文档视界 最新最全的文档下载
当前位置:文档视界 › 数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告
数值计算方法实验报告

实验1 赛德尔迭代法

【实验目的】

熟悉用塞德尔迭代法解线性方程组 【实验内容】

1.了解MATLAB 语言的用法

2.用塞德尔迭代法解下列线性方程组

1234123412341234

54

1012581034

x x x x x x x x x x x x x x x x ---=-??-+--=??

--+-=??---+=?

【实验所使用的仪器设备与软件平台】

计算机,MATLAB7.0

【实验方法与步骤】

1.先找出系数矩阵A ,将前面没有算过的x j 分别和矩阵的(,)A i j 相乘,然后将累加的和赋值给sum ,即(),j s u m s u m A i j x =+?.算

出()/(,)

i i x b sum A i i =-,依次循环,算出所有的i x 。 2.若i x 前后两次之差的绝对值小于所给的误差限ε,则输出i x .否则重复以上过程,直到满足误差条件为止.

【实验结果】

(A 是系数矩阵,b 是右边向量,x 是迭代初值,ep 是误差限)

function y=seidel(A,b,x,ep) n=length(b); er=1; k=0; while er>=ep

k=k+1;

for i=[1:1:n]

q=x(i);

sum=0;

for j=[1:1:n]

if j~=i

sum=sum+A(i,j)*x(j);

end

end

x(i)=(b(i)-sum)/A(i,i);

er=abs(q-x(i));

end

end

fprintf('迭代次数k=%d\n',k)

disp(x')

【结果分析与讨论】

>> A=[5 -1 -1 -1;-1 10 -1 -1;-1 -1 5 -1;-1 -1 -1 10]; b=[-4 12 8 34];

seidel(A,b,[0 0 0 0],1e-3)

迭代次数k=6

0.99897849430002

1.99958456867649

2.99953139743435

3.99980944604109

实验课程:数值计算方法专业:数学与应用数学班级:08070141

学号:37

姓名:汪鹏飞

中北大学理学院

实验2 最小二乘法的拟合

【实验目的】

熟悉最小二乘法的拟合方法 【实验内容】

1.了解MATLAB 语言的用法

2.给出数据 x -1.00 -0.75

-0.50

-0.25

0.25

0.50

0.75

1.00

y

-0.2209

0.3295 0.8826 1.4392 2.0003 2.5645 3.1334 3.7061 4.2836

希望用一次,二次多项式利用最小二乘法拟合这些数据,试写出正规方程组,并求出最小平方逼近多项式。

【实验所使用的仪器设备与软件平台】

计算机,MATLAB7.0,

【实验方法与步骤】

1.先算出 1

n

j j i i l x ==∑,再算出 (1)1

n

j j i i

i b x y -==∑ 2.在正规方程组

20121111

231

01211111

120

121

1111n n n n

m

i i m i i

i i i i n n n n n

m i i i m i i i

i i i i i n n n n

n

m m m m m m i i i m i i i i i i i i a n a x a x a x y a x a x a x a x x y a x a x a x a x x y ====+=====+++=====?++++=?

?

?++++=????

?++++=??∑∑∑∑∑∑∑∑∑∑∑∑∑∑ 中令1

n j j i i l x ==∑,(1)1

n

j j i i i b x y -==∑

3.令正规方程组的系数矩阵为A ,当j m ≤时,将j l 的值赋给(1,1)A j +, 当j>m 时,将j l 的值赋给(1,1)A j m m +-+,再将矩阵A 的其他元素写出来,于是正规矩阵可写成Aa b =,最后用1a A b -=即可算出向量a,向量a 的

元素依次是常数项,一次项的系数,二次项的系数m次项的系数.

4.由系数即可写出拟合的多项式曲线.

【实验结果】

(x,y为给定的对应值,m是要求的拟合次数)

function a=zxecf(x,y,m)

n=length(x);

A(1,1)=n;

for j=[1:1:2*m]

l(j)=0;

for i=[1:1:n]

l(j)=l(j)+x(i)^j;

end

if j<=m

A(1,1+j)=l(j);

else A(j+1-m,m+1)=l(j);

end

end

for j=[1:1:m+1]

b(j)=0;

for i=[1:1:n]

b(j)=b(j)+y(i)*x(i)^(j-1);

end

end

for i=[2:1:m+1]

k=-1;

for j=[m+1:-1:1]

k=k+1;

A(i,j)=l(m+i-1-k);

end

end

a=A\b';

【结果分析与讨论】

>> x=[-1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00];

y=[-0.2209 0.3295 0.8826 1.4392 2.0003 2.5645 3.1334 3.7061 4.2836]; a1=zxecf(x,y,1)

a1 =

2.01314444444444

2.25164666666667

>> a2=zxecf(x,y,2)

a2 =

2.00010043290043

2.25164666666667

0.03130562770563

拟合的一次多项式是() 2.0131 2.2516

=+

y x x

拟合的二次多项式是2

=++

y x x x

() 2.0001 2.25160.0313

优缺点:

该方法可以通过改变m的值来将数据拟合成任意次数的多项式函数。

实验课程:数值计算方法专业:数学与应用数学班级:08070141

学号:37

姓名:汪鹏飞

中北大学理学院

实验3 龙贝格算法求积分

【实验目的】

熟悉龙贝格方法求积分 【实验内容】

1.了解MATLAB 语言的用法

2.用龙贝格方法求积分

21-50

2

(10)x I e

dx π-=

?

要求误差不超过

【实验所使用的仪器设备与软件平台】

计算机,MATLAB7.0 【实验方法与步骤】

1.计算()f a 和()f b ,算出1T .

2.将区间[],a b 分半,计算2a b f +??

???,算出2T 和1S .

3.再将子区间分半,计算 4b a f a -?

?+ ???,34b a f

a -?

?+?

???

,算出4T ,2S 和1C . 4.再将子区间分半,计算 8b a f a -?

?+ ??

?,

38b a f a -?

?+? ???

,

58b a f a -?

?+? ???

,

78b a f a -?

?+? ???

,算出8T , 4S , 2C 和1R .

5.再将子区间分半,算出16T , 8S , 4C 和 2R ,不断将子区间分半,重复以 上过程,算出4R , 8R , 16

R ,一直到相邻两个R 值之差的绝对值不超

过给定的误差ε为止,最后一次算出的R 值即为所求。

【实验结果】

(a 是下限,b 是上限,eps 是误差限)

定义函数

function y=intf(x)

y=2*(exp(-x^2))/(pi^0.5);

主程序

function J=romberg(a,b,eps)

er=1;

k=3;

h=b-a;

T(1)=h*(intf(a)+intf(b))/2;

h1=h/2;

T(2)=T(1)/2+h1*intf(a+h1);

S(1)=4/(4-1)*T(2)-1/(4-1)*T(1);

h2=h1/2;

T(4)=T(2)/2+h2*(intf(a+h2)+intf(a+3*h2));

S(2)=4/(4-1)*T(4)-1/(4-1)*T(2);

C(1)=4^2/(4^2-1)*S(2)-1/(4^2-1)*S(1);

h3=h2/2;

T(8)=T(4)/2+h3*(intf(a+h3)+intf(a+3*h3)+intf(a+5*h3)+intf(a+7*h3)); S(4)=4/(4-1)*T(8)-1/(4-1)*T(4);

C(2)=4^2/(4^2-1)*S(4)-1/(4^2-1)*S(2);

R(1)=4^3/(4^3-1)*C(2)-1/(4^3-1)*C(1);

while er>=eps

H=0;

k=k+1;

u=h/2^k;

x=a+u;

i=0;

while x

H=H+intf(x);

i=i+1;

x=a+u*(2*i+1);

end

T(2^k)=T(2^(k-1))/2+h*H/2^k;

S(2^(k-1))=4/(4-1)*T(2^k)-1/(4-1)*T(2^(k-1));

C(2^(k-2))=4^2/(4^2-1)*S(2^(k-1))-1/(4^2-1)*S(2^(k-2));

R(2^(k-3))=4^3/(4^3-1)*C(2^(k-2))-1/(4^3-1)*C(2^(k-3));

er=abs(R(2^(k-3))-R(2^(k-4)));

end

I=R(2^(k-3));

fprintf('I=%10.8f\n',I)

【结果分析与讨论】

>> romberg(0,1,1e-4)

I=0.84270079

实验课程:数值计算方法专业:数学与应用数学班级:08070141

学号:37

姓名:汪鹏飞

中北大学理学院

实验4 标准四阶R-K 方法

【实验目的】 熟悉四阶R-K 方法 【实验内容】

1.了解MATLAB 语言的用法

2.取步长0.2h =,用标准四阶R-K 方法解初值问题

3,011(0)1

y

y x x y ?'=

≤≤?+?

?=? 【实验所使用的仪器设备与软件平台】 计算机,MATLAB7.0 【实验方法与步骤】

1.先将积分区除以步长确定分点个数b a

n h

-=

. 2.利用标准四阶R-K 公式,算出

()1,n n k h f x y =?,

12,22n n k h k h f x y ?

?=?++ ???;

23,22n n k h k h f x y ?

?=?++ ??

?,

()43,n n k h f x h y k =?++.

3.利用()112341

226

n n y y k k k k +=+?+++算出下一个节点处的y 值.

4.重复以上步骤,算出每个分点处y 的值.

5.输出每个分点处y 的值.

【实验结果】

(a 是下限,b 是上限,h 是步长,y0是初值)

定义函数

function f=func(x,y)

f=(3*y)/(1+x);

主程序

function q=LK(a,b,h,y0)

n=(b-a)/h;

fprintf('a=%6.4f,y0=%10.8f\n',a,y0)

for i=[0:1:n-1]

k1=h*func(a,y0);

k2=h*func(a+h/2,y0+k1/2);

k3=h*func(a+h/2,y0+k2/2);

k4=h*func(a+h,y0+k3);

y0=y0+1/6*(k1+2*k2+2*k3+k4);

fprintf('a=%6.4f,y0=%10.8f\n',a+h,y0)

a=a+h;

end

【结果分析与讨论】

>> LK(0,1,0.2,1)

a=0.0000,y0=1.00000000

a=0.2000,y0=1.72754821

a=0.4000,y0=2.74295130

a=0.6000,y0=4.09418136

a=0.8000,y0=5.82921073

a=1.0000,y0=7.99601214

数值计算实验课题目

数值实验课试题 本次数值实验课结课作业,请按题目要求内容写一篇文章。按题目要求 人数自由组合,每组所选题目不得相同(有特别注明的题目除外)。试题如下: 1)解线性方程组的Gauss 消去法和列主元Gauss 消去法(2人)/*张思珍,巩艳华*/ 用C 语言将不选主元和列主元Gauss 消去法编写成通用的子程序,然后用你编写的程序求解下列84阶的方程组 ???? ?????? ? ??=??????????? ????????????? ? ?1415151515768 168 168 168 1681684 8382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 2)解线性方程组的平方根法(4人)/*朱春成、黄锐奇、张重威、章杰*/ 用C 语言将平方根法和改进的平方根法编写成通用的子程序,然后用你编写的程序求解对称正定方程组b Ax =,其中 (1)b 随机的选取,系数矩阵为100阶矩阵 ?????? ???? ? ? ?101 1101 1101 1101 1101110 ; (2)系数矩阵为40阶的Hilbert 矩阵,即系数矩阵A 的第i 行第j 列元素为 1 1-+= j i a ij ,向量b 的第i 个分量为∑=-+ = n j i j i b 1 1 1. 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编

3.《数值分析简明教程》,王能超编 3)三对角线方程组的追赶法(3人)/*黄佳礼、唐伟、韦锡倍*/ 用C 语言将三对角线方程组的追赶法法编写成通用的子程序,然后用你编写的程序求解如下84阶三对角线方程组 ???? ?????? ? ??=??????????? ????????????? ? ?1415151515768 168 168 168 16816 84 8382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值分析简明教程》,王能超编 4)线性方程组的Jacobi 迭代法(3人)/*周桂宇、杨飞、李文军*/ 用C 语言将Jacobi 迭代法编写成独立的子程序,并用此求解下列方程组, 精确到小数点后5位 ???? ? ??=????? ??????? ? ?-149012 2111221 3 2 1 x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 5)线性方程组的Gauss-Seidel 迭代法(3人)/*张玉超、范守平、周红春*/ 用C 语言将Gauss-Seidel 迭代法编写成独立的子程序,并用此求解下列方程组,精确到小数点后5位 ???? ? ??=????? ??????? ? ?--39721 1111112 3 2 1 x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 6)解线性方程组的最速下降法法(2人)/*赵育辉、阿热孜古丽*/ 用C 语言将最速下降法编写成通用的子程序,然后用你编写的程序求解对称

数值计算方法课程报告

课程报告 课程名称______《数值计算》 __ 学生学院_____机电工程学院___ 专业班级_____微电子(1)班____ 学号________ 学生姓名_______________ 指导教师_____ ________ XXXX年XX月XX日

姓 名: 线 学 号 : 订 装专 业:学院: 广东工业大学考试试卷( A ) 课程名称: 数值计算试卷满分100 分考试时间: 2015 年 12 月 26 日(第 17 周星期六) 题号一二三四五六七八九十总分 评卷得分 评卷签名 复核得分 复核签名 “数值计算”考试要求 “数值计算”考试以开卷形式进行。在“数值计算”课程考试日(2015 年12 月 19 日,第 12 周星期五)考试时间,在考试教室领取试题,在 2015 年12 月 26 日(第 17 周星期六)进行答辩。不参加答辩者将取消考试成绩。 “数值计算”考试结果要求独立在计算机上完成,可使用Matlab或 C 程序编程实现。考试结果将以报告书形式提交,内容包括对问题描述、计算程序以及算例、计算结果、分析组成。计算程序要求具有通用性,能够处理异常情况,可以输入问题、算法参数、算例及初始值,在计算过程中显示当前计算状态、计算完成后显示计算结果。上述内容将作为试卷成绩的主要评定依据。特别提醒,不得使用教师在讲课和实验时的范例作为考试结果。报告书具体格式参考毕业设计手册。 以考生学号命名的文件夹存放程序及报告书电子版,以班级为单位刻录在一张光盘中,与打印版报告书一起由班长和学习委员一起上交任课教师。 数值计算课程总成绩将由试卷成绩(70%)、平时成绩(30%)组成。

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值计算方法I上机实验考试题

数值计算方法I 上机实验考试题(两题任选一题) 1.小型火箭初始质量为900千克,其中包括600千克燃料。火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生30000牛顿的恒定推力.当燃料用尽时引擎关闭。设火箭上升的整个过程中,空气阻力与速度平方成正比,比例系数为0.4(千克/米).重力加速度取9.8米/秒2. A. 建立火箭升空过程的数学模型(微分方程); B. 求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时间和高度. 2.小型火箭初始质量为1200千克,其中包括900千克燃料。火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生40000牛顿的恒定推力.当燃料用尽时引擎关闭。设火箭上升的整个过程中,空气阻力与速度平方成正比,比例系数记作k ,火箭升空过程的数学模型为 0)0(,0,01222==≤≤-+?? ? ??-==t dt dx x t t mg T dt dx k dt x d m 其中)(t x 为火箭在时刻t 的高度,m =1200-15t 为火箭在时刻t 的质量,T (=30000牛顿)为推力,g (=9.8米/秒2)为重力加速度, t 1 (=900/15=60秒)为引擎关闭时刻. 今测得一组数据如下(t ~时间(秒),x ~高度(米),v ~速度(米/秒)): 现有两种估计比例系数k 的方法: 1.用每一个数据(t,x,v )计算一个k 的估计值(共11个),再用它们来估计k 。 2.用这组数据拟合一个k . 请你分别用这两种方法给出k 的估计值,对方法进行评价,并且回答,能否认为空气阻力系数k=0.5(说明理由).

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过 实验或观测得到量x与y的一组数据对(X i ,Y i )(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或 拟合已知数据。f(x,c)常称作拟合模型,式中c=(c 1,c 2 ,…c n )是一些待定参 数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

《数值计算方法》上机实验报告

《数值计算方法》上机实验报告华北电力大学 实验名称数值il?算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一. 各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程 *对于非线性方程,若已知根的一个近似值,将在处展开成一阶 xxfx ()0, fx ()xkk 泰勒公式 "f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2! 忽略高次项,有 ,fxfxfxxx 0 ()()(),,, kkk 右端是直线方程,用这个直线方程来近似非线性方程。将非线性方程的 **根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkk fx 0 fx 0 0,

解出 fX 0 *k XX,, k' fx 0 k 水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ik fx ()k 八XX, Ikk* fx()k 这就是牛顿迭代公式。 ,2,计算机程序框图:,见, ,3,输入变量、输出变量说明: X输入变量:迭代初值,迭代精度,迭代最大次数,\0 输出变量:当前迭代次数,当前迭代值xkl ,4,具体算例及求解结果: 2/16 华北电力大学实验报吿 开始 读入 l>k /fx()0?,0 fx 0 Oxx,,01* fx ()0 XX,,,?10 kk, ,1,kN, ?xx, 10 输出迭代输出X输出奇异标志1失败标志

,3,输入变量、输出变量说明: 结束 例:导出计算的牛顿迭代公式,并il ?算。(课本P39例2-16) 115cc (0), 求解结果: 10. 750000 10.723837 10. 723805 10. 723805 2、列主元素消去法求解线性方程组,1,算法原理: 高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角 3/16 华北电力大学实验报告方程组求解。 列选主元是当高斯消元到第步时,从列的以下(包括)的各元素中选出绝 aakkkkkk 对值最大的,然后通过行交换将其交换到的位置上。交换系数矩阵中的 两行(包括常ekk 数项),只相当于两个方程的位置交换了,因此,列选主元不影响求解的结 ,2,计算机程序框图:,见下页, 输入变量:系数矩阵元素,常向量元素baiji 输出变量:解向量元素bbb,,12n

数值计算方法学习心得

数值计算方法学习心得 ------一个代码的方法是很重要,一个算法的思想也很重要,但 在我看来,更重要的是解决问题的方法,就像爱因斯坦说的内容比 思维本身更重要。 我上去讲的那次其实做了挺充分的准备,程序的运行,pdf文档,算法公式的推导,程序伪代码,不过有一点缺陷的地方,很多细节 没有讲的很清楚吧,下来之后也是更清楚了这个问题。 然后一学期下来,总的来说,看其他同学的分享,我也学习到 许多东西,并非只是代码的方法,更多的是章胜同学的口才,攀忠 的排版,小冯的深入挖掘…都是对我而言比算法更加值得珍惜的东西,又骄傲地回想一下,曾同为一个项目组的我们也更加感到做项 目对自己发展的巨大帮助了。 同时从这些次的实验中我发现以前学到的很多知识都非常有用。 比如说,以前做项目的时候,项目导师一直要求对于要上传的 文件尽量用pdf格式,不管是ppt还是文档,这便算是对产权的一种 保护。 再比如代码分享,最基础的要求便是——其他人拿到你的代码 也能运行出来,其次是代码分享的规范性,像我们可以用轻量级Ubuntu Pastebin,以前做过一小段时间acm,集训队里对于代码的分享都是推荐用这个,像数值计算实验我觉得用这个也差不多了,其 次项目级代码还是推荐github(被微软收购了),它的又是可能更 多在于个人代码平台的搭建,当然像readme文档及必要的一些数据 集放在上面都更方便一些。

然后在实验中,发现debug能力的重要性,对于代码错误点的 正确分析,以及一些与他人交流的“正规”途径,讨论算法可能出 错的地方以及要注意的细节等,比如acm比赛都是以三人为一小组,讨论过后,讲了一遍会发现自己对算法理解更加深刻。 然后学习算法,做项目做算法一般的正常流程是看论文,尽量 看英文文献,一般就是第一手资料,然后根据论文对算法的描述, 就是如同课上的流程一样,对算法进一步理解,然后进行复现,最 后就是尝试自己改进。比如知网查询牛顿法相关论文,会找到大量 可以参考的文献。 最后的最后,想说一下,计算机专业的同学看这个数值分析, 不一定行云流水,但肯定不至于看不懂写不出来,所以我们还是要 提高自己的核心竞争力,就是利用我们的优势,对于这种算法方面 的编程,至少比他们用的更加熟练,至少面对一个问题,我们能思 考出对应问题的最佳算法是哪一个更合适解决问题。 附记: 对课程的一些小建议: 1. debug的能力不容忽视,比如给一个关于代码实现已知错误的代码给同学们,让同学们自己思考一下,然后分享各自的debug方法,一步一步的去修改代码,最后集全班的力量完成代码的debug,这往往更能提升同学们的代码能力。 2. 课堂上的效率其实是有点低的,可能会给学生带来一些负反馈,降低学习热情。 3. 总的来说还是从这门课程中学到许多东西。 数值分析学习心得体会

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

数值计算方法实验5

实验报告 学院(系)名称: 主程序部分列选主元部分

实验结果: 一.列主元消去法 输入各个数据,最终使用列选主元法,得到结果为:x1=x2=x3=1二.高斯-赛德尔迭代法 输入各个数据,输出每一步迭代数据,最终结果为:x1=0.285716,附录(源程序及运行结果) 一.列主元高斯消去法 #include #include void print(double a[3][3],int n,double b[3]){ printf("输出矩阵:\n"); for(int i=0;ifabs(d)){ d=a[i][k]; l=i; } i++; } printf("选出主元:%lf\n",d); if(d==0) printf("矩阵奇异!\n"); else if(l!=k){ for(int j=k;j

MATLAB与数值分析实验报告一

MATLAB与数值分析实验报告 报告人:秦旸照 学号: 2015020901033 时间: 2016.4.8 电子科技大学电子工程学院

一、实验目的 实验一:MATLAB软件平台与程序设计实验 二、实验原理 1.熟练掌握矩阵的生成、加、减、乘、除、转置、行列式、逆、范数等运算操作。(用.m文件和Matlab函数编写一个对给定矩阵进行运算操作的程序) 2. 熟练掌握算术符号操作和基本运算操作,包括矩阵合并、向量合并、符号转换、展开符号表达式、符号因式分解、符号表达式的化简、代数方程的符号解析解、特征多项式、函数的反函数、函数计算器、微积分、常微分方程的符号解、符号函数的画图等。(用.m文件编写进行符号因式分解和函数求反的程序) 3. 掌握Matlab函数的编写规范。 4.掌握Matlab常用的绘图处理操作,包括:基本平面图、图形注释命令、三维曲线和面的填充、三维等高线等。(用.m文件编写在一个图形窗口上绘制正弦和余弦函数的图形,并给出充分的图形注释) 5. 熟练操作MATLAB软件平台,能利用M文件完成MATLAB的程序设计。 三、实验方案 1. 编程实现以下数列的图像,用户能输入不同的初始值以及系数。并以 x,y为坐标显示图像 x(n+1) = a*x(n)-b*(y(n)-x(n)^2); y(n+1) = b*x(n)+a*(y(n)-x(n)^2) 2. 编程实现奥运5环图,允许用户输入环的直径。 3. 实现对输入任意长度向量元素的冒泡排序的升序排列。 不允许使用sort函数。 四、实验结果 1. 编程实现以下数列的图像,用户能输入不同的初始值以及系数。并以 x,y为坐标显示图像

数值计算方法实验报告(例)讲解

实验报告 一、实验目的 二、实验内容 三、实验环境 四.实验方法 五、实验过程 1实验步骤 2 关键代码及其解释 3 调试过程 六、实验总结 1.遇到的问题及解决过程 2.产生的错误及原因分析 3.体会和收获。 七、程序源代码: 八、教师评语

实验报告 一.试验目的:练习用数值方法求解给定的非线性方程。 二.实验内容:求解人口方程: )1(5 .43e 1004.156-+ =λλλ e 要求误差小于410-。 三.实验环境:PC 计算机,FORTRAN 、C 、C ++、VB 任选一种。 四.实验方法:牛顿法 牛顿法简述:牛顿法是一种特殊的迭代法,其迭代公式为: ,2,1,0,) () (1='- =+k x f x f x x k k k k , 当数列{}k x 收敛时,其极限值x 即为方程的解。 定理:给定方程],[,0)(b a x x f ∈= 1)设0)()(''x f x f ; 则牛顿法产生的序列{}k x 收敛于0)(=x f 在],[b a 内的唯一解x 。 五.实验过程: 1.编程: 用C 语言编出牛顿法的源程序。 2. 开机, 打开C 语言编译程序,键入所编程序源代码. 3. 调试程序, 修改错误至能正确运行. 六.实验总结: (1)牛顿法收敛速度快,但初值不容易确定,往往由于初值取得

不当而使迭代不收敛或收敛慢,但若能保证)()(1+>K K x f x f (称为下山条件),则有可能收敛。把新的近似值看作初值的话会比原来的取得好,有可能落入局部收敛的邻域。 (2)牛顿法要求)(x f '在x 附近不为零。亦即x 只能是单根, 不能求重根。可用重根加速收敛法求重根。 (3)牛顿法的每一步迭代中,都要计算一次导数值,若计算)(x f '比计算函数的近似值要麻烦的多。为了避免求导数,可用差商近似代替微商 1 1) ()()(----='K K K K K x x x f x f x f 此时牛顿迭代法改为 )() ()() (111--+--- =K K K K K K K x x x f x f x f x x . (4) 由于人口方程来源于实际问题, λ代表人口增长率, 其真实 值不会太大, 初值不应取得过大.否则会得到该方程的另外一个解 七、程序源代码: #include #define ep 1e-4 float f (float x) { float y; y=100*exp(x)+43.5*(exp(x)-1)/x-156.4; return(y); } float df (float x) { float y; y=100*exp(x)+43.5*( x*exp(x)-exp(x)+1)/(x*x); return(y); } float root(float x) { float y; if (fabs)f

(完整版)数值计算方法上机实习题答案

1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为: I=0.182; for n=1:20 I=(-5)*I+1/n; end I 输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用n I I n n 51 5111+- =--,计算0I ; 因为 0095.05 6 0079.01020 201 020 ≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2 1 20=+= I 程序为:I=0.0087; for n=1:20 I=(-1/5)*I+1/(5*n); end I 0I = 0.0083 (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。并记n n n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。因为=20E 20020)5(I E >>-,所此递推式不可靠。而在第二种递推式中n n E E E )5 1(5110-==-=Λ,误差在缩小, 所以此递推式是可靠的。出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制, 即算法是否数值稳定。 2. 求方程0210=-+x e x 的近似根,要求4 1105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4 c=(b+a)/2;

数值分析课程报告

插值法和多项式拟合的研究 摘要 在科研和生产实践中,常常需要通过一组测量数据来寻找变量x与y的函数关系近似表达式。解决这类问题的方法有两种:一种是插值法,另一种是拟合法。插值法的原理是用一个简单函数逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。拟合法能够是从给定的一组实验数据出发,寻找函数的一个近似表达式,该近似表达式能反映数据的基本趋势而又不一定过全部的点,即曲线拟合。本文主要介绍拉格朗日插值法、埃尔米特插值法、三次样条插值法以及基于最小二乘法的多项式拟合。 关键词:拉格朗日插值,埃尔米特插值,样条插值,多项式拟合

1方法的意义 在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是由观察与测试得到一些离散数值。有时,即使给出了解析表达式,却由于表达式过于复杂,不仅使用不便,而且不易于进行计算与理论分析。解决这类问题的方法有两种:一种是插值法,另一种是拟合法。插值法的原理是用一个简单函数逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。它要求给出函数的一个函数表,然后选定一种简单的函数形式,比如多项式、分段线性函数及三角多项式等,通过已知的函数表来确定一个简单的函数()x ?作为()f x 的近似,概括地说,就是用简单函数为离散数组建立连续模型。插值法在实际应用中非常广泛,但是它也有明显的缺陷,一是测量数据常常带有测试误差,而插值多项式又通过所有给出的点,这样就是插值多项式保留了这些误差;二是如果实际得到的数据过多,则必然得到次数较高的插值多项式,这样近似的效果并不理想。拟合法能够很好的解决这些问题,它从给定的一组实验数据出发,寻找函数的一个近似表达式y=()x ?,该近似表达式能反映数据的基本趋势而又不一定过全部的点,即曲线拟合的问题,函数的近似表达式y=()x ?称为拟合曲线。常用最小而二乘法来确定拟合曲线。 2插值法的介绍 2.1 插值法定义 设 f (x )为[a ,b ]上的函数,在互异点n x x x ,...,,10处的函数值分别为 )(),...,(),(10n x f x f x f ,构造一个简单函数 ?(x ) 作为函数 f (x ) 的近似表达式y = f (x ) ≈ ?(x ),使 )()(i i x f x =? , i =0, 1, 2, …,n (1.0) 则称?(x ) 为关于节点n x x x ,...,,10的插值函数;称n x x x ,...,,10 为插值节点;称 ))((i i x f x , i =1,2,… , n 为插值点;f (x ) 称为被插值函数。式(1.0)称为插值条 件。这类问题称为插值问题。插值的任务就是由已知的观测点,为物理量(未知量)建立一个简单的、连续的解析模型,以便能根据该模型推测该物理量在非观测点

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值计算方法试题集及答案

《数值计算方法》复习试题 一、填空题: 1、?? ??? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=????????????。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为 ( )] ,(),([2111+++++=n n n n n n y x f y x f h y y );

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

相关文档
相关文档 最新文档