (1)点Z 在复平面的第二象限内, 则????? a 2 -a -6a +3<0,a 2-2a -15>0, 解得a <-3. (2)点Z 在x 轴上方, 则? ?? ?? a 2 -2a -15>0,a +3≠0, 即(a +3)(a -5)>0,解得a >5或a <-3. [一题多变]

1.1.3导数的几何意义-浙江省桐庐分水高级中学高中数学人教A版选修2-2学案(无答案)

导数的几何意义 高考要求:理解导数的几何意义 角度一 求切线方程 例1:曲线161sin 33++=x x y 在点(0,1)处的切线方程为_________________. 练习1:已知x x x f 3)(3-=,过点)2,2(--P 作函数)(x f y =图像的切线,则切线方程为____________________. 角度二 求切点坐标 例2:设R a ∈,函数x x e a e x f + =)(是偶函数,若曲线)(x f y =的一条切线的斜率是23 ,则切点的横坐标为______________. 练习2:曲线x e y =在A 处的切线与直线01=+-y x 平行,则点A 的坐标为_____. 角度三 求参数的值或取值范围 例3:(1)直线1+=kx y 与曲线b ax x y ++=3相切于点)3,1(A ,则=+b a 2_______. (2)若直线b kx y +=是曲线x e y =的切线,也是曲线)2ln(+=x y 的切线, 则=k __________.

练习3:已知2ln 4)(x x x f -=,若曲线)(x f y =在点)1,1(-处的切线与曲线 m x x y +-=32相切,则=m ___________. 角度四 过某点的切线的条数问题 例4 若过点),a a P (与曲线x x x f ln )(=相切的直线有两条,则实数a 的取值范 围是( ) A.),(e -∞ B.),(+∞e C.(0,)1e D. ),1(+∞ 练习4:已知nx mx x x f ++=23)(,R n m ∈, (1) 若)(x f 在1=x 处取得极大值,求实数m 的取值范围。 (2) 若0)(/=x f ,且过点)1,0(P 有且只有两条直线与曲线)(x f y =相切, 求实数m 的值。 练习5:已知b x x x x f +++=2325)(,,其图像是曲线C,若过点)0,1(P 可作曲线C 的三条切线,求实数b 的取值范围。

3.1.2复数的几何意义 教案.doc教学设计

第三章数系的扩充与复数的引入 【课题】:3.1.2 复数的几何意义 【学情分析】: 教学对象是高二的学生,学生已经学过代数、解析几何的相关知识,所以本节课要求学生通过类比实数的几何意义自己探索复数的几何意义,由于学生已经学过平面向量及其几何表示、坐标表示,得到用平面向量来表示复数就比较容易了. 【教学目标】: (1)知识与技能: 了解复数的几何意义,会用复平面的点和向量来表示复数; (2)过程与方法: 在解决问题中,通过数形结合的思想方法,加深对复数几何意义的理解; (3)情感态度与价值观: 培养学生用联系的观点分析、解决问题的能力。 【教学重点】: 复数的代数形式和复数的向量表示. 【教学难点】: 复数的向量表示. 【课前准备】: powerpoint课件

六、 作业 1、在复平面内,复数 2)31(1i i i +++对应的点位于 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、复数,111-++-= i i z 在复平面内,z 所对应的点在 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、 在复平面内指出与复数i z i z i z i z +-=-=+= +=2,23,32,214321 对应的点 4321,,,Z Z Z Z .试判断这四个点是否在同一个圆上?并证明你的结论. 解:因为 ︱1z ︱=52122= +,︱2z ︱=5,︱3z ︱=5,︱4z ︱=5, 所以,4321,,,Z Z Z Z 这四个点都在以圆点为圆心,半径为5的圆上. 4、如果P 是复平面内表示表示复数a +bi (a ,b ∈R )的点,分别指出在下列条件下点P 的位置: (!)a >0,b>0; (2) a <0,b>o; (3)a =0,b ≤0; (4)b<0. 解:(1)第一象限 (2)第二象限 (3)位于原点或虚轴的下半轴上 (4)位于实轴下方 5、如果复数z 的实部为正数,虚部为3,那么在复平面内,复数z 对应的点应位于怎样的图形上? 解:平面直角坐标系中以(0,3)为端点的一条射线,但不包括端点(0,3) 6、已知复数z 的虚部为3,在复平面内复数z 对应的向量的模为2,求该复数z . 解:由已知,设)(3R a i a z ∈+ = 则.432 2=+ a 解得 ±=a 1. 所以 .31i z +±=

3.3复数的几何意义 学案(含答案)

3.3复数的几何意义学案(含答案) 3.3复数的几何意义学习目标 1.了解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系. 2.掌握实轴.虚轴.模等概念. 3.理解向量加法.减法的几何意义,能用几何意义解决一些简单问题知识点一复平面思考实数可用数轴上的点来表示,平面向量可以用坐标表示,类比一下,复数怎样来表示呢答案任何一个复数zabi,都和一个有序实数对a,b一一对应,因此,复数集与平面直角坐标系中的点集之间可以建立一一对应关系梳理建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数知识点二复数的几何意义1复数与点.向量间的对应关系2复数的模复数zabia,bR,对应的向量为,则向量的模叫做复数zabi的模或绝对值,记作|z|或|abi|.由模的定义可知|z||abi|.知识点三复数加.减法的几何意义思考1复数与复平面内的向量一一对应,你能从向量加法的几何意义出发讨论复数加法的几何意义吗答案如图,设,分别与复数abi,cdi对应,且,不共线,则a,b,c,d,由平面向量的坐标运算,得ac,bd,所以与复数acbdi 对应,复数的加法可以按照向量的加法来进行思考2怎样作出与复数z1z2对应的向量答案z1z2可以看作z1z2因为复数的加法可以按照向量的加法来进行所以可以按照平行四边形法则或三角形

法则作出与z1z2对应的向量如图图中对应复数z1,对应复数 z2,则对应复数z1z 2.梳理1复数加减法的几何意义复数加法的几何意义复数 z1z2是以,为邻边的平行四边形的对角线所对应的复数复数减法的几何意义复数z1z2是从向量的终点指向向量的终点的向量所对应的复数2设z1abi,z2cdia,b,c,dR,则|z1z2|,即两个复数的差的模就是复平面内与这两个复数对应的两点间的距离1原点是实轴和虚轴的交点2在复平面内,对应于实数的点都在实轴上3在复平面内,虚轴上的点构对应的复数都是纯虚数4复数的模一定是正实数类型一复数的几何意义例1实数x分别取什么值时,复数zx2x6x22x15i对应的点Z在1 第三象限;2直线xy30上解因为x是实数,所以x2x6, x22x15也是实数1当实数x满足即当3x2时,点Z在第三象限 2zx2x6x22x15i对应点的坐标为Zx2x6,x22x15,当实数x满足 x2x6x22x1530,即当x2时,点Z在直线xy30上引申探究若本例中的条件不变,其对应的点在1虚轴上;2 第四象限解1当实数x满足x2x60,即当x3或2时,点Z在虚轴上2当实数x满足即当2x5时,点Z在第四象限反思与感悟按照复数和复平面内所有点构成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部.虚部的取

导数的几何意义教学导案后附教学反思

导数的几何意义教案(后附教学反思)

————————————————————————————————作者:————————————————————————————————日期:

导数的几何意义教案(后附教学反思) 永嘉中学 数学组 周瑛 08.4.13 【教学目标】 知识与技能目标: (1)使学生掌握函数)(x f 在0x x =处的导数()0/ x f 的几何意义就是函数)(x f 的 图像在 0x x =处的切线的斜率。(数形结合),即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/=切线的斜率 (2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。 过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。 情感态度与价值观:导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。培养学生学数学,用数学的意识。 【教学手段】采用幻灯片,实物投影等多媒体手段,增大教学容量与直观性,有效提高教学效率和教学质量。 【课型】探究课 【教学重点与难点】 重点:导数的几何意义及“数形结合,以直代曲”的思想方法。 难点:发现、理解及应用导数的几何意义 【教学过程】 (一) 课题引入,类比探讨: 让学生回忆导数的概念及其本质。(承上启下,自然过渡)。 师:导数的本质是什么?写出它的表达式。(一位学生板书),其他学生在“学案”中写: 导数)(0/x f 的本质是函数)(x f 在0x x =处的瞬时变化率.....,即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/ (注记:教师不能代替学生的思维活动,学生将大脑中已有的经验、认识转换成数学符号,有利于学生思维能力的有效提高,为学生“发现”,感知导数的几何意

高三数学一轮复习 导数定义及几何意义学案及作业

导数定义及其几何意义、函数求导学案 一. 基础知识 1.的导数为函数)(x f y = =')(x f 0 lim →?x __________________ 2.导数 )(0x f '的几何意义:_________________________________________ 3.初等函数的导数公式 __________)(,ln )()8(__________)(),1,0(log )()7(__________ )(,)()6(_____ )(,)()5(_ __________)(,cos )()4(______)(,sin )()3(__________)(),()()2(,__________)(),()()1(='=='≠>=='=='=='=='=='∈=='=x f x x f x f a a x x f x f e x f x f a x f x f x x f x f x x f x f Q x x f x f c c x f a x x 则则且则则则则则则为常数αα 4.导数的运算法则:_______________])()([='±x g x f _______________________])()([='?x g x f _______________]) () ([='x g x f 5. 函数单调性与导数:设函数)(x f y =在区间(a,b )内有导数,如果____,则)(x f y =是这个区 间内_____;如果在这个区间内___,则)(x f y =是这个区间内_____. 6.求单调区间的方法: 二.例题1.若,2)(0='x f 则___________) ()(lim 000 =--→h x f h x f k 练习:(1)若,2)(0='x f 则___________2) ()(lim 000 =-+→h x f h x f k (2)若,2)(0='x f 则___________2) 3()(lim 000=--→h h x f x f k (3)若,2)(0='x f 则000 ()(3) lim h f x h f x h h →+--=_______________ 2.求下列函数的导数(1)x x y x x y e y x 23log )3(sin 4cos 3)2(2+=-== x x y e x y x n sin cos )5()4(= = 3.已知函数3 () 2f x x x (1)在0p 处的切线平行于直线41y x ,求0p 点的坐标 (2)求函数)(x f 在点(1,0)处的切线方程。 (3)若在P 处的切线垂直于直线x=3,求此切线方程。 4.下列各图为导函数)(x f y '=的图象,试画出原函数)(x f y =的图象。 导数定义及其几何意义、函数求导作业 E A x D x C x B

相关文档
相关文档 最新文档